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1. Introduction. In 1954 N. Kimura proved that each idempotent in a semigroup is
contained in a unique maximal subgroup of the semigroup and that distinct maximal
subgroups are disjoint [13] (or see [6, pp. 21-23]). This generalized earlier results of
Schwarz [14] and Wallace [15)]. These maximal subgroups are important in the study of
semigroups. If G is a group, then the collection S(G) of nonempty complexes of G is a
semigroup and it is natural to inquire what properties of G are inherited by the maximal
subgroups of S(G). There seems to be very little literature devoted to this subject. In [5,
Theorem 2], with certain hypotheses placed on an idempotent, it was shown that if G is a
lattice-ordered group (‘“‘I-group”) then a maximal subgroup of S(G) containing an
idempotent satisfying these conditions admits a natural lattice-order. The main result of
this note (Theorem 1) is that if G is a representable [-group and E is a normal idempotent
of S(G) and a dual ideal of the lattice G, then the maximal subgroup of S(G) containing
E admits a representable lattice-order.

2. Notation and terminology. The collection S(G) of all nonempty complexes
(subsets) of a group G is a semigroup with respect to the binary operation AB=
{ab|a€ A and be B} for A, B e S(G). If E is an idempotent in S(G), then H(E) denotes
the maximal subgroup of S(G) that contains E. A normal idempotent E of S(G) is an
idempotent of S(G) and normal subset of G. If E is a normal idempotent of S(G), then
T(E)={aE |a€ G} is a subgroup of H(E) and is isomorphic to G modulo the kernel of
the mapping y which sends x to xE for all xe G. Moreover, if A€ H(E), then
xAx"'e H(E) for all xe G. If 1€E, where E is a normal idempotent of S(G), then
T(E)= H(E) [4, Proposition 4], and hence any property of G that is preserved by
homomorphic images will be inherited by H(E). Consequently, the “more interesting”
cases of maximal subgroups of S(G) occur when the identity element of G does not
belong to the idempotent.

For the remainder of this note, we assume that G is an l-group, E is a normal idempotent
of S(G), and v is the mapping of G into H(E) given by y(x)= xE for all xe G. For the
standard definitions and results concerning [-groups the reader is referred to [1], [10], and
[12]. An l-group G is said to be representable if there exists an [-isomorphism of G into a
cardinal sum of totally ordered groups (“o-groups”). A dual ideal of G is a nonempty subset
I of G such that q, bel, xe G, and x=a imply anb, xeI. A prime subgroup of G is a
convex [-subgroup such that if a, be G'\M, then anbe G'\M.

Let E be a dual ideal of G. For an element A in H(E), define A =E if and only if
AcE. Then H(E) is an [-group with positive cone {A | A = E}, T(E) is an I-subgroup of
H(E) with aE v bE = (a v b)E and dually for all 4, b€ G, and the kernel of y is an Il-ideal
of G [5, Theorem 2]. It was shown in the proof of this theorem that if A € H(E), then
AvE=U(av1)E(ac A).
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If X and Y are sets, then X\Y denotes the set of elements in X but not in Y, and if
G is an [-group, then G*'={ge G| g=1}.

3. Representability of H(E). If M is an [-subgroup of G such that for every ge G
with g>1 there exists an a € M with g=a>1, then M is said to be dense in G. If M is
dense in G, then joins and meets in M agree with those in G [2, Lemma 10]. The proofs
of the next two lemmas are straightforward and will be omitted.

LemMa 1. Let G and M be l-groups, n an l-homomorphism of G onto M, and E a dual
ideal of G. Then E*=n(E) is a normal idempotent of S(M), a dual ideal of M, and if
A€ H(E), then n(A)e H(E*). Let n* : H(E)—> H(E*) be given by n*(A)=n(A) for all
A € H(E), and let v*: M— H(E*) be the I-homomorphism given by y*(x)=xE™* for all
xe M. Then n* is an I-homomorphism making the following diagram commute

G—1-M
o
H(E)—— H(E*).

LemMA 2. If E is a dual ideal of an o-group, then H(E) is an o-group.

LemMMA 3. If E is a dual ideal of G, then T(E) is dense in H(E). Moreover, if
A € H(E), then there is a g€ G with A=gE.

Proof. Let A e H(E) such that E<A and let B be the inverse of A in H(E). We
may assume A¢ T(E). Then we have B<E <A and B¢ T(E). Thus B<bE for all be B.
Now

B=BAE<bEAE=(bAl)E<E

for all be B. Suppose that (b A1)E=E for all be B. Then E=(bA 1)E <bE for all be B
and so B=BE = | bE c E, a contradiction. Thus B<(bA1)E<E for some b e B and so

beB

E<(ba1)'E<A. Therefore T(E) is dense in H(E). The second statement of the lemma
is clear.

An element b of G is called basic if b>1 and {x |xe G and 1<x=b} is totally
ordered. A subset B of G is a basis if B is a maximal set of (pairwise) disjoint elements in
G and each b in B is basic. An I-group G has a basis if and only if for every ge G with
g>1, g exceeds a basic element [7, Theorem 5.1]. An afom is an element of G that
covers 1.

CoroLLARY 1. If E is a dual ideal of G, v is one-to-one, and b is basic (respectively,

an atom), then bE is basic (respectively, an atom) in H(E). Hence, if G has a basis, then
H(E) has a basis.

