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Abstract

This article establishes a data-driven modeling framework for lean hydrogen (H2)-air reaction rates for the Large
Eddy Simulation (LES) of turbulent reactive flows. This is particularly challenging since H2 molecules diffuse much
faster than heat, leading to large variations in burning rates, thermodiffusive instabilities at the subfilter scale, and
complex turbulence-chemistry interactions. Our data-driven approach leverages a Convolutional Neural Network
(CNN), trained to approximate filtered burning rates from emulated LES data. First, five different lean premixed
turbulent H2-air flame Direct Numerical Simulations (DNSs) are computed each with a unique global equivalence
ratio. Second, DNS snapshots are filtered and downsampled to emulate LES data. Third, a CNN is trained to
approximate the filtered burning rates as a function of LES scalar quantities: progress variable, local equivalence
ratio, and flame thickening due to filtering. Finally, the performances of the CNNmodel are assessed on test solutions
never seen during training. Themodel retrieves burning rates with very high accuracy. It is also tested on two filter and
downsampling parameters and two global equivalence ratios between those used during training. For these
interpolation cases, the model approximates burning rates with low error even though the cases were not included
in the training dataset. This a priori study shows that the proposed data-driven machine learning framework is able to
address the challenge of modeling lean premixed H2-air burning rates. It paves the way for a newmodeling paradigm
for the simulation of carbon-free hydrogen combustion systems.

Impact Statement

Large eddy simulation (LES) plays a key role in the design of new combustion chambers for robust and safe
combustion of carbon-free fuels such as H2. It is a very efficient method that consists of filtering and modeling
small-scale flow physics that would otherwise be very computationally expensive to resolve. However, the high
molecular diffusion of H2 challenges current subfilter-scale modeling approaches for lean premixed mixtures.
By establishing a framework for data-driven machine learning modeling of LES burning rates, this work can
enable high-fidelity simulation of hydrogen combustion systems. These combustion systems are essential for
achieving a low-carbon economy.
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1. Introduction

The urgent need to drastically reduce our greenhouse gas emissions requires us to develop alternative
solutions to fossil fuel combustion. Sustainably produced hydrogen (H2) is a promising energy carrier for
the decarbonization of combustion systems where there is no viable technology to be a substitute. This is
the case, for example, with gas turbines for power generation or aviation, as well as some industrial
burners. However, compared with conventional fuels, H2-air combustion involves higher flame temper-
atures, much higher flame speeds, and a very wide flammability range. These characteristics pose
considerable challenges to the design of new H2 combustion devices, ensuring stable, robust, and safe
operation. In this context, high-fidelity simulation of turbulent combustion plays a key role. It is essential
both for a fundamental understanding of flame behavior and as an aid to the design of industrial
combustion devices. It is also crucial for modeling safety scenarios, with hydrogen expected to be widely
used to decarbonize the industry.

The community nowadays uses Large Eddy Simulation (LES) methods, which involve simulating
only the largest flow structures, to compute real complex configurations at an affordable computing cost.
The smaller scales are modeled, according to subfilter-scale models (Poinsot and Veynante, 2011; Fiorina
et al., 2015). In LES, a filtered quantity φ is defined as

φ x, tð Þ¼
Z ∞

�∞
φ x0, tð ÞF x�x0ð Þdx0, (1.1)

where F is the LES filter. Balance equations are obtained by applying the filter F to the multispecies
Navier–Stokes equations. The filtered transport equation of a reactive scalar φ reads

∂t ρ~φð Þþ∇ � ρ~u~φð Þ�∇ � ρ~Dφ∇~φ
� �¼∇ �Γφþ _ωφ, (1.2)

where ~� denotes density-weighted Favre filtering (i.e. ~� ¼ ρ�=ρ), with density ρ, time t, velocity u. Dφ,
Γφand _ωφ are the molecular diffusivity, subfilter-scale flux, and source term of φ. The filtering operation
produces unclosed terms located on the RHS of Eq. (1.2) that must be modeled. The subfilter-scale flux
comprises the transport of φ by unresolved fluctuations of molecular diffusive flux and momentum

Γφ ¼Γφ,D�Γφ,C with Γφ,D ¼ ρDφ∇φ�ρ~Dφ∇~φ and Γφ,C ¼ ρuφ�ρ~u~φ: (1.3)

It is usually modeled as neglecting Γφ,D and involving gradient transport models for Γφ,C with a turbulent
viscosity hypothesis (Boger et al., 1998). The countergradient phenomenon can be taken into account via
more complex modeling (Tullis and Cant, 2002a, 2002b), although a large part will be described at the
resolved scale in LES (Boger et al., 1998). Alternatively, Γφ can be tabulated within the filtered tabulated
chemistry framework (Fiorina et al., 2010) or modeled via Machine Learning (ML) algorithms (Seltz
et al., 2019). Modeling of the filtered chemical source term _ωφ is extremely challenging because
combustion generally occurs within reaction fronts that are smaller than the LES computational mesh.
Furthermore, there is a strong interaction between turbulence and chemistry: chemical heat release
influences turbulence, while turbulence, in turn, modifies flame structure, which can either enhance or
inhibit chemical reactions.

