A Generalisation of a Theorem of Mercer.
By E. T. Copson.
(Received 23rd January 1930. Read Tth February 1930.)

§1. It is well known that, if nt,=s,+ s, + .. + 8,, the con-
vergence of s, to a limit implies the convergence of ¢, to the same
limit. The converse theorem, that the convergence of ¢, implies
the convergence of s,, is false. Mercer! proved, however, that if
Sn + at,— (1 + a)! when a > — 1, then both s, and ¢, tend to l. This
theorem has recently been extended in various directions.z In the
present note the case of Abel limits is considered.

We say that s, tends to [ in Abel’s sense,® or symbolically, that

A-lim s, =1
o
if the series X s, 2" is convergent for 0 <2 <1 and
1

lim (1 —x) Zs,an=L
rx—=1-0 1

It can easily be shown that, if

A-lim s, =1,
then
A-lim ¢, =1.

That the converse of this is untrue may be seen from the example

fos} . 1
? tpx" = sin T %
for which 4-lim ¢{,= 0. Here
® x
n_—
Ellsnx T °08 T,

so that A-lim s, does not exist. We shall prove, for limits in Abel’s
sense, the following analogue of Mercer’s Theorem.

1 Proc. London Math. Soc., (2), 5, (1907), 206-224

2 0f. Vijayaraghavan, Journal London Math. Soc., 3, (1928), 130-134, (who gives
references to previous work on the subject); Copson and Ferrar, ibid., 4, (1929),
258-264 ; 5 (1930), 21-27.

3 See, for example, Knopp, Infinite Series, (1928), 498 of seq.
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TeEOREM I. If A-lim (sp -+ at,) = 1(1 + a) when a > — 1, then
A-lim s, = A-limt, = L.

By considering the sequence s, — [, we see that it is sufficient to
prove the theorem in the case [ = 0.

§2. Proof of Theorem I.

We are given that ) (sn + at,, ) a2 is convergent for 0 <2 < 1, and
1
that
lim (1—=x) b3 (s, + atp) a®=0;
1

r=>1-0
x> sl
we have to prove that X s,z and X £, a” are convergent for 0 <z <1,
1

1
and that

lim (1 —ux) S span =0
w=>1-0

xX
lim (1 —2z)Xt,an=0
x-—>1-0 1

provided that a > — 1.
oL
Now the convergence of X (s, -+ at, ) 2™ for 0 < a < 1 implies that,
1

for every positive value of e,

Yn==Sp+ at, =0 (1 + &)".
But the equation
Sp+ @ln = Yn
may be written
{(n + a)t, — (n - l)tn—l = Yn,

a difference equation whose solution is, for n > N,

N I (n) zyp(p+a)
"_F(n—}—a+1)[0+§ I'(p) J

By the use of Stirling’s asymptotic formula for the Gamma-function,
we obtain, since @ > — 1,

t

|t < Kyn-a-1 4 K2"—a_1§ !?/plpa

<K n-e14+ K,(1+ e)nn-2-1% p=
N
<K (1 + €n,
where K, K,, K,, K; denote positive constants. Since this holds
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for every positive value of ¢, it follows that X¢,an converges for
0 <z <1. Further since s,= nt,—(n—1)t,_;, Ts,a" converges
for 0 <z <1,

Write now
o0

s(x) = Z span, t(x)= Z tpan.
1 1

It can easily be shown that

_{r s(u) _ w8 (u)
t(x)_jou\(l*u)du—c_l_jau(l—u)du

where o > 0. We are given that, asx -1 —0,
(1 —a)s(x)+a(l—x)t(x)—0,

a being greater than — 1; this may be written

(1—2)s@)+a(l—2) r S gu—o.

a U {1l —u)
Put now a=-exp(—1/¢#), (1 —2a)s(z)=g(t); then we have
¢ 9 (6) do
g (1 —e-16)2 g2
as t—> + o« . Lastly, substitute g (/) =% (¢) . 2. (1 — e~ 1%)2; then

g(t)+a<1~e“>j ~0

a 1
MO+ ey T

¢
S h(6)d0 — 0
B
as it — 4 .
Now a/t(1 —e %) —a> —1, so that, applying a recently proved
theorem,! we have A (f) -0, and consequently g({)—0. We have
thus shown that

lim (1 — ) s(x)=0,
2=>1-0

which proves the theorem.

§3. The following theorem involving the Cesaro limit of integral
order k is of a type similar to that just discussed, but is very easy
to prove.

TaeoreM 1I. If Ci-lim (sp, + at,) =1(1 + a) when a > — 1, then

Cp-lim sy = Cp-lim t,, = L.

¥ Jowrnal London Math. Soc., 4 (1929), 258-264 ; Theorem IV,
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