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ASPECTS OF PREDICTION

BY N. H. BINGHAM AND BADR MISSAOUI

Abstract

We survey some aspects of the classical prediction theory for stationary processes, in
discrete time in Section 1, turning in Section 2 to continuous time, with particular
reference to reproducing-kernel Hilbert spaces and the sampling theorem. We discuss
the discrete-continuous theories of ARMA-CARMA, GARCH-COGARCH, and OPUC-
COPUC in Section 3. We compare the various models treated in Section 4 by how
well they model volatility, in particular volatility clustering. We discuss the infinite-
dimensional case in Section 5, and turn briefly to applications in Section 6.

Keywords:Stationary process; Kolmogorov isomorphism theorem; time series; stochastic
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1. Prediction theory of stationary sequences

We begin with the most classical aspect: the prediction theory of stationary stochastic
processes X = (Xn) in discrete time n and one dimension (we take X to be complex valued).
There is a good account of this subject up to 1958 in [39], and a great deal of relevant recent
work in the books of Simon [91, 92, 93]. We use as our main reference here the recent surveys
by the first author [10, 11] on the probabilistic side, together with its statistical sequel [12].

We take X to have zero mean and finite variance, and to be (wide-sense) stationary, with
autocovariance function γ = (γn), γn = E[XnX0] (the variance is constant by stationarity, so
we may take it as 1 for convenience). Let H be the Hilbert space spanned by X = (Xn) in the
L2-space of the underlying probability space, with inner product (X, Y ) := E[XY ] and norm
‖X‖ := [E(|X|2)]1/2. In the complex plane, we write T for the unit circle, the boundary of the
unit disc D, parameterised by z = eiθ ; unspecified integrals are over T.

1.1. The Cramér representation and Kolmogorov isomorphism theorem

There are four key ingredients here.

(i) There is a process Y on T with orthogonal increments with Fourier coefficients Xn; by
the Cramér representation,

Xn =
∫

einθ Y (dθ) for all n ∈ Z (CR)

(see [23], [24, Sections 5.6, 5.7, 7.5]; cf. [28, Section X.4]); Y is called the Cramér
process. One can regard Y as a random measure, in which case Y is orthogonally
scattered (the term is due to Masani [72]).
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190 N. H. BINGHAM AND B. MISSAOUI

(ii) There is a measure μ on T, the spectral measure, with

E[Y (A)Y (B)] = μ(A ∩ B).

In differential notation, this can be written as

E[dY (θ)2] = dμ(θ), (SM)

which shows the link with Itô calculus. See, e.g. [28, Sections IX.1, X.4].

(iii) The autocorrelation function γ then has the spectral representation

γn =
∫

e−inθ μ(dθ) for all n ∈ Z (SR)

(Herglotz’s theorem of 1911).

(iv) We have the Kolmogorov isomorphism between H (the time domain) and L2(μ) (the
frequency domain) given by

Xt ↔ eit · : θ ∈ R/2πZ �→ eiθ · ∈ T (KIT)

(see [59]) for integer t (as time is discrete). A good historical account of Kolmogorov’s
work in this area is given in [90, ‘The forties (1940–49)’]. For modern textbook accounts
of the background, see, e.g. [49, Chapter 13 including Notes] and [53, Chapter 7.4].
Stochastic processes expressible as the Fourier transform of another process are called
harmonizable (the term is due to Loève [65], [66, Section 37.4]); see [54, 83].

To exclude trivialities, it is necessary to take μ to have infinite support (to be nontrivial: [91,
p. 1]); we shall do so in what follows, without further comment.

For reasons of space, we omit state space models and the Kalman filter; see, e.g. [19,
Chapter 12].