To overcome these difficulties, several approaches have been proposed in the context of premixed
combustion, which is the focus of this article. A common technique is to artificially thicken the reaction
front, enabling it to be resolved on the given computational mesh. This is the basis of the Thickened Flame
(TF) model, which achieves this by increasing all diffusivities by a factor F while decreasing all reaction
rates by the same factor to maintain the correct flame propagation speeds (Butler and O’Rourke, 1977).
The LES modeling then focuses on an efficiency function E taking into account the effects of thickening
on flame propagation, such as the loss of flamewrinkling (Colin et al., 2000; Charlette et al., 2002; Poinsot
and Veynante, 2011). Another approach consists of filtering the flame front with a LES filter larger than
the mesh size (Boger et al., 1998; Duwig, 2007). Filtering is usually done on the equation of a reaction
progress variable c representing the evolution of combustion within the flame front. The balance equation
for ~c may be recast as a level set G-equation (Kerstein et al., 1988).
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∂t ρ~cð Þþ∇ � ρ~u~cð Þþ∇ � ρuc�ρ~u~cð Þ¼∇ ρDc∇ � c� �þ _ωc ¼ ρsd∣∇c∣, (1.4)

which gives rise to a flame front displacement term at speed sd, ρsd∣∇c∣, which requires modeling.
Anotherway to close the equation is to tabulate all the closure terms from filtered laminar premixed flames
(Fiorina et al., 2010), assuming the turbulent flame can be represented as an ensemble of locally One-
Dimensional (1D) laminar flamelets (Peters, 1988). In all cases, a model to retrieve the subfilter-scale
effects on the thickened/filtered flame front is needed.

Modeling subfilter-scale phenomena is particularly challenging for hydrogen combustion. Indeed, H2

is a very peculiar fuel due to its small Lewis number. Its high molecular diffusion, much faster than heat,
gives rise to unique phenomena, especially when burned lean (that is with excess air) and premixed. First,
lean H2 flames are prone to thermodiffusive instabilities. The disparity between heat and H2 mass fluxes
(called differential diffusion) amplify small flame front perturbations, inducing significant flame wrink-
ling and strong variations of the reaction rates along the flame front (Poinsot and Veynante, 2011; Berger
et al., 2022a, 2022b). Second, burning rates increase significantly when lean H2 flame is subjected to a
strain (Petrov and Ghoniem, 1994; Vagelopoulos et al., 1994), up to a certain limit. The resulting increase
in flame speed can be substantial. For example, the experimental work in Vagelopoulos et al. (1994)
reports a three-fold enhancement in flame speed compared to an unstrained flame.

These phenomena invalidate usual Flame Surface Density (FSD) approaches (Pope, 1988; Trouvé and
Poinsot, 1994; Marble and Broadwell, 1997; Boger et al., 1998) based on the assumption that subfilter-
scale effects are limited to an increase in flame surface density through wrinkling due to turbulence alone.
Aniello et al. (2022) have recently attempted to address this issue by multiplying the filtered chemical
source terms by a corrective factor, determined from Direct Numerical Simulation (DNS) (Berger et al.,
2022a, 2022b), decoupling the enhancement of combustion rates due to thermodiffusion instabilities and
usual turbulence wrinkling. However, this is no longer possible when the wrinkling scales induced by
turbulent eddies become smaller than the characteristic lengths at which the instabilities occur. Moreover,
Berger et al. (2022c) have reported complex and synergistic interactions between thermodiffusion
instabilities and turbulence, casting doubt on the possibility of decoupling these phenomena. Gaucherand
et al. (2024b) attempted to correct unresolved straining effects bymultiplying the filtered chemical source
terms by a strain-to-unstrained flame speed ratio determined using 1D flames. The strain rate was assumed
to be constant over the entire domain at a value of 2000 s�1, not taking into account the very wide strain
variation along the turbulent flame. Additional efforts must be made to account for local strain effects,
which is extremely difficult in LES because the information on the strain that a turbulent flame actually
undergoes at the subfilter-scale level is unknown. Subfilter Probability Density Function (PDF) modeling
for H2 turbulent combustion is also being developed (Berger et al., 2022d; Ferrante et al., 2024; Pitsch,
2024; Yao and Blanquart, 2024), where the subfilter-scale distribution of thermochemical variables is
usually modeled using β-PDF. The turbulence-chemistry interactions are described through the subfilter
PDF while the flamelet assumption (Peters, 1988) links local thermochemical variables to those of the
laminar flame elements. Thus, a set of 1D laminar flames is needed to be computed, assuming a specific
flame archetype a priori. Defining the subfilter PDF is a particular challenge. For example, Berger et al.
(2022d) andYao andBlanquart (2024) use aDirac function for themixture fraction distribution, while it is
reported in Pitsch (2024) that it leads to modeling errors. Indeed, preferential diffusion in H2-air mixtures
can lead to fluctuation of the mixture fraction at the subfilter-scale level. Furthermore, the effect of
unstable modes that occur partially at the subfilter scale must be included in the subfilter PDF to avoid
underestimating the flame consumption speed (Lapenna et al., 2024; Pitsch, 2024).

The phenomena involved inH2 turbulent combustion are extremely complex, not well understood, and
still subject to discussion, we propose to change the paradigm by developing a data-driven method based
on ML instead of trying to model turbulent H2 burning rates by physical description. This work is
motivated by the positive results of such an approach for the approximation of the subfilter flame surface
density both a priori and a posteriori for methane-air combustion (Lapeyre et al., 2018, 2019; Ho et al.,
2024). The strategy is adapted to hydrogen combustion by training a Neural Network (NN) to estimate the
H2 burning rate directly. In this way, no assumptions aremade about the turbulent combustion regime, and

Data-Centric Engineering e11-3

https://doi.org/10.1017/dce.2025.1 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.1


the model can theoretically be applied to any combustion regime encountered during training. Firstly, a
database of fully resolved turbulent H2-air premixed flames are generated using DNS, taking into account
preferential and differential diffusion effects. The database includes five different equivalence ratios to
assess the ability of the model to account for air/fuel ratio variation. The database is then filtered and
downsampled to emulate data from LES. Three different filter sizes are used to assess the ability of the
model to account for subfilter effects at different scales. From the emulated LES fields, a Convolutional
Neural Network (CNN) is trained to estimate the LES burning rates based on knownLES scalar quantities
such as the filtered mixture fraction and progress variable. Once trained, the model is found to
approximate the burning rates on solutions never seen during training with high accuracy. In addition
to this, the model is able to approximate burning rates on filter sizes and equivalence ratios other than
those used for training.

First, the problem statement is described, with the definition of the input/output variables of the model
(Section 2.1). Then the NN set up to approximate the burning rate function is detailed (Section 2.2). Next,
the data generation and training strategy is explained (Section 2.3). Finally, training results are presented
and discussed (Section 3).

