
ANZIAM J. 55(2014), 289–297
doi:10.1017/S1446181114000091

NEW DEVELOPMENT OF NONRIGID REGISTRATION
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Abstract

We propose a new nonrigid registration algorithm which is based on the optimal control
approach. In our previously proposed methods, the Jacobian determinant and the curl
vector were used as control functions. In this algorithm, we use a new set of control
functions. A main advantage of using the new controls is that the positivity and
normalization of the Jacobian determinant are satisfied automatically. Numerical results
on large deformation brain images are provided to show the accuracy and efficiency of
the algorithm.
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1. Introduction
Image registration is a key technology for image analysis. It is the process of
establishing a pixel (voxel in three dimensions) correspondence which maximizes
a similarity measure of two similar images. Linear image registration uses affine
transformation models to align two images globally by translation, rotation, and
scaling. Nonrigid registration is needed to account for local, nonlinear variability of
the images. In this paper we propose a new variational algorithm for nonrigid image
registration. Variational techniques for nonrigid registration are classified into two
categories:

(1) Unconstrained optimization of an energy functional, which consists of a
data term and regularizing terms. The large deformation diffeomorphic metric
mapping (LDDM) algorithm [3], and advanced neuroimaging tools (ANTs) [2],
as well as the elastic and fluid methods, all belong to this category. The last
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two use physically motivated regularizing terms from linear elasticity and
fluid mechanics. Other regularizing terms can also be used, including those
penalizing the magnitude of displacement, the gradient of the displacement, and
the Laplacian of the displacement, the divergence of the displacement, the curl
of the displacement, etc. Auroux and Fehrenbach [1] tested seven commonly
used regularizing terms on two hurricane-like images. This study confirms the
concern that the regularizing terms prevent the data term from being optimally
minimized.

(2) Constrained optimization of the data term only. Spline-based methods belong
to this category [9, 17]. Regularity is provided by the spline model. They are
not free-form deformation methods as claimed, because only the spline control
points are moved somewhat freely, while all other points are interpolated by
the spline formulas. In practice, the control points are at least eight pixels
apart. Recently, we proposed an optimal control approach [4, 5, 7, 8, 12],
which uses a differential system involving the Jacobian determinant and the curl
vector as constraints. This approach generates smooth, invertible transformation
for nonrigid registration, because any such transformation is generated from its
Jacobian determinant and its curl vector.

A previous implementation of our approach [12] is based on the Lagrangian
multiplier method, which adds extra terms to account for the constraints. The total
energy functional is the sum of the data term and these (Lagrangian) terms. Since this
implementation still uses an energy structure that is similar to that of methods in the
first category, the accuracy is quite limited. A more severe issue is that the energy
still contains arbitrary parameters. Lee and Gunzburger [10, 11] have investigated a
finite element analysis of the Lagrangian multipliers method. The implementation by
Chu et al. [5] is based on gradient decent, which does not contain any user-selected
arbitrary parameters for regularization purpose, but the calculation of the variational
gradient is not based on rigorous derivation. In this paper, we formulate a new
algorithm with solid mathematical foundations, and apply it to a challenging brain
image registration problem.

2. Description of the new algorithm
2.1. Optimal control approach Our optimal control approach is based on the
deformation method of numerical grid generation for computational fluid dynamics
[6, 13, 14, 16]. The deformation method generates a nonfolding grid with prescribed
Jacobian determinant.

Let f (x, y, z) be a positive function such that
!

Ω
( f − 1) dx = 0. The following two

steps will generate a grid transformation Φ with J(Φ) = f (Φ). The first step is to
generate a vector field u from

div u = f − 1,
curl u = g on Ω,

u = 0 on ∂Ω. (2.1)
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The second step is to form a grid node velocity field for s in [0,1]:

v = u/(s + (1 − s) f ). (2.2)

Then find the transformation Φ(x) = φ(x, 1), where φ(x, s) is determined from the
differential equation

∂φ(x, s)/∂s = v(φ, s). (2.3)

Liu [15] proved that the Jacobian determinant of transformation Φ equals f : J(Φ)(x) =

f (Φ(x)).
The main idea of our optimal control approach to image registration is to find Φ

by optimizing a similarity measure, subject to the above grid generation equations.
Previously, we used f and g as the control functions. By adjusting f and g, we use
equations (2.1)–(2.3) to form the largest search space possible, which consists of all
smooth and invertible transformations. However, the normalization requirement of
f (that is,

!
Ω

( f − 1) dx = 0 ) and the positivity requirement f > 0 are not easy to
maintain during the optimization process. Moreover, the calculation of variational
gradient is not based on a solid mathematical derivation. In this paper, we propose a
new algorithm which uses a different set of control functions. The main advantage of
the new algorithm is that both the positivity and the normalization requirement of f
are automatically guaranteed.