1.2. Verblunsky’s theorem and the partial autocorrelation function

By the Kolmogorov isomorphism theorem, all the information relevant to the time evolution
of the process is encoded in the spectral measure μ (though other relevant information, such
as the distribution of the Xn, is not; see below). Now to model μ, we have to proceed
nonparametrically, as the situation is infinite dimensional, and it might be preferable to use
a sequence representation rather than a measure (or density-function) representation. This
option is available to us, thanks to Verblunsky’s theorem (S. Verblunsky in 1935 and 1936; the
result is named and proved in [91], to which we refer for details), according to which we have
a bijection (the Verblunsky bijection) between the spectral measures μ (probability measures
on T) and sequences α = (αn)n∈Z, with each αn ∈ D (α is the Verblunsky sequence, or partial
autocorrelation function (PACF), and the αn are the Verblunsky coefficients). Verblunsky
discovered this result in analysis; it was rediscovered much later in statistics by Barndorff-
Nielsen and Schou in 1973 and Ramsey in 1974. It is extremely useful in statistics as it provides
an unrestricted parameterisation (all sequences with terms in the unit disc are possible; this
is not the case for the autocorrelation function (ACF) γ ). Then αn is the correlation between
the residuals of X0 and Xn when regressed on the values X1, . . . , Xn−1 in between. Using the
usual notation for Hilbert-space projections,

αn := corr(Xn − P[1,n−1]Xn, X0 − P[1,n−1]X0);
see, e.g. [10] for details and references.
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1.3. Orthogonal polynomials on the unit circle

In Szegö’s classic book [94] on orthogonal polynomials (on the real line: OPRL), one
chapter, Chapter XI, is devoted to orthogonal polynomials on the unit circle (OPUC). Although
Verblunsky is not mentioned in [94], his work is the guiding theme in the two-volume book
[91, 92]; we summarise here what we need. Recall from OPRL the key role played by the
three-term recurrence relation (Favard’s theorem); this involves two sequences of coefficients.
In OPUC, there is again a three-term recurrence relation, the Szegö recursion, but now only one
sequence of coefficients (the Verblunsky coefficients above). For each probability measure μ

on T (the spectral measure above), write Pn for the monic orthogonal polynomials they generate
(by Gram–Schmidt orthogonalization). For every polynomial Qn of degree n, write

Q∗
n(z) := znQn

(
1

z̄

)

for the reversed polynomial. Then the Szegö recursion is

Pn+1(z) = zPn(z) − ᾱn+1P
∗
n (z).

Here the parameters αn are the Verblunsky coefficients, and lie in D by Verblunsky’s theorem
(|αn| ≤ 1 as correlations lie in D automatically; that |αn| < 1 follows from μ being nontrivial).

The Szegö recursion is known in the time-series literature as the Levinson–Durbin algorithm.
The best linear predictor of the immediate future based on the present and a finite segment of
the past is a linear combination of the given values; their coefficients form a triangular matrix
A = (ank); the Verblunsky coefficients or PACF are the diagonal elements in A. See, e.g. [19,
Sections 3.4, 5.2] and [10, Section 3].

1.4. The Wold decomposition

Write w for the spectral density. Then w/2π is the density of the absolutely continuous
component of μ:

μ = μs + μac = μs + w dθ

2π
.

Write σ 2 for the one-step mean-square prediction error:

σ 2 := E[(X0 − P(−∞,−1]X0)
2].

Call X nondeterministic if σ > 0, and deterministic if σ = 0. The Wold decomposition of 1938
[24, Section 5.7], [19, Section 5.7], [10, Section 3] expresses a process X as the sum of a non-
deterministic process U (the ‘good’part) and a deterministic process V (the ‘bad’part), namely,

Xn = Un + Vn,

where the process U is a moving average,

Un =
n∑

j=−∞
mn−j ξj =

∞∑
k=0

mkξn−k,

in which the ξj , the innovations at time n, have zero mean and are uncorrelated both with each
other and with V = (Vn), i.e. E[ξn] = 0 and var(ξn) = E[ξ2

n ] = σ 2. Thus, when σ = 0, the
ξn are 0, U is missing, and the process is deterministic. When σ > 0, the spectral measures of
Un and Vn are μac and μs, the absolutely continuous and singular components of μ (again, the
‘good’and ‘bad’parts). Then the Wold decomposition agrees with the Lebesgue decomposition
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of the spectral measure; in view of the Cramér representation, this is often called the Wold–
Cramér concordance. It fails in dimension higher than 1; see Section 5.

1.5. Szegö’s theorem

For a process genuinely evolving in time, one expects new information as time passes, i.e.
when σ > 0, there is nondeterminism. The condition for this is Szegö’s condition; see (Sz)
below. Szegö’s theorem gives the equivalence of the following:

(i) σ > 0;

(ii) log w ∈ L1(T), i.e. (as
∫

log w < ∞ by Jensen’s inequality)
∫

log w(θ) dθ > −∞; (Sz)

(iii) α ∈ �2.