2. Background and methodology

2.1. Problem statement

The simulation of turbulent flows at high Reynolds numbers cannot generally be performed with
sufficient resolution to represent all the scales of the flow. LES aims to simulate only a part of the
turbulent spectrum to achieve a reasonable computational cost. Scales are cut by spatial filtering, and
unresolved scales are modeled using so-called subfilter-scale models. In the LES framework, the Favre-
filtered transport equation for the mass fraction of the kth species Yk follows Eq. (1.2). As discussed in the
introduction, modeling the filtered chemical source terms in LES of reacting flows is extremely
challenging because chemistry largely occurs at the subfilter-scale level in most cases. This is further
complicated in lean premixed H2-air mixtures because of thermodiffusive effects, causing additional
flame wrinkling and pronounced fluctuations in reaction rates along the flame front. A precise description
of the preferential and differential diffusion, turbulence wrinkling, and their interactions (Berger et al.,
2022c) at the subfilter-scale level is required.

In this work, we focus on the development of a data-driven model for the filtered chemical source term
of H2 in lean premixed turbulent combustion.ML is used to discover structural relations between resolved
scalar quantities and subfilter-scale turbulence-chemistry interactions. We develop this method for the H2

filtered “burning rate” _ω, defined as

_ω¼� _ωH2 , (2.1)

with the aim of establishing an ML-based modeling framework and a proof of concept for H2 turbulent
combustion. The final implementation will depend on the given LES modeling framework. For example,
the ML model could replace the tabulation method proposed in Lapenna et al. (2021, 2024) for the
chemical source term of the progress variable. This is what has been done in Seltz et al. (2019) with direct
mapping of the closure terms for a methane-air flame. The ML framework could also be based on a
database with a one-step chemistry (Millán-Merino and Boivin, 2024; Schiavone et al., 2024) to close the
LES multi-species transport equations.

The basic ingredients to describe turbulent flames remain the quantities introduced for laminar flame
analysis: the progress variable c and the mixture fraction ξ. The progress variable equals zero in fresh gas,
and one in burnt gas, and varies monotonically during combustion. Mixture fraction ξ or the equivalence
ratio ϕ is used to inform the ML-based model of the composition of the mixture, which impacts burning
rates. The mixture fraction is based on Bilger’s definition (Bilger et al., 1990).

ξ ¼ β�βo

βf �βo
with β¼ ZH

2WH
� ZO

WO
, (2.2)
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where Zm andWm are the elemental mass fraction and atomicmass of the elementm. The superscripts o and
f denote oxidizer and fuel stream. The filtered progress variable ~c is defined as

~c¼ Yu
H2

~ξ
� �� ~YH2

Yu
H2

~ξ
� ��Yb

H2
~ξ
� �¼ ~ξ� ~YH2

~ξ� max 0,
~ξ�ξs
1�ξs

� � , (2.3)

where superscripts u and b denote values in unburnt and burnt gas and ξs is the mixture fraction value at
stoichiometry. We have arbitrarily chosen to base the progress variable on the H2 mass fraction. It is
shown in Supplementary Material that it is also possible to base the progress variable on the H2O mass
fraction without any impact on the training and prediction accuracy of the model. In this framework, the
challenge is now to model _ω as a function of ~c and ~ξ fields.

2.2. Machine learning framework

The aim of the ML-based model is to approximate the function

_ω¼ f ~c,~ξ or ~ϕ,…
� �

: (2.4)

The evolution of the reaction rate depends on the thermochemical state described by the progress variable
andmixture fraction, but also on the flow. Indeed, the level of turbulence, flame curvature, and strain, have
a major influence on the reaction rate (Poinsot and Veynante, 2011). In this work, we propose to include
the topological information by means of spatial convolutions using a CNN. The CNN is found to perform
better when the equivalence ratio ~ϕ is used instead of the mixture fraction ~ξ. The filtered equivalence ratio
can be approximated as

~ϕ¼
~ξ 1� ξsð Þ
ξs 1�~ξ
� � : (2.5)

The CNN takes as input the field of ~c and ~ϕ over a domain Ω, performs successive convolutions and
operations, and outputs an approximation of _ω over the same domainΩ. The function f CNN therefore reads

_ω
NN ¼ f CNN ~c,~ϕ

� �
≈ _ω: (2.6)

CNNs were designed to learn spatial hierarchies of features, from low- to high-level patterns. They are
therefore well fitted for recognizing complex flame topology and learning associated burning rates.
Furthermore, the convolutions enable to train models on large inputs via parameter sharing. The
application of CNNs to the modeling of flame features has already been successfully performed in
Lapeyre et al. (2018, 2019), Seltz et al. (2019) and Nikolaou et al. (2019) for fuel-air mixture without
significant preferential diffusion effects, unlike the H2-air mixtures considered in this article.

The CNN architecture used is inspired by the U-net architecture originally developed for image
segmentation (Ronneberger et al., 2015) (Figure 1). However, the output activation function is replaced
by a linear activation function for the regression task considered in this work. A similar architecture for the
approximation of flame surface density has already been used successfully (Lapeyre et al., 2018, 2019).
Using 64 channels in the first multi-channel feature map instead of 32 in Lapeyre et al. (2018, 2019)
increased the accuracy of the approximation of _ω (Eq. (2.6)) in the present work. In total, the network
comprises 5,424,193 trainable parameters.

