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Classification of Inductive Limits
of Outer Actions of R on
Approximate Circle Algebras

Andrew J. Dean

Abstract. In this paper we present a classification, up to equivariant isomorphism, of C∗-dynamical

systems (A, R, α) arising as inductive limits of directed systems {(An, R, αn), ϕnm}, where each An is

a finite direct sum of matrix algebras over the continuous functions on the unit circle, and the αns are

outer actions generated by rotation of the spectrum.

1 Introduction

There are now several results classifying certain kinds of actions of R on C∗-algebras

(cf., [1–3]). In each of these cases, there exists an increasing sequence of homoge-

neous sub-C∗-algebras that are each globally invariant under the action, which is

inner when restricted to each of these sub-C∗-algebras and that has dense union. In

this paper, we shall give a classification result for a class of actions that do not have

this property.

Let a be an irrational multiple of 2π, and let β denote the automorphism of T

given by rotation by a. Let ϕn : Mn!(C(T)) → M(n+1)!(C(T)) be given by [ϕn( f )](z) =

diag( f (z), β f (z), . . . , βn f (z)), and let B denote the inductive limit of the inductive

system {An, ϕnm}, where An = Mn!(C(T)). There is a unique automorphism, which

we shall also denote β, on B that restricts to id⊗β on each An (since all of the maps in

the inductive system are injective, we view them as inclusions). Suppose τ is a tracial

state on B, and let τn denote its restriction to An. We have that τn( f ) = τn+1(ϕn( f )),
and that |τn+1(ϕ( f )) − τn+1(ϕ(β( f )))| ≤ 2 ‖ f ‖ /(n + 1). Pushing forward in the

system, we see that τ ( f ) = τ (β( f )) for all f ∈ An. Since the orbit of β is dense in

the rotations of the circle, it follows that τn is invariant under rotations, and we have

τn = Tr ⊗ dm, where m is the Haar measure on the circle. Thus B has a unique trace,

and since it is simple, it follows from classification theory that it is a Bunce–Deddens

algebra.

Rotation on the circle with unit speed gives a one parameter automorphism group

on each An, and the connecting maps are equivariant. So in this way we get an action

α of the reals on B. Observe that