Then σ 2 = ∏∞
1 (1 − |αn|2), and from Kolmogorov’s formula [59], σ 2 is the geometric mean

G(μ) of μ:

σ 2 = exp

(
1

2π

∫
log w(θ) dθ

)
=: G(μ) > 0 (K)

(see, e.g. [10, Section 4] for details and references). (The Szegö condition is visibly of entropy
type, and is related to the Gibbs variational principle of statistical mechanics.)

1.6. The Szegö function

We now restrict attention to when (Sz) holds. Then the Szegö function

h(z) := exp

(
1

4π

∫
eiθ + z

eiθ − z
log w(θ) dθ

)
, z ∈ D, (OF)

exists, and is an outer function (hence (OF)) in the Hardy space H2(T) on the torus T (see, e.g.
[10, Section 4]). It is an ‘analytic square root’ of w:

|h(eiθ )|2 = w(θ), h = [w1/2]
(see [76] and [77, p. 380]). We have (see [46] and [47, Section 2] for background) h(z) =∑∞

n=0 mnz
n: the Maclaurin coefficients m = (mn) of h are the moving average (MA(∞))

coefficients in the Wold decomposition. Those of −1/h(z) = ∑∞
n=0 rnz

n, z ∈ D, give the
AR(∞) coefficients r = (rn) in the (infinite-order) autoregression

∑n
j=−∞ rn−jXj + ξn = 0,

n ∈ Z.

2. Continuous time

As always, one has to choose from context between modelling our process in discrete or
continuous time. Such matters are topical: the ARMA and GARCH models just mentioned
have led on to extensive work on continuous-time versions such as CARMA and COGARCH.

Within the context of econometrics: data are discrete, and as a result, the discrete-time
theory is the more developed. But continuous time offers advantages, such as a setting in which
one can use calculus, and model the dynamics directly. The classic text in this area is that of
Bergstrom [9]. Continuous-time econometrics, and finance, have flourished as a result of the
extensive use of stochastic calculus, in Black–Scholes(–Merton) theory, etc., as the title of [50]
bears witness.
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First, we have the obvious but strikingly useful fact that the Cramér representation (CR) of
Section 1 allows us to pass directly to continuous time, simply by replacing the discrete time n

there by a continuous time t :

Xt =
∫

eitθ Y (dθ), t ∈ R. (CR)

This emphasises dramatically the key structural role played here by the Cramér process Y . Of
course, this procedure commits us to a choice of unit of time; it works best where the context
has a natural one.

Note first the nature of the process X = (Xt ) thus defined. It is harmonizable (Section 1);
see [64, 75] for early work on such harmonizable processes. In engineering language, the
compact support [−π, π ] of Y makes Y band limited, whence Xt is a random analytic function
of t (see [8] and [24, Section 7.3]). By the Paley–Wiener theorem (see [56, Chapter VI.7] and
[78]), X is a random entire function, of exponential type π .

2.1. The sampling theorem, Paley–Wiener spaces, and reproducing-kernel Hilbert
spaces

The Paley–Wiener spaces PWa (with general a > 0 rather than a = π as here) are the
motivating examples of de Branges spaces [26], [31, Section 6.1]. They are also classical
examples of reproducing-kernel Hilbert spaces (RKHS) [77, B, Section 6.5.2]. What is needed
for a Hilbert space to have a reproducing kernel is that the point-evaluation maps be continuous;
thus, Hilbert spaces of continuous (and, in particular, analytic) functions have reproducing
kernels. The reproducing kernel for PWa is the sinc function (sinus cardinalis: this stems from
E. T. Whittaker’s work of 1915; the name cardinal series is from J. M. Whittaker in the 1920s;
the name sinc is from P. M. Woodward in 1953). For f ∈ PWπ , we have

f (x) =
∑
n∈Z

f (n) sinc(x − n) for all x ∈ R, sinc(x) := sin πx

πx
.