2.3. Data generation and training strategy

The data generation strategy consists of filtering and downsampling data from DNS to emulate LES data
with known filtered quantities. The configuration chosen to generate training data is a slot burner
(Figure 2) at constant pressure P¼ 1 atm and fresh gas temperature Tu ¼ 300 K, as in Lapeyre et al.
(2018, 2019). The physical domain consists of a central inlet where a premixed H2-air mixture flows at a
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bulk velocity Ub ¼ 24m=s with velocity fluctuation u0 ¼ 2:4m=s, surrounded by two laminar coflows
where burnt gas flows at a bulk velocity Uc ¼ 3:6m=s. The injection of turbulence at the central inlet
corresponds to homogeneous and isotropic turbulence using a Passot-Pouquet turbulence spectrum
(Passot and Pouquet, 1987) with an integral length scale lt ¼ 2 mm. The domain is rectangular with
periodic boundary conditions in the z-direction. Adiabatic walls are specified in the y-direction. Both
inlets and outlets are specified in the x-direction. Exact dimensions are annotated on Figure 2. The
configuration is very similar to that used in Berger et al. (2022c), Coulon et al. (2023), and Gaucherand
et al. (2024a) to study H2-air and H2/NH3-air premixed turbulent flames. This configuration is computed
for five different equivalence ratios (Table 1) to assess the ability of the CNN to approximate the reaction
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Figure 1. U-net-type architecture is used in the present work. Each black box corresponds to a multi-
channel feature map. The number of channels is denoted on top of the box. The input sample has three
channels: ~c, ~ϕ and δ0L=δ

1
L. The ratio δ0L=δ

1
L is the inverse of the laminar flame thickening due to filtering

(Section 2.3.2). The original size of the cubic sample isN3. It is then reduced to N=2ð Þ3 and N=4ð Þ3 during
the contracting path before going back to the original size during the expansive path. Gray boxes

represent copied feature maps. The arrows denote the different operations.

0 2010

Burnt gas

Fresh gas

Burnt gas

Figure 2. Diagram of the slot burner configuration used to generate the DNS database. The flame is
depicted by an iso-surface at a progress variable c¼ 0:5 colored by _ω¼� _ωH2. The dimensions of the
domain are annotated on the right. The length Lx is adapted to the length of the turbulent flame brush,

which is a function of the global equivalence ratio ϕg.

e11-6 Quentin Malé, Corentin J. Lapeyre and Nicolas Noiray

https://doi.org/10.1017/dce.2025.1 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.1


rate over a range of equivalence ratios. All other parameters are kept constant. The Reynolds number of
the central inlet is about 10,000 for all cases.

The data generation and training strategy is based on processing multiple snapshots from the five DNS
(Figure 3):

a. The five DNS cases (Table 1) are computed for 59 ms from a statistically steady state. Three-
Dimensional (3D) instantaneous solutions are saved every ms. Solutions with an index multiple of
10 are set aside for testing after training. All other solutions are used for training and validation data.
This generates 6 solutions for testing and 54 solutions for training and validation data for each
DNS case.

b. A spatial filtering is performed on each solution to obtain ρ, ρYH2 , ρξ and _ωH2 . The filtered variables
are downsampled to a coarser grid, representing an LES grid. The filtering and downsampling
operation is described in Section 2.3.2.

c. The filtered progress variable ~c is calculated using Eq. (2.3) with ~YH2 ¼ ρYH2=ρ and ~ξ ¼ ρξ=ρ. The
filtered equivalence ratio ~ϕ is calculated using Eq. (2.5) with ~ξ ¼ ρξ=ρ. The filtered burning rate _ω is
calculated using Eq. (2.1) with _ωH2 .

Table 1. Global equivalence ratio ϕg for the five different DNS cases

Case ϕg ¼ 0:35 ϕg ¼ 0:4 ϕg ¼ 0:5 ϕg ¼ 0:6 ϕg ¼ 0:7

S0L [m/s] 9:453 �10�2 1:925 �10�1 4:972 �10�1 8:845 �10�1 1:302
δ0th,L [m] 1:146 �10�3 7:176 �10�4 4:809 �10�4 4:339 �10�4 4:171 �10�4

Tad [K] 1311 1428 1646 1844 2020

The laminar flame characteristic values are also indicated. S0L is the laminar flame speed, δ0th,L the laminar thermal flame thickness, Tad the adiabatic
flame temperature.

t [ms]0 5 10 2015

solution for testing

solution for training

Generation of a DNS databasea

Spatial filtering and downsamplingb

Calculation of input variables (  ,   ) and target output variable (   )c

Extraction of multiple cubes for trainingd

Training of the CNN on the collection of cubese

Figure 3. Diagram of the strategy used to generate data and train the CNN. δ0L=δ
1
L is the inverse of the

laminar flame thickening due to filtering (Section 2.3.2). ~ϕ is calculated from ~ξ using Eq. (2.5).
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d. It is important that the CNN does not learn the specific configuration of the slot burner, but only
learns generic flame elements. Depending on the effective receptive field of the CNN, training
using the emulated LES solutions directly could encode in the network information on the distance
to the inlets, outlet, or the wall for example. This would drastically reduce CNN’s ability to
generalize and must be avoided. To address this, training is performed on randomly selected cubes
in the domain as in Lapeyre et al. (2018, 2019). This also enables the CNN to be invariant to
translation (Biscione and Bowers, 2021).

e. TheCNN is trained to approximate _ω (Eq. (2.6)) using data from the cubic samples. 10%of samples
are randomly selected and set aside for validation, the rest are used for training. The complete
description of the training is given in Section 2.3.3.

2.3.1. Direct numerical simulation
DNS of the slot burner cases (Table 1) are performed using the AVBP (Schonfeld and Rudgyard, 1999;
Gicquel et al., 2011) massively parallel code solving the compressible multi-species Navier–Stokes
equations. A third-order accurate Taylor–Galerkin scheme is adopted for the discretization of the convective
terms (Colin andRudgyard, 2000).Navier–StokesCharacteristic BoundaryConditions (NSCBCs) (Poinsot
andLelef, 1992) are imposed at the inlets (relaxation factor of1000 s�1) and at the outlet (relaxation factor of
200 s�1). Dynamic viscosity μ follows a power law function of temperature T .

