BULL. AUSTRAL. MATH. SOC. 40G05, 42A28
voL. 12 (1975), 9-2I.

On the absolute Nérlund summability
factors of Fourier series

Yasuo Okuyama

The object of this paper is to give a general theorem which
implies lzumi's Theorem and Kanno's Theorem on the absolute
Norlund summability factors of Fourier series and deduce to

several known and new results from the theorem.

1.
Let Z an be a given infinite series with the sequence of partial
sums {sn} . Let {pn} be a sequence of constants, real or complex, and
let us write
= + + ...+ 3 = = = .
Pn Py * P, p, 3 P—k Py 0, for k=1
The seguence {tn} , given by
n
(1.1) t = L 7

1 E
o P, 18, =
n w k=g " kK'k P

Pa ., , (P #0),
n k=0 k'n-k n

defines the Norlund means of the sequence {sn} generated by the sequence

of constants {pn} .

The series Z an is said to be absolutely summable [N, pn) , or

summable |N, pn| , if the series

o«
(1.2) ot -t .|
n=1 " n-1
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is convergent.
In the special cases in which P, = [(n+a)/T(a)l(n+l) , o >0 , and
p, = 1/(n+l) , summability |¥, ph, are the same as the summability

|C, a| and the absolute harmonic summability, respectively.

2.

Let f(t) be a periodic function with period 27 and integrable (L)~
over (-m, ) . We assume without any loss of generality that the Fourier
series of f(t) is given by

o«

(2.1) ¥ (a_cosnt+b_sinnt) = § A _(t)
n=1 n " n=1

v

and J flt)dt = 0 . Ve write “’x(t) = o(t) = ¥{flatt)+f(x-t)} ,
-

An) = An , and Akh = An - An+l .

Dealing with the absolute Norlund summsbility of Fourier series, |zumi
and lzumi [3] proved the following theorem, which is a generalization of
theorems due to Bosanquet [T] and Mohanty (6, 7].

THEOREM A. rLet {p,} be non-negative and non-increasitg and X(¢) ,
t > 0, be a positive non-decreasing function such that {An/(n+l)} ig

non-inereasing,’

E >‘k An ’
(2.2) ——=o[—], n=0,1, 2, ...
k=n (k+l)Pk Pﬁ
and

. ,
(2.3) | [ aerarastor <= .

)

Then the series
n£0 ann(t)

igs summable |N, p,l,at t==x.
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Generalizing the theorem of Varshney [§], Kanno [4] proved the

following theorem.
THEOREM B. et {pn} be non-negative and non-inereasing. Let
A(t) , t >0, be a positive, non-decreasing function satisfying the

eondition {)‘n/Pn} i§ non-inereasing.

If the conditions

© p A A

(2.1) ] Bk o[;?) ., n=0,1,2, ...
k=n Pk n

and

v
I Ac/t)|de(t)]| < =
0

for some constant C > 0 hold, then the series

® (n+l)p

P )‘nAn+l ()
n=0 n

is summable |N, pnl at t =z .

Also see Dikshit [2] for the proofs of these theorems.
We generalize these theorems in the following form.

THEOREM. Let {pn} be non-negative and non-increasing. Suppose that
{)\’gl )} i8¢ a positive bounded sequence and A(z)(t) s t>0, 18 a

positive non-decreasing function such that {)\r(ll))\’gz)/ (n+l)} is non-

increasing,
(1), (2) (2)
o A A A
k "k n )
(2.6) =0[ , n=1,2, ...
kzn kpk Pn J
and
T (2)
(2.7) J AN ce/t)|dp(t)| < =, for a constant C (> 2m) .

o

Then the series
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PRGNS

ie summable |N, p,| , at t =z .

Ir X’gl) =1 and ?\’(12) = )\n , our theorem reduces to Theorem A, If
(1) _ (2) _ )
we put An = (n+1 )pn/Pn and )‘n = An , ve easily see that, under the

same assumptions as those of Theorem B, the condition (2.6) is satisfied

and the sequence {X:ll))\é?’)/(n+l)} is non-increasing because

w 3(1),(2) - (2) (2)
5 *n <4 ¥ Py =o{)\" ’
k=n kpk k=n Pz Pn J
and
(1),(2) (2)
An )‘n S pnAn
n+l - Pn :

Therefore our theorem includes Theorem B.

3.

We shall require the following lemmas to prove the theorem.

LEMMA 1 (2], Let {pn} be a given sequence, then for any =z , we
have

n n-1
(1-z) kém kak - pmxm _ Pn“’n+l _ kzm Apkxkﬂ

where m and n are integers such that nz m=z 0 .

This lemma is easily obtained.