This recovery of a function everywhere on the line from its values sampled at the integers is called
the sampling theorem (or Whittaker–Shannon–Kotelnikov sampling theorem: J. M. Whittaker
[97] in 1935, C. E. Shannon in 1949, and V. I. Kotelnikov in 1933). For background, see, e.g.
[42, Section 2.6.3], [43, 44, 45], and [79, Section 7.2].

This works more generally. That any RKHS H with kernel K with a total orthogonal set of
point evaluation vectors δxn has the sampling property

f (x) =
∑
n∈Z

f (xn)K(x, xn), f ∈ H, (SP)

is Kramer’s sampling theorem [61]. Martin [71] considered such results from the point of view
of operator theory, and showed in particular that many de Branges spaces have this property.

The sampling theorem is clearly closely connected with the Paley–Wiener theorem from the
above, and is in fact an easy corollary of it (see [31, Section 2.2]); similarly for the Poisson
summation formula (see [14]). Butzer et al. [21] showed the equivalence of all three, and of
the general Parseval formula, in the band-limited case.

2.2. The Kolmogorov–Wiener filter

The prediction problem given the infinite past was studied in continuous time by Kolmogorov
[59] in 1941 (see [90]), M. G. Krein in 1944, and also by Wiener [98]; see [28, Chapter XII].
Under (Sz), as before, the Szegö function h exists, and is in the Hardy space H2 on the upper
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half-plane; again, w = |h|2. With ĥ the Fourier transform of h, the mean-square error of the
best linear predictor of XT given {Xt : t ≤ 0} is

∫ T

0 |ĥ(t)|2 dt [30, Section 5].
Wiener’s work was done, independently of Kolmogorov, during 1940–41, restricted for

security reasons during World War II, circulated subject to this (as the ‘Yellow Book’), and
published in 1949. It contains (pages 55, 59) Wiener’s detailed account of the connections
between his work and Kolmogorov’s, and also two mathematical appendices by Wiener’s
colleague and former pupil Levinson. Volume III of Wiener’s Collected Works [99] contains
thirteen of his papers on prediction (published 1949–59; six with Masani, one with Akutowicz),
together with commentaries (by Kailath, Akutowicz, Masani, Salehi, Muhly, and Kallianpur).
These papers contain further discussion by Wiener of the connections between his work and
Kolmogorov’s, and between discrete and continuous time.

2.3. Prediction given a finite past

The continuous-time prediction problem given a finite segment of the past is harder, and has
been studied by Krein (1944–54), and Dym and McKean [29, 30, 31]. Both methods use the
Kolmogorov isomorphism Xt ↔ eit · of Section 1 to map the given segment {Xt : −T ≤ t ≤ T }
to the Paley–Wiener space PWT . Tools used include Krein’s theory of strings and results
of Levinson and McKean [62] (this work has also been found useful in discrete time [12,
Section 7.4], [55]). Matters are too technical to attempt a summary here; for details, see [29],
[30, Sections 7–23], and [31, Chapter 4].

3. ARMA/CARMA, GARCH/COGARCH, OPUC/COPUC

The general stationary process is an infinite-dimensional object (parameterised several
different ways in Section 1), but in practice one has to truncate and work finite dimensionally.
One familiar way to do this is to use ARMA (autoregressive moving average) models; see, e.g.
[16] and [19, Chapters 3, 4, 8]. This is flexible and practicable, but the p + q parameters of the
ARMA(p, q) model chosen may have little or no meaning in reality.

As in Section 2, one may prefer to work in continuous time (CARMA). Here the polynomials
in theARMA(p, q)model in the lag operator (equivalently, the (forward or backward) difference
operator) are replaced by polynomials in the differentiation operator D. See, e.g. [17, 18].

Variance is often not constant as above, but varies, perhaps randomly; ARCH (autoregressive
conditionally heteroscedastic) models were introduced to apply time-series methods here, and
these were generalised to GARCH models, for which, see, e.g. [38]. The general case is
GARCH(p, q); GARCH(1, 1) is fairly widely applicable, and we confine ourselves to it here
for simplicity.

As before, one can generalise GARCH to continuous time, COGARCH; see, e.g. [20, 57, 58].
Again, as before, COGARCH(1, 1) suffices for many purposes, so we confine ourselves to it
here (see [41]).