μ¼ μ0
T
T0

� �γ

, (2.7)

with μ0 ¼ 8:062× 10�5 kg=m=s, T0 ¼ 2:645× 103 K and γ¼ 6:481× 10�1. Thermal diffusivity is com-
puted from the viscosity using a constant Prandtl number: Pr¼ 0:66. Species diffusivities are computed
using a constant Schmidt number specific for each species (Table 2). This approach takes into account
non-unity Lewis numbers and preferential diffusion between the different species. It is verified that the
errors made by the simplified transport description are negligible by comparing the results with
simulations using a mixture-averaged transport model, see Supplementary Material. Soret and Dufour
transport processes are ignored in the simulations of the present work. Including these transport, processes
could enhance thermodiffusive instabilities and increase source terms and flame surface curvature
(Schlup and Blanquart, 2018). Although this would require another training on the new database, it does
not affect the conclusions of this work. Indeed, it has been shown that neglecting these effects still leads to
simulations that capture much of the peculiar behavior of lean-premixed H2-air flames including
thermodiffusive instabilities and enhanced burning rates (Aspden et al., 2015; Aspden, 2017; Schlup
and Blanquart, 2018; Pitsch, 2024). Hydrogen chemical kinetics relies on the San Diego mechanism
(Saxena andWilliams, 2006), already successfully used for H2-air premixed combustion in Coulon et al.
(2023). This mechanism comprises 9 species and 21 reactions.

The mesh is a homogeneous cartesian grid with constant element size Δx ¼ 0:1 mm. This gives a
resolution index RI¼ δ0th,L=Δxþ1 that varies between 12:5 and 5:2 for ϕg between 0:35 and 0:7. δ

0
th,L is the

laminar thermal flame thickness. Amesh sensitivity studywas carried outwhere we verified that turbulent
combustion statistics are not affected by mesh refinements. This study is included as Supplementary
Material. The length of the domain in the x-direction Lx is adapted to the length of the turbulent flame
brush. It varies from 76 mm for ϕg ¼ 0:35 to 36 mm for ϕg ¼ 0:7 (Figure 2). The number of grid points

Table 2. Schmidt Sck and Lewis Lek numbers for the species used for the DNS of H2-air flames

Species k H2 H O2 OH O H2O HO2 H2O2 N2

Sck 0:23 0:14 0:80 0:53 0:52 0:58 0:80 0:81 0:91
Lek 0:34 0:21 1:20 0:80 0:79 0:88 1:21 1:22 1:37
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accordingly varies from 39 to 19 million. Calculations were carried out on the new Alps Research
Infrastructure at the Swiss National Supercomputing Centre (CSCS) using AMD EPYC 7742 CPUs. A
total of 1:6 million core hours were used to generate the database. Depending on the grid size,
computations are performed using between 5,120 and 2,560 computing cores with good efficiency
thanks to the massively parallel computing ability of the AVBP code.

2.3.2. Filtering and downsampling
A spatial filtering is performed to obtain ρ, ρYH2 , ρξ and _ωH2 , in order to calculate ~c, ~ϕ and _ω (Eqs (2.3),
(2.5), and ((2.1)). The filtered quantity of a variable φ from the DNS field is defined by Eq. (1.1). The
filtered 3D fields are obtained by successively filtering in each direction x, y and z using a 1D Gaussian
filter. The 1D filter function is written in discrete form as

F uð Þ¼ e�
1
2

u
σð Þ2 if u∈ �z::þ z½ �

0 otherwise

(
with z¼ 4σ, (2.8)

and then normalized by its sum
Pz

u¼�zF uð Þ. The filtered fields are then downsampled to a coarser grid to
emulate LES fields. Three different standard deviations σ are used in this work to emulate three different
LES resolutions (Table 3). For each σ, a downsampling factor DSF is associated. It is chosen so as to have
a LES gridwith a resolution indexRI¼ δ1c,L=Δxþ1 of about 6. δ0c,L and δ

1
c,L are the laminar flame thickness

based on the progress variable of a non-filtered and filtered 1D flame

δ0c,L ¼ max ∇cj jð Þ�1andδ1c,L ¼ max ∇~cj jð Þ�1: (2.9)

2.3.3. Training method
The generated cubic samples (Figure 3) of size 16× 16× 16 points are used to train the CNN to
approximate _ω (Eq. (2.6)). A set of 10% of the samples is randomly selected to form a validation dataset
andmonitor overfitting. The remaining samples are used for training. At each epoch, each cubic sample in
the training dataset has a 25% probability of undergoing between one and three 90∘ rotations along any
axis, or of being flipped in any direction. It is done to add variability to the orientation of the flame front in
the dataset. The model must have no preferential orientation and learn an isotropic function.

Training is accomplished by backpropagation. The trainable parameters of the CNN are updated
iteratively on batches of data from the training dataset by stochastic gradient descent with the AdamW
optimizer (Kingma and Ba, 2017; Loshchilov and Hutter, 2019). The parameters are adjusted to minimize
theMean Squared Error (MSE) loss function overall output pixels of the prediction compared to the target.
The batch size per GPU is 200 and the training is terminated after 1,500 epochs. The base learning rate

Table 3. Flame characteristics for the three sets of LES parameters (σ, DSF) used in this work

Case ϕg ¼ 0:35 ϕg ¼ 0:4 ϕg ¼ 0:5 ϕg ¼ 0:6 ϕg ¼ 0:7

σ¼ 4 δ1c,L [m] 1:41 �10�3 1:06 �10�3 9:28 �10�4 9:01 �10�4 9:09 �10�4

DSF¼ 2 δ0c,L=δ
1
c,L 0:81 0:59 0:41 0:36 0:33

Δx ¼ 0:2 mm RI 8:03 6:30 5:64 5:51 5:55
σ¼ 8 δ1c,L [m] 2:06 �10�3 1:83 �10�3 1:75 �10�3 1:75 �10�3 1:75 �10�3

DSF¼ 4 δ0c,L=δ
1
c,L 0.55 0.34 0.21 0.18 0.17

Δx ¼ 0:4 mm RI 6:16 5:58 5:38 5:36 5:37
σ¼ 16 δ1c,L [m] 3:66 �10�3 3:53 �10�3 3:47 �10�3 3:45 �10�3 3:45 �10�3

DSF¼ 8 δ0c,L=δ
1
c,L 0:31 0:18 0:11 0:09 0:09

Δx ¼ 0:8 mm RI 5:58 5:41 5:34 5:32 5:31

Δx is the grid cell size, equal toDSF times the original cell size of 0:1mm. δ0c,L and δ
1
c,L are the laminar flame thickness based on the progress variable of a

non-filtered and filtered 1D flame (Eq. (2.9)). RI¼ δ1c,L=Δxþ1 is the resolution index of the filtered flame on the LES grid.
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equals 10�3. The evolution of the loss function on the training and validation datasets during training is
given in Section 3.