2.2. New algorithm We now describe the new algorithm in two dimensions for
simplicity. In this case, g is replaced by g = curl u · k, where k is the unit vector in the
positive z-direction.

Given the template image T and the reference image R, we determine a registration
transformation Φ by iteratively minimizing

SSD(Φ) =
1
2

"
Ω

{T (Φ(x)) − R(x)}2 dx (2.4)

under constraints that are modified from equations (2.1)–(2.3).
The registration transformation Φ is updated from the current transformation by

solving equation (2.2) with the one-step forward finite difference method. Namely,

Φ(x) = Φold(x) +
u(x)

1 + div u
∆t, (2.5)

where we set s = 0 in (2.2) to get v = u/ f and then used f = 1 + div u from (2.1). By
differentiating equation (2.2) and then decoupling, we find that u satisfies the Poisson
equations

∆u = F = ( f1, f2), u = 0 on ∂Ω, (2.6)

where f1 and f2 are the control functions defined by

f1 = fx1 − gx2 and f2 = fx2 + gx1 . (2.7)

The image registration problem is formulated as follows: minimize SSD(Φ) defined in
equation (2.4) subject to the constraints in equations (2.5)–(2.7). The optimization is
done by the method of gradient descent. A main technical achievement of this paper
is the derivation of the gradient of SSD with respect to F. This is done in the next
section.

https://doi.org/10.1017/S1446181114000091 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000091


292 H. Y. Hsiao et al. [4]

3. Derivation of the gradient

We now derive that
∂SSD/∂F = (a + ∇b)∆t.

Where vector a is determined by solving the Poisson equations

∆a = w on Ω, a = 0 on ∂Ω,

with w =
T (Φ(x)) − R(x)

1 + div u
∇T (Φ(x)),

(3.1)

and b is determined by solving the Poisson equation

∆b = h on Ω, b = 0 on ∂Ω,

with h =
T (Φ(x)) − R(x)

(1 + div u)2 ∇T · u.
(3.2)

Let F = ( f1, f2), and δF = (δ f1, δ f2) be the variations that vanish at the boundary.
Then ∆δu = δF = (δ f1, δ f2) from equation (2.6). So we have

δSSD =

"
Ω

(T − R)δT dx =

"
Ω

(T − R)∇T · δΦ dx.

Since
δΦ = δ

( u
1 + div u

)
∆t =

δu
1 + div u

∆t −
u(div(δu))
(1 + div u)2 ∆t,

we get

δSSD =

"
Ω

(T − R)∇T · δu
1 + div u

∆t dx −
"

Ω

(T − R)(∇T · u)
(1 + div u)2 div (δu)∆t dx.

Let a and b be the solutions to the Poisson equations (3.1) and (3.2), respectively. Then

1
∆t
δSSD =

"
Ω

w · δudx −
"

Ω

h div (δu) dx

=

"
Ω

(∆a · δu − ∆b div (δu)) dx

=

"
Ω

(∆a · δu − b ∆(div (δu))) dx

=

"
Ω

(∆a · δu − b div (∆δu)) dx

=

"
Ω

(a · ∆δu + ∇b · ∆δu) dx

=

"
Ω

((a + ∇b)δF) dx. (3.3)

Hence, ∂SSD/∂F = (a + ∇b)∆t.
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4. Implementation of the algorithm

We now describe an implementation of the algorithm in the following steps. The
parameter ∆t in (2.5) is not used explicitly in the algorithm. Instead, it is combined
with the step size ∆s in the gradient descent method into a single parameter tstep,
namely tstep = ∆t∆s. An initial tstep is chosen according to a preset number of
iterations or by experience. The tstep at each iteration is automatically adjusted: if SSD
improves, it is increased by a factor 1.1; if SSD fails to decrease, then tstep is reduced
by a factor 0.9. A maximum value and a minimum value for tstep are set, based on
experience.

• Step 0:
Input the reference image R and the template image T .

• Step 1:
Set f1 = f2 = 0; a = 0; b = 0; Φold(x) = x.
Calculate a, b from the Poisson equations (3.1) and (3.2), respectively, by fast
Fourier transform (FFT).

• Step 2:
Form the gradient ∂SSD/∂F = (a + ∇b)∆t.