The theory of OPUC, used in Section 1 in discrete time, finds its continuous generalisation
in the theory of Krein systems [27, 36], and in particular Krein’s theory of strings [31].

4. Stochastic volatility and volatility clustering

Not only does volatility vary, so that stochastic volatility models are used (as in the GARCH
models of Section 3), one of the stylised facts of mathematical finance is volatility clustering.
Economic life typically consists of periods of normality punctuated by crises; the crises give
rise to clusters of high volatility. This clustering of extremes happens quite generally [2]; for
background on extremes, see, e.g. [34].
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In the GARCH case, stationarity requires restrictions on the parameters [74]. These involve
Liapounov exponents (and Kingman’s subadditive ergodic theorem). These can be calculated
explicitly in the GARCH(1, 1) case, which is usually all that is needed in practice [73, Sec-
tion 5.3.2]. Stationarity also brings in a stochastic recurrence equation (SRE), whose solution
again involves Liapounov exponents. One obtains regular variation of the tails of the stationary
process (see [73, Section 5.5.2]; this uses a result of Kesten in 1973 in the multidimensional
case and of Goldie in 1991 in one dimension). A stationary GARCH process is strongly mixing
and has exponentially decaying correlations, under general conditions (of Markov character;
see [73, Section 5.6.1]). To recapitulate, for stationary GARCH(1, 1), one has heavy (regularly
varying) tails and exponentially decreasing correlations.

This connection between the time behaviour (correlation decay) and the distribution at fixed
times seems to be a reflection of the Markovian nature of the process (GARCH in this case).
In the stationary case of Section 1, one can have any correlation structure and any distribution;
there is no link between them, even when the process is Markovian. For, any distribution can be
the stationary distribution of a Markov chain, as in the Metropolis–Hastings algorithm (see, e.g.
[87]). Although the Cramér process Y encodes the time behaviour of X in (CR), the distribution
of X0 = ∫

T
dY = Y (T) (the total mass of the complex measure Y ) is arbitrary. One has no

way to model volatility clustering, and this restricts the suitability of the prediction theory of
Section 1 for financial time series.

There is, however, no difficulty in capturing volatility clustering in other ways, in one or
many dimensions; see, e.g. [13]. In finance, the dimensionality d is often high, to reflect the
holding of a balanced portfolio of many risky assets, by Markowitzian diversification. The
multivariate elliptic processes of [13] model the time evolution of such a d-dimensional time
series using the theory of elliptical distributions [32]. One works semi-parametrically. The
parametric part of the model is (
, μ), where 
 is the d × d covariance matrix and μ is the
d-vector of means, both essential ingredients, from Markowitz’ work [69, 70] (think of risk
and return together; (co)variances measure risk, means measure return). The nonparametric
part is a one-dimensional process, the risk driver R. Thus, the burden of dimensionality is
born by (
, μ); R models the ambient economic or financial climate. Though this is certainly
not one-dimensional in reality, one often works with a one-dimensional proxy for it, such as a
stock-exchange index.

5. Higher dimensions

Much of the one- and finite-dimensional theory (for which, see, e.g. [10, 11]) extends to
infinitely many dimensions, but not all of it does. The simplest infinite-dimensional setting is a
(separable) Hilbert space; beyond that one has (separable) Banach space; beyond that, locally
convex topological vector spaces. Our main references here are the books of Vakhania et al.
[95] on Banach spaces, Kakihara [51], Schwartz [89] on cylindrical measures, and The Pesi
Masani Volume [68], and the papers of Riedle [85, 86] and (with Applebaum) [6].

5.1. Hilbert space

The simplest infinite-dimensional setting is Hilbert space, and the theory here was developed
by Payen in 1967 [80]. He obtained the Wold decomposition [80, Section II.3], with two
components, as above. He dealt with factorizability (see [80, Section II.5] and below), and,
hence, obtained [80, Section II.6] a three-term decomposition, one component corresponding
to the singular component of the spectral measure as before, while the ‘absolutely continuous
component’ splits into two, one part corresponding to the ‘largest factorizable part’, the other
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to the residue. He studied the Szegö condition via a series decomposition into rank-one
components [80, Section II.8], and also continuous time [80, Section III].