The PyTorch (Ansel et al., 2024) Python library is used to implement and train the CNN. The
Distributed Data-Parallel (DDP) feature in PyTorch is employed to parallelize the training process across
four NVIDIA H100 GPUs. Each GPU performs its own forward and backward pass on a subset of the
training dataset. The gradients computed on each GPU are then synchronized and averaged to update the
model parameters. Training performances are reported in Section 3.

3. Results and discussion

3.1. Training and testing

The training and validation database comprises 40 × 54× 5× 3¼ 32,400 cubic samples (40 random cubes
per solution, 54 solutions per case, 5 different equivalence ratios, 3 different sets of LES parameters
(filtering and downsampling)). 3,240 (10%) of these cubes are randomly set aside for validation. Training
the CNN model for 1,500 epochs on this database takes 47 minutes. 1,500 epochs are sufficient because
the loss function evaluated on the validation dataset no longer decreases significantly (Figure 4). The set
of model parameters giving rise to the lowest loss is selected as the best model (black circle in Figure 4).
This best model is used to assess the ability of the CNN to approximate burning rates on the test solutions
(full domain, never seen during training). The Normalized Mean Absolute Error (NMAE) is used to
estimate the accuracy of the CNN model (Figure 4). It is defined as follows:

NMAE¼ 1

mean _ω
∗� � 1

N

XN
i¼1

_ω
∗
i � _ω

NN
i

��� ���, (3.1)

where _ω
∗
is the filtered burning rate from the DNS dataset and _ω

NN
is the filtered burning rate modeled by

the CNN. Themean absolute error is only about 5%of the average burning rate for all cases. The very high
accuracy of the CNN model is confirmed by the distribution of CNN-modeled burning rate _ω

NN
versus

ground-truth filtered burning rate _ω
∗
(Figure 5). The log-normalized Two-Dimensional (2D) histograms

show a largemajority of points on the x¼ y axis (that is perfect agreement). Figure 6 shows a visualization
of the result using a planar cut through a test solution for the case ϕg ¼ 0:4 and for the three sets of LES
parameters σ,DSFð Þ. One can see the ability of the CNN to retrieve the extremely complex turbulent flame

Figure 4. Left: Evolution of the RMSE during training, evaluated over the training dataset (red circles)
and the validation dataset (blue squares). Black solid lines are moving averages of the RMSE. The black
circle shows the lowest RMSE over the validation dataset. Themodel parameters at this specific epoch are
selected. Right: Normalized mean absolute error over the testing solutions (Eq. (3.1)) for the different
equivalence ratios and LES parameters used for building the training dataset. Error bars show the first

and third quartiles of the data points.
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Figure 5. Scatter plots with 2D histograms: CNN-modeled burning rate _ω
NN

versus ground-truth filtered
burning rate _ω

∗
. Individual values are normalized by the maximum burning rate in the datasets. The

points used for the histograms have a progress variable c: 0:05≤ c≤ 0:95. Histogram values below the
color scale are transparent. Gray dashed line indicates x¼ y (that is zero error). Each column

corresponds to a global equivalence ratio. Each row corresponds to a set of LES parameters (filtering and
downsampling). Data are collected from the testing solutions.

Figure 6. Planar cut normal to the z-axis, in the middle of the domain, colored by the ground-truth
filtered burning rate _ω

∗
and the CNN-modeled burning rate _ω

NN
for three sets of LES parameters. The

global equivalence ratio is ϕg ¼ 0:4. The complex turbulent flame topology of the burning rates is
remarkably well reproduced by the CNN.
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topology for all filter sizes. Even the burning pockets detached from the main flame brush are correctly
modeled by the CNN. This is true for all other equivalence ratios. The visualization of the cases ϕg ¼ 0:35,
0:5, 0:6 and 0:7 are given as Supplementary Material to avoid overloading the manuscript.

3.2. Generalization ability

The ability of the CNNmodel to generalize outside the cases for which it has been trained is now assessed.
For this, two new sets of LES parameters σ¼ 6,DSF¼ 3ð Þ and σ¼ 12,DSF¼ 6ð Þ, and two new
equivalence ratios ϕg ¼ 0:45 and 0:55 are used.

Filtering and downsampling with the two new sets of LES parameters are performed on test solutions
of the existing DNS with global equivalence ratios ϕg ¼ 0:35, 0:4, 0:5, 0:6 and 0:7. Although the
distribution of points _ω

NN
versus _ω

∗
is a little more scattered (Figure 7), the majority of the CNN-

modeled burning rates are in very good agreementwith their ground-truth counterparts. This demonstrates
the ability of the model to generalize between two LES filter sizes for which it has been trained. It is
important to note, however, that training with all three filter sizes (Table 3) is necessary to achieve this
result. We have tried to train the CNNwith only two filter sizes: σ¼ 4 and 16, and found that the resulting
model has a significant bias for σ¼ 8, see Supplementary Material.