• Step 3:
Update F by F = Fold + (∂SSD/∂F)∆s = Fold + (a + ∇b)∆t∆s = Fold + (a +

∇b) tstep.

• Step 4:
Determine u from the Poisson equations ∆u = F by FFT.

• Step 5:
Form f = 1 + div u. Check if f is positive, and maintain f > 0 by reducing tstep
if necessary. A smaller tstep will reduce the difference between F and Fold, and
thus maintain positivity of f . In practice, f is very close to 1 (>0.95) at each
iteration step, and therefore no reduction of tstep is necessary.

• Step 6:
Determine Φ from Φ(x) = Φold(x) + u(x)/(1 + div u) tstep.

• Step 7:
Resample T by evaluating T at Φ(x).

• Step 8:
Calculate SSD using the resampled T . If SSD is reduced, increase tstep by the
factor 1.1 and go back to Step 1 for next iteration; if SSD fails to decrease, reduce
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tstep by the factor 0.9 and go back to Step 3 and continue until SSD decreases
or tstep reaches its preset minimum value, which is 10−4 in the experiment. The
maximum value for tstep is set to be 0.1.

• Step 9:
Stop if SSD is reduced to a preset percentage tolerance, or if a preset minimum
value of tstep is achieved, or if a preset number of iterations is reached.

Note that f = 1 + div u after u is updated. By automatically reducing tstep if necessary,
we can reduce u to ensure that f > 0. In the experiment, f is indeed very close to 1
(>0.95) at each iteration step without reducing tstep. Moreover, from f − 1 = div u,
and since u = 0 on ∂Ω, it follows from the divergence theorem that

!
Ω

( f − 1) dx = 0.

5. Brain image experiment

We now describe an experiment on a pair of brain images with large deformations.
A Matlab program for the algorithm based on gradient decent is developed, which is
used to repeat the well-known Experiment 5 of Beg et al. [3]. For more details of the
images to be registered see the original description of the experiment [3].

The purpose of the experiment is to register image T in Figure 1(a) to image R in
Figure 1(b). Note that image T has a sharp right-hand end, while image R has a round
end. This large deformation is why the experiment is widely used to test nonrigid
registration algorithms. In the Matlab program, the proposed algorithm is implemented
in a multi-resolution strategy and is applied on the image pair of 64 × 64 pixels, which
is padded with zeros to make images of 66 × 66 pixels. We may start on a coarse 8 × 8
grid by sampling the images at the nodes. We then pad the resized 8 × 8 images to
images of 10 × 10 pixels by adding zeros on the four sides. Now we carry out the
above algorithm on the 10 × 10 images with zero boundary condition on the Poisson
equations by FFT. The calculated transformation is interpolated to the next level of
16 × 16 as the starting transformation. This process continues on a 32 × 32 grid and
stops after the algorithm is completed on the finest grid of 64 × 64 for the full images.
Since the original 64 × 64 images have been padded (with zeros) to make 66 × 66
images, we solve the Poisson equations for u with the zero boundary conditions on the
66 × 66 grid. In this experiment, we do not need multi-resolution. We directly register
the images in the finest resolution. Our results, shown in Figure 1(c), are the resampled
template image of 64 × 64 pixels. All of these pixels are free to deform under the
registration transformation. That is why there are slight movements of the nodes on
the four boundary portions on Figure 1(c). This is the intended result of padding
the original images in order to use all information in the images in the registration
process.

The new program produced data for Figure 1(c) in 17.8 seconds on a Dell Optix
780 PC with accurate results: the SSD value on the two images of 64 × 64 pixels was
reduced from 2292.97 to 19.88 after 2639 iterations, a reduction by more than 99.1%.
Visual comparison indicated that the resampled T in Figure 1(c) is much closer to R
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(a) Template image T (b) Reference image R

(c) Resampled image

Figure 1. Experiment data.

than the results in the original study [3], especially at the lower right-hand end. The
main part of computational cost of the algorithm was solving four Poisson equations on
each iteration step. We used the FFT method for the Poisson equations. It is expected
that the algorithm can be made more efficient by use of graphics processing units. This
will be investigated in future work.

6. Conclusion

We describe a new method of nonrigid image registration. It uses a new set of
control functions which automatically ensures the positivity and the normalization
requirements. The derivation of the variational gradient is based on solid mathematical
foundations. Numerical results on a pair of brain images with large deformations
are presented, which confirm that the algorithm is capable of accurately registering
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images with large variability. The algorithm can be extended to and tested in three
dimensions. More experiments and thorough studies of its efficiency are needed to
assess its potential for clinical use.
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