LEMMA 2 [5]. If {pn} i8 non-negative, non-increasing, then for
0=az2hb<ow, 0=2t=nn, and for any n ; we have

b

kz;.a pkexp(i(n—k)t) < AP[l/t] ,
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where A i a positive constant and [z) denotes the integral part of

x .
4,
Proof of the Theorem. By (1.1) we have
n
= X (l) (2)
ta =B L Bnitaktana(®) o
where
o (T
4 (x) = —J ¢(t)cosktdt .
o

Hence,

<o+
I

o
n

P P
ok —”—'&l]x(lh@),;

n n-l .2 [Pn P k "k Tk+l

(¢)

a
’%JO q’(t){P P 2 (Pnpn—k n- kpn))‘(l) (2)c°8(k+l)t}dt

n n=1 k=1
n
2 J (l) (2) sin(k+1)¢
-2 a{zE— 1 JA(tI\(2) sinkn)e
11 PnPn -1 k=1 Pni” n KPn k+1
Thus, to prove the theorem, it is enough to show that

o0
oIt -t .|
n=p 1 P2

{4 n ]
s KJO |d¢(t)|| 2 7 P I ®Bp, P, n)*;(cl)"x(f) w{%&i - 0(1) .

N n=l n n-1 k=1

Considering the condition (2.7), it suffices for our purpose to prove
that uniformly in 0 <t =71 ,

© n (P )
(4.1) I = Z z npnl;J; n-kfn )\(l) (2) Sl_n,(z’%L| - 0()\(2)(0/‘{;)) .
n=1 'k=1 n n-1

Let us write T = [C/2¢t] , so we have
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23?1 g (Phpn_k'Pn_kpn) (1) (2) sin(k+1)t l

I =
n= k=1 PnPn -1 k+1
« 7 3 [ nek _ ;—k-l] él) A(2) 51n£§+12
n=21+2 'k=1 n n-1 1
. 5 [Pn—k ) Ph—k—l]k(l)x(z) sin§k+12t|
n=2t+2 'k=1+l Pn Pn-l k ,k k+1

Il+I + I,
say.
Since {pn} is non-negative and non-increasing, {Aél)} is bounded,

{Aé2)} is non-decreasing and |sin(k+1)t| = (k+1)¢ , we have

@) (ereyetenr

1A

2
o(z\@erey) .
Also, since {Pn_k/Pn} is monotonic non-decreasing and bounded for

each fixed k = 0 , we have

1A

pzar 2@ 7 [Pn-k_Pn—k—l]

=1 n=2T+2

T
atn@ergy ¥ 1
k=1

o2 (/)

n n-1

by virtue of the hypotheses that {Aﬁl}} is bounded and {Aéz)} is non-

. i
decreasing.

In order to prove that I_ = O(X(2)(C/t)) , we consider the sum

3

4 = 3 5 Pn_-k Pk1 (1),(2) exp(ikt)
I3 = z Z T - B >\k )\k 1
n=27+2 'k=1+1 n n-1
Then it is enough to prove that
I;, = 0()\(2)(0/1:)) as N »o=

Now, we observe that
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< ’{ ' 7 [Pn—k_Pn-k-l} (1),(2) exp(skt)
3 n=2t+2 'k=T1+1 Pﬁ Pn-l k k+1
R S U B \(1h(2) explikt)
P Puk M
n=21+2 “n-1 ‘k=m+l
N P n .
n (1),(2) exp(ikt)
+ I 5 I P M 23] l

n=2T+2 nPn-l k=m+1
3l 32 33 ?
say, where m = [n/2] .

Since {Ph—k/Pn} is non-decreasing for each fixed k =2 0 and

]1—exp(7lt)|_l = O(t_l) , we obtain by an application of Lemma 1,

no- 1 l 7 [Pn_—k _ i—]g-_l]x(l)x(z) e&(ikt),
31 n=2T+2 ‘k=T+1 Pn Pn—l k k k+1
) < 4t I{ [Pn—'r-l _ Pn—'r—2]>\(1))\(2) lexp (Z(T+1)%)
) n=27+2 Pn n-1 J T+l T+2 T+2

vae 3 [nm_ Pn-m_l]A 1),(2) lexp(i(m1)e) |

N m-1 P P
+ AT z Z A[ k "k ][ n-k _ g_k_l}exp(i(k+l)t),
n n-=1

A(1),(2)
N mil [p nk  Pnk-1) M1 kel

n=27+2 'k=T+1 P P k+2

J exp (i (k+1)2) ’
n n-1

Since for each fixed %k , {pn—k/Pn} is non~increasing while

Pn—k/P } 1is non-decreasing, we obtain
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L (1),(2)
14 S!1)\(1),\(2){191\74-1_ Pr \+At lg [Pnpn_m-PnPn_m 'n_m
31 T+l T+l PN P2T+l n=2,[_+2 Pnpn-l J m“"l
(1) (2)
W/2l-1 %X ¥ (fak _ Facka
+ AT Z A K+l z P - P
k=T+1 n=2k+1 n n-1
(1)4(2) ,
T 4 gy
k=T+1 k+2 n=2k+1 \ Py P
< Ax(g)(c/t) \ i IZV [p_m l;l)xrfla) - =
n=27+2 Pm el
(v/21 Aél)l,gg) 7 Ai(cil).xl(cij). Py
A S P
k=T+1 k=T+1. 2k
" v A1) @)
2 n n
< a®)cre) + arp I
™ fe TE,
A(1)5(2) p o A{1(2)
+ AT B .2 Atp z ‘ki
T+1 T+l k=T+l kPk
(2) M), () o
5 T+ o T+1
SANTUCIE) 4 Atp ) p— v AN AT
Pryy P T+1 ™ Pryy

= (e

a8 N + « | by virtue of the hypotheses (2.6) and that {Al(cl)xlie)/(lﬁl)}

is non-increasing.