The ability of the model to approximate burning rates for other global equivalence ratios is now
assessed. For this, two new DNSs are performed with a global equivalence ratio ϕg ¼ 0:45 and 0:55 and
six solutions per DNS (snapshot every 1 ms) are used to evaluate the model on the filter sizes σ¼ 4, 8
and 16 (Figure 8). The distribution of points _ω

NN
versus _ω

∗
is a little more scattered compared to

inference on solutions with a global equivalence ratio used for training. The majority of the points are
nevertheless clustered along the x¼ y axis: the approximation of the burning rates is still very good. The
planar cuts show a flame topology very well retrieved by the CNN model. These excellent results are
due to the large number of equivalence ratios included in the training dataset. We have trained the CNN
with only ϕg ¼ 0:35, 0:4, 0:6 and 0:7 (that is without ϕg ¼ 0:5) and that model is flawed for the global
equivalence ratio ϕg ¼ 0:5, see Supplementary Material.

Figure 7. Scatter plots with 2D histograms: CNN-modeled burning rate _ω
NN

versus ground-truth filtered
burning rate _ω

∗
. Individual values are normalized by the maximum burning rate in the datasets. The

points used for the histograms have a progress variable c: 0:05≤ c≤ 0:95. Histogram values below the
color scale are transparent. Gray dashed line indicates x¼ y (that is zero error). Each column

corresponds to a global equivalence ratio. Each row corresponds to a set of LES parameters (filtering and
downsampling). Data are collected from solutions with two sets of LES parameters that were not included
in the training dataset. The CNN approximates the burning rates with good accuracy, demonstrating the

ability to generalize to other LES parameters from which it has been trained.
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These generalization results are very promising and show that a CNN model can generalize with a
reasonable amount of training cases. This is particularly important with regard to the global equivalence
ratio ϕg. Computing a DNS for each global equivalence ratio has a significant computing cost. In contrast,
the computational cost of a filtering and downsampling operation to produce a new set of LES parameters
σ,DSFð Þ is negligible.

3.3. Comparison with a filtered tabulated chemistry approach

A filtered tabulated chemistry modeling is implemented to compare CNN results with an established
approach for modeling filtered burning rates. In the filtered tabulated chemistry framework, the flame
structure in the direction normal to the flame front is assumed identical to the structure of a planar 1D
freely propagating premixed laminar flame (Fiorina et al., 2010). For a given filter size, it is then possible
to apply the filter operation introduced in Section 2.3.2 (Eqs (1.1) and (2.8)) to a precomputed 1D flame at
a given global equivalence ratio ϕg and extract the burning rates directly as

_ω≈ _ω
þ

~c,ϕg
� �

, (3.2)

where _ω
þ
is the filtered burning rate of the 1D flame,mapped as a function of the filtered progress variable

~c for a given filter size σ. To account for the local fluctuation of the equivalence ratio in the domain, it is
possible to retrieve the reaction rate in a 1D flame computed with the local equivalence ratio ϕ used to
define the fresh gas composition. In this case, we write

_ω≈ _ω
þ

~c,~ϕ
� �

: (3.3)

Flame wrinkling at the subfilter-scale level is lost in LES. A subfilter-scale wrinkling factor Ξ needs to be
applied to compensate for the loss in flame surface (Poinsot and Veynante, 2011). The filtered burning
rate for filtered tabulated chemistry modeling therefore reads

_ω
F ¼Ξ _ω

þ
~c,ϕg
� �

or _ω
FC ¼Ξ _ω

þ
~c,~ϕ
� �

, (3.4)

depending on whether the global or local equivalence ratio is used to define the fresh gas composition in
the corresponding 1D flame. The wrinkling factor Ξ is usually modeled by algebraic expressions. Models

Figure 8. Scatter plots and 2D histograms together with planar cuts comparing CNN-modeled burning
rate _ω

NN
to ground-truth filtered burning rate _ω

∗
. See caption of Figure 5 for a full description of how the

histograms are constructed. The two global equivalence ratios ϕg ¼ 0:45 and 0:55 were not included in
the training dataset. The CNN approximates the burning rates with high accuracy, demonstrating the

ability to generalize to other equivalence ratios from which it has been trained.
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based on a fractal description of the flame front (Gouldin, 1987; Gouldin et al., 1989) are very common.
They assume that in a range of physical scales bounded by an inner cutoff η and an outer cutoffL, the flame
front is a fractal surface of dimension 2≤Df ≤ 3. The wrinkling factor is given by

Ξ¼ L
η

� �Df�2

: (3.5)

L corresponds to the size of the largest unresolved wrinkles, which is of the order of the thickness of the
LES flame estimated as δ1c,L (Eq. (2.9)). η is the size of the smallest wrinkles and varies from η¼ L (that is
no unresolved wrinkling, Ξ¼ 1) to η¼ δ0c,L (that is filling of the space by a flame surface of fractal
dimension Df between cut-off scales δ0c,L and L, Ξ¼ L=δ0c,L

� �Df�2
). The latter situation is reached when

turbulence intensity is sufficiently high, which is often the case in practice (Veynante et al., 2012;
Veynante and Moureau, 2015). We then assume η¼ δ0c,L in Eq. (3.5), maximizing the flame surface
density at the subfilter-scale level. The fractal dimension is estimated as Df ¼ 2:5 following the work of
Charlette et al. (2002). The set of 1D flames is computed using the San Diego mechanism (Saxena and
Williams, 2006) for the chemical kinetics (same as the training database for the CNN) and a mixture-
averaged transport model for the diffusivities.