THEOREM 1. If E is a dual ideal of G and G is representable, then H(E) is representable.
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Proof. By [8, Lemma 3] it suffices to show that for each strictly positive element A of
H(E), there is an I-homomorphism n* from H(E) into an o-group such that n*(A)# 1.
Since T(E) is dense in H(E), it suffices to take A = aE where a > 1. We first consider the
case in which the mapping v is one-to-one. We assert that in this case E€ G*. If be E,
then bE < E and so bE = E. Thus bE = bE v E = (b v 1)E. Since v is one-to-one, b=bvle
G*. Now suppose that a <e for every e€ E. Then, if e€ E, e = e,e,, where e,, e;€ E and
a<e,. Hence ae;<e,e,=e¢ and so ec aE. Since aE is positive, aE < E. But then aE=E
contrary to the choice of aE. It follows that ane<a for some ecE. Since G is
representable, there is a minimal prime subgroup M of G which is normal [3, Theorem
3.1}, G/M is an o-group, and (aAe)M<aM. Consider the following commutative
diagram

G——~GM
vl . lv*

H(E) —1— H(E*)

where 7 is the canonical mapping, E* = n(E), v*(xM) = xME* for every xM € G/M, and
n*(A)=n(A) for every Ae H(E). By Lemma 1, * is an I-homomorphism and by
Lemma 2, H(E™*) is an o-group. Now n(a) A n(e) = n(a A e) < n(a) and since G/M is totally
ordered, we have that n(e)<n(a). If fe E, then n(af)= n(a)n(f)=n(a)>n(e). There-
fore n(aE)# n(E) and so n*(aE) # E*. Thus H(E) is representable.

We next consider the general case. Let K denote the kernel of y and consider
the following commiutative diagram

G—1-GIK

v [

*
H(E)—— H(E*)
where 1, E*, ¥*, and n* are as given above. We assert that y* is one-to-one. If x,ye G
with y*n(x) = y*5(y), then n(x)E* = n(y)E* and so xKE = yKE. Since KE = E, we have
that xE=yE and so n(x)=n(y). Now G/K is representable and therefore, by the
previous case, there is an [-homomorphism 6 of H(E*) into an o-group such that
0n*(aE)# 1. It now follows that H(E) is representable.

An l-group G is said to be epi-Archimedean (or hyper-Archimedean) if each
I-homomorphic image of G is Archimedean. In [11, Theorem 1.1] five conditions are
given each of which is equivalent to the epi-Archimedean property.

THEOREM 2. If E is a dual ideal of G and G is epi-Archimedean, then H(E) is
Archimedean.

Proof. Let A, B H(E) such that A > E and B > E. By Lemma 3, there exist a, be G*
such that A=aE>E and bE = B. Since T(E) is an I-homomorphic image of G, T(E) is
Archimedean. Thus there exists a positive integer n such that a"E<£ bB. Hence A" B
and so H(E) is Archimedean.
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4. Examples. In this section we give some examples to illustrate the scope and
limitations of our results.

ExampLE 1. Let G= } Q be the cardinal product of n copies of the rational
i=1

numbers Q and let E={(a,, a5,...,a,)|a>0, i=1, 2,...,n}. Then E is a normal

idempotent and a dual ideal of G. In this case H(E) is I-isomorphic to Y R, the cardinal
i=1
sum of n copies of the real numbers.
In the above example E is the collection of units. In any [-group the collection of
units is a normal subset, and, when nonempty, is a dual ideal. However, in general, the
collection of units will not be an idempotent.

ExaMpLE 2. Let M be a normal proper prime subgroup of G such that G/M has no
atoms. Then E = U (xM) (xM > M) is a normal idempotent and a dual ideal. Moreover, M
is the kernel of y. If G is Archimedean and M is not a maximal ideal of G, then H(E) is
not Archimedean.

If G is an I-subgroup of an [-group M, then M is said to be an a-extension of G
provided that for every 1<ae M there exists g€ G and there exist positive integers m
and n such that g=<a™ and a<g". If G is an I-subgroup of M, then M is an a-extension
of G if and only if the mapping C— CN G is a one-to-one mapping of the lattice of convex
I-subgroups of M onto the lattice of convex I-subgroups of G[9, Theorem 2.1]. Our next
example shows that even when vy is one-to-one, H(E) need not be an a-extension of G.
The example also shows that when v is one-to-one and G is epi-Archimedean, then H(E)
need not be epi-Archimedean, and thus Theorem 2 is in some sense the best possible.

ExamrLE 3. Let G={f:Z*—R| there exists NeZ" with f(n)=f(N) for all n= N},
with f<g if f(n)=<g(n) for all n€Z*, and function addition is the group operation. Let
E={fe G|f(n)>0 for all neZ"}. Then E is a normal idempotent and a dual ideal. In
fact, E is the collection of units of G. Let A={fe G| f(n)>1/(n+1) for all neZ*}. Then
A€ H(E) and E<A. If there exists ge G and a positive integer m with gE <A™ then
there is a positive integer N with g(k)=<0if k =N. But if g(k)=<0 for k=N, then A%£g"E
for all neZ*. Thus H(E) is not an a-extension of G.
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