The Hilbert-space setting brings closer together the stationary and nonstationary cases (for
commentary on the distinction, see [12]). The key concept here is harmonizability (due to
Loève in 1955, and subsequently studied by Cramér, M. M. Rao, and others). A (second-order)
process X = (Xt ) is harmonizable if it is the Fourier–Stieltjes transform of a random measure Y .
If Y is orthogonally scattered, X is stationary and so harmonizable. There is no converse, but
on a Hilbert space H , X is harmonizable if and only if it has a stationary dilation, i.e. it is the
projection of a stationary process in some larger Hilbert space K . For details, see [52, 84].

The Hilbert-space methods used by Kolmogorov in 1941 to prove (KIT) are tantamount to
those used byAronszajn [7] in 1950 in his theory of RKHS.Accordingly, the result in the Hilbert-
space setting is often called the Aronszajn–Kolmogorov theorem. See [95, Section III.1.3] for
positive-definite functions (covariance kernels), [95, Section IV.4.3] for orthogonally scattered
measures, and [67] for the corresponding instance of the Kolmogorov isomorphism theorem.

The sampling theorem was extended to Hilbert space by Weston in 1949 [96].

5.2. Banach spaces

As mentioned above, our main reference for the Banach case is [95], which while it does
not consider prediction theory explicitly, it is nevertheless well adapted to our purposes here.

In finite-dimensional spaces, linear prediction is always possible. In infinitely many dimen-
sions, this is no longer so. It is possible in the space L(Y, H) of continuous linear operators
from a Banach space Y to a Hilbert space H [22, Section 3].

The results above of Payen [80] on the Wold–Cramér concordance in Hilbert space were
extended to the Banach case by Schmidt [88] and Hajduk-Chmielewska [40].

For V and W topological vector spaces, write V ∗ for the dual of V and L(V, W) for the space
of continuous operators (linear maps) from V to W . Then V has the factorization property if
every nonnegative A ∈ L(V, V ∗) can be factorized as

A = T ∗T ,

where T is a continuous operator from V into some Hilbert space (depending on A); cf. [1,
Section 7.3]. The factorization property is equivalent to the continuity of v �→ 〈Av, v〉 for
some nonnegative A ∈ L(V, V ∗); this holds for Banach spaces, and for some but not all locally
convex topological vector spaces [37]. TheAronszajn–Kolmogorov theorem can be extended to
locally convex spaces with the factorization property [37] and so can some aspects of prediction
theory (see [3]). For harmonizability, see [84].

5.3. Gaussianity and prediction

Linear prediction is always possible if one restricts attention to the Gaussian case. Even
in one dimension, there is a case for doing this: there is a hierarchy of weak-dependence
conditions in the Gaussian case, and another in the general case (mixing conditions; there is
some economy in working with one rather than two hierarchies; for background on such weak,
strong, and intermediate conditions, see, e.g. [10]). This is why some authors restrict attention
to the Gaussian case throughout, as is done in the classical book by Dym and McKean [31];
Gelfand and Vilenkin [35, Section III.3.4] discussed this, but deferred to probabilistic usage by
working generally.

5.4. Gaussianity and covariances

Because of this, the whole question of Gaussian measures in infinite-dimensional settings
becomes unavoidable here. This rests on Schwartz’s theory of Radon measures and cylindrical
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measures [89], and in particular on the covariance operator (recall that a zero-mean Gaussian
process is characterized by its covariance), usually written Q. The theory of covariance
operators in infinitely many dimensions is considered in detail by Vakhania et al. [95, Section
III]. They treated the Aronszajn–Kolmogorov theorem, and showed that in Hilbert space, a
measure μ being strong second order (square integrable in the strong sense) is equivalent to the
covariance operator Q being nuclear (trace class). Because a nuclear operator is a product of
two Hilbert–Schmidt operators and covariance, being symmetric and positive, factorizes (see
below), this can be expressed alternatively in the language of Hilbert–Schmidt operators. The
covariance Q factorizes as

Q = iQi∗Q,

where iQ is the inclusion map from the range of Q to the Banach space X. So (Radon) Gaussian
measures have nice covariances: Q is nuclear, and the above leads to the reproducing-kernel
Hilbert space associated with Q [85, Section IV].