CNN-based modeling significantly outperforms the filtered tabulated chemistry one, especially for the
lean cases (e.g. ϕg ¼ 0:35 in Figure 9). Due to the extremely high thermodiffusive effects in very lean
cases, the burning rates of the turbulent 3D field can be much higher than those in a freely propagating
planar flame at the same equivalence ratio. For example, for the case ϕg ¼ 0:35, σ¼ 4, DSF¼ 2, the

maximum burning rate in the 3D field max _ω
∗� �

is about 17 times greater than that in a laminar planar

flame max _ω
þ� �

. This is due to the fact that flame strain is not considered in the tabulationmethod applied

and that the subfilter wrinkling factor Ξ only takes into account turbulence-induced wrinkling, ignoring
that induced by thermodiffusive instabilities and their interactions with turbulence (Berger et al., 2022c).
This ϕg ¼ 0:35 case is a truly extreme test case to illustrate the strength of the CNN model. Tabulated
chemistry modeling does not fail so spectacularly for equivalence ratios close to stoichiometry, where
preferential and differential diffusion effects are less pronounced (Berger et al., 2022b) (e.g. ϕg ¼ 0:7 in
Figure 9). The CNN results are still much more accurate thanks to the consideration of the 3D flame
structure via successive convolutions. To further demonstrate the CNN’s ability to learn from flame

Figure 9. Scatter plots of the CNN-modeled burning rate _ω
NN

and the filtered tabulated chemistry

burning rate _ω
F
or _ω

FC
(Eq. (3.4)) versus ground-truth filtered burning rate _ω

∗
. Individual values are

normalized by the maximum burning rate in the datasets. Gray dashed line indicates x¼ y (that is zero
error). Two cases of LES parameter sets are presented for two global equivalence ratios: the lowest

equivalence ratio ϕg ¼ 0:35 for which the filtered tabulated chemistry is significantly flawed due to very
strong thermodiffusive effects; the highest equivalence ratio ϕg ¼ 0:7 for which thermodiffusive effects are

less important.
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topology, training has been performedwithout information on the equivalence ratio for the case ϕg ¼ 0:35.
This study is given as SupplementaryMaterial. It is found that the burning rate approximation is still very
accurate, proving our initial claim that a CNN is capable of recognizing complex flame topology and
inferring associated burning rates by learning spatial hierarchies of features.

4. Conclusion and future work

Trustworthy LES of lean premixed hydrogen combustion requires advanced modeling methods consid-
ering thermodiffusive effects on burning rates at the subfilter-scale level. These effects are extremely
complex and their coupling with turbulence is controversial, making the derivation of analytical models
very difficult. We therefore propose a pure ML approach where a CNN is trained to approximate LES
burning rates from emulated LES fields, generated by explicitly filtering many DNS snapshots. The
configuration used to generate the training data is a slot burner where a turbulent flow of premixed H2-air
mixture is placed in between two coflows of burnt gas burnt at the same equivalence ratio. The training
dataset is built up by performing five DNSs of this configuration, each with a unique global equivalence
ratio. The DNS solutions are then filtered and downsampled using three different sizes to emulate LES
solutions. Many small cubes are extracted from the solutions to train the CNN model so that it does not
learn the specific configuration but rather generic flame elements, improving its generalization ability
later on.

The trained CNN model retrieves burning rates with very high accuracy on the 3D full-scale test
solutions. It is able tomodel burning rates in a very complex turbulent flame topologywith flame elements
detached from the main flame brush. In addition, the CNN approximates burning rates with low errors for
filter and downsampling parameters and global equivalence ratios other than those for which it has been
trained. The ML-based modeling outperforms a priori a classical filtered tabulated chemistry approach
with correction for flame surface density due to subfilter-scale flame wrinkling. This is particularly true
for very lean flames, where differential diffusion effects are major and undermine modeling based on
flame surface density.

These results are extremely promising. They demonstrate that it is possible to build an ML-based
model of the burning rates of turbulent lean premixed H2-air flames—an extremely challenging task—
that can generalize outside the scope for which it has been trained. Generalization is very important if we
are really going to consider implementing this type of model in engineering simulation software. This
work paves the way for a new modeling approach to turbulent H2 combustion, which we want to pursue
with the scientific community in the very near future.

We can then draw up a roadmap for integration into an LES code. First, the modeling of the subfilter-
scale fluxes in Eq. (1.2) remains to be addressed. It could be done through gradient transport models with a
turbulent viscosity hypothesis (Boger et al., 1998). If this closure fails to retrieve correct flame
propagation speeds, we could consider training the CNN to approximate the fluxes using several output
channels. Second, the evolution of the entire chemical system must be described. This can be done by
training the CNN on the source term of a progress variable, transported instead of the individual species
that make up the reactive mixture. This is done, for example, in Lapenna et al. (2021, 2024) with a
tabulationmethod for the closure of the transport equation of the progress variable. However, the transport
of the mixture fraction must be modeled to account for equivalence ratio fluctuations. We could also train
the model again on a database generated with a single global chemical reaction (Millán-Merino and
Boivin, 2024; Schiavone et al., 2024). This has the advantage of being able to transport physical species
instead of a progress variable, accounting for preferential diffusion through the multi-species Navier–
Stokes equations directly.

Second, there are a number of practical integration challenges to be tackled. In a massively parallel
HPC code, the fluid domain is decomposed in many partitions distributed over the MPI tasks (typically
one MPI per GPU). When inference is performed on each MPI, artefacts may appear at the boundaries of
the partitions (Serhani et al., 2024). To avoid this, the inference must be given its neighboring context to
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produce overlapping predictions. However, this incurs additional MPI communication costs that must be
evaluated on a case-by-case basis. Another major challenge is related to the voxel grid requirement for the
CNN. If the CFD code uses an irregular grid that does not match the voxel/pixel structure, two grids have
to be used: one for the fluid solver, and one for the CNN inference. This requires the development of
efficient methods for interpolating on the fly and transferring data between the two grids. The PhyDLL1

(Serhani et al., 2024) open-source library is one effort that could help to address these issues. These
questions will be the focus of a future project, now that we have shown that CNN-based modeling of the
burning rates is possible with this work.

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/dce.2025.1.

Data availability statement. Code for training and inference is available via GitLab at https://gitlab.com/male.quentin/cnn_
h2flame. A set of solutions from DNS is distributed via Kaggle as part of BLASTNet2 (https://www.kaggle.com/organizations/
blastnet) with the following identifiers:

• blastnet/premixed-flame-slot-burner-dns-h2air-phi035
• blastnet/premixed-flame-slot-burner-dns-h2air-phi04
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