Since {"7&1)7‘1&2)/ (k+1)} is non-increasing, we have by Abel's Lemma

and Lemms 2,
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N n )\(1))\(2)
1% = ! Pl I pyy 'Z(k_ﬂk_ exp(ikt)l
n=27+2 “n-l lk=m+1 "
(1),(2)
N AL A
1 m+]l 4l N
s4 ] = =72 max I ! » exp(zkt)l
n=oT+2 Pn_l me pci<n k=me1 n-k 7
IENCINES \(2)
< non o o L
< AP I — )
n=t n T
= o(A@(cre))

as N > ® , by virtue of the hypothesis (2.6).

By a similar method, we have

¥ p n A(1)>\;(€2)
k .
I* = 7 L Y P, =S——Z— exp(ikt)
B ppree By k=m0 KR
o, A
= P, —p —_— exp(ikt)l
=or+2 Tnfnel lk=miy 7K Ppg 7R KM
yoop A(1),(2) z
<4 Z L m_m_m max z p e)&p(ikt)l
n=21+2 Pnpn-l Pym m m<isn lk=m+1 n-k
g \(132) \2)
< AP 2R < 4p
Tp=ter n T T
= oA @ (c/2))

. s s * * *
Collecting the above estimations 131, I32 , and 133 , We prove that
uniformly in 0 <t =m , Ig = O[A(Q)(C/t)) and a fortiori that
13 = O[A(Q)(C/t)] . Therefore, by I_, I2 , and I3 s we have
1=00@ ey .

This completes the proof of the theorem.

5.
In this section, we consider some applications of our theorem.

Using a result of Das and Srivastava (ef. [4], Theorem B), it is shown
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by Kanno [4] that it is possible to deduce the following four corollaries
from his theorem. However, if we apply our theorem, we need not eappeal to
the result of Das and Srivastava (ef. [4], Theorem B) for proofs of their

corollaries.

COROLLARY 1 [6]. If

f" t % do(t)] <=,
0

o0
then the series ) na'An(t) ig swmmable |C, B| at t = x , where
n=1

0=a<B<1,
COROLLARY 2. If 0<a<1, BZ0, and

m B
J (Loge/t)" |do(t)| < =,
)

then the series | (logn)BAn(t) ig summable |C, a| at t==z.
n=1

This corollary coincides to Bosanquet [1] for 8 = 0 , and Mohanty [7]

for B =1 , respectively.

COROLLARY 3. If 1>a20, B20, a+B<1l, and
11 CB
J [los;) |de(t)] < =,
o]

then the series
s An(t) o
——F ig summable |N, 1/(n+2){log(n+2)}"| .
n=0 {log(n+2)}
For @ =8 = 0 , this corollary is due to Varshney [§].
COROLLARY 4. I1f
T c B
J (log log -1—;-) |dp(t)] <= for 0=B <1,
0

then the series
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© 4,(8)

g e summble |N, 1/(n+2)log(n+2)|
n=0 log(n+2){log log(n+2)}

at t=x .

As these corollaries are analogously proved, we shall prove here only

Corollary L.

Proof of Corollary 4. In our theorem, we put Py = 1/(k+2)1log(k+2) ,

A;ﬁl) = 1/log(k+2)log log(k+2) , >\7(<2) = {1og log(k+2)}® . Then
n
Pn = ] 1/(k+2)log(k+2) ~ log log(n+2) .
k=0

Moreover it is easy to see that

w 3 (1);(2) (2)
) M M _ 0[{1og 1og(n+2)}B\ - 0(}‘;__] .

XEn kP, - log log(n+2) | ~

n

Hence all assumptions of our theorem hold. Therefore the proof is
complete. Further, by our theorem, we obtain the following Corollaries 5

and 6, which correspond to Corollaries 3 and 4 for B = 1 , respectively.

COROLLARY 5. 1I1f
T
[ 105(g 120(1] < =,
0

then the series

I 4, (t) is sumable [N, log(n+2)/(n+2)]| ,
n=0

at t==x .
Proof. Putting

(1)
k

Py = log(ks2)/(ks2) , MY = 1/108(k02) , AB) = loglks2) |

then we have

n
_ 7 log(k+2) _ 2
P, kzo I {1og(n+2)}° .
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On the other hand, we have

(2)
A

P

o
1 log(n+2) ) _
I @, =° z) < 0
k=n "k {10g(n+2)}
Therefore, by our theorem, we see that Corollary 5 holds.

By a similar method, we can prove the following corollary.

COROLLARY 6. If
T c
J [los log ;}ldw(t)l <o,
0

then the seriecs

l An(t)/log(n+2) ig gummable |N, log log(n+2)/(n+2)1og(n+2)| ,
n=0

at t=x.
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