Returning to the general (non-Gaussian) case, linear prediction fails in general in infinite-
dimensional Banach spaces: there exist a (non-Gaussian) random element such that linear
prediction of it by Gaussian families fails, and spectral representations of stationary processes
as before in the setting of L(Y, H) [22, Sections 7 and 8].

5.5. Locally convex topological vector spaces

Spaces of generalized functions are typically not normable, and neither are spaces of
holomorphic functions, etc. Instead, one needs to specify the topology in terms of a collection
of seminorms; with separability (enough for us here) sequences suffice. Often one can use a
sequence of norms and obtain a locally convex topological vector space; the prototype here is
Grothendieck’s nuclear spaces of 1955, for which, see [35, Section I.3].

Some aspects of prediction theory can be taken over to the locally convex case; see, e.g. [3].

5.6. Random generalized functions

If one passes from functions to generalized functions (or Schwartz distributions, though in
probability theory this would overload the word distribution), random variables are replaced
by random generalized functions. This was done as early as 1954 by Itô [48]. It is argued by
Gelfand and Vilenkin [35, Section III.1.2, p. 243] that this setting is actually more natural and
realistic:

However, every actual measurement is accomplished by means of an apparatus which has
a certain inertia … [so] the reading which the apparatus gives is not … at the instant t but
rather a certain averaged value … [via] a function characterizing the apparatus.

6. Applications

We confine ourselves here to brief comments on the applications of prediction theory in
the infinite-dimensional case. This forms part of the extensive area of statistical inference for
stochastic processes; see, e.g. Bosq [15], Antoniadis and Sapatinas [4] (who consider El Niño),
[5]. One principal field of application is functional data analysis, for which, see, e.g. [33, 81, 82].
Statistical analysis of data consisting of curves is well established; one application here is gait
analysis, used to analyse the motion of walking. Another is yield curves in the term structure
of interest rates in finance; as with anything in finance, predictive ability is of prime practical
importance. The first thing to do is to represent curves economically. Wavelet expansions are
often used here; an early and dramatic application was their use to digitize the FBI fingerprint
bank (without which the US criminal justice system would long since have collapsed). Also used
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here are Karhunen–Loève expansions, again, in the space variable. Much of functional data
analysis is concerned with independent and identically distributed data of curves. For prediction
purposes, one needs to dynamicize these results, and have the expansion coefficients evolving
with time. Again, wavelets are well suited to this purpose, as they allow one to handle time and
space (or time and frequency) together. As always, theory and applications have much to offer
each other here. We close by citing one specific application area: the prediction of electricity
consumption [25].

7. Postscript on Whittaker

We mentioned J. M. Whittaker in Section 2 in connection with the sampling theorem. John
Macnaghten (Jack) Whittaker (1905–1984) was Professor of Pure Mathematics at Liverpool
University from 1933–53 (seconded during World War II, when he served on Montgomery’s
staff in the 8th Army). Last semester, the first author lectured in Liverpool, in the Whittaker
Room, which has a plaque commemorating him and the sampling theorem over the door.
Whittaker went on to be Vice-Chancellor of The University of Sheffield from 1953–65. There
Joe Gani founded the Journal of Applied Probability in 1964, whose fiftieth anniversary this
volume celebrates. Joe always speaks well of Whittaker as a Vice-Chancellor whose word
could be relied on—not always the case.

Whittaker was the son of E. T. (Sir Edmund) Whittaker (1873–1956), who also worked on
cardinal series (in 1915). They were (from 1949 to 1956) the only father-and-son pair in the
Royal Society.

8. Conclusion

The above is a necessarily brief and very partial survey of an enormous field; there is much
more to be said, and we will return to these matters elsewhere. We close by pointing out that this
illustrates the wonderful and inexhaustably rich interplay between mathematics, probability and
statistics, pure, and applied. This is at the heart of the raison d’être of the Applied Probability
Trust journals, which this volume celebrates.

It is a great pleasure for both authors to contribute to this volume. It is a particular pleasure for
the first author, who has known Joe Gani all his career, and who contributed to the twenty-fifth
anniversary volume in 1988. He was then a new recruit to the Editorial Board, and is now retired
from it after many years as a Coordinating Editor. We congratulate the Applied Probability
Trust, its journals, its editors, and its staff on their first half-century, and look forward to the
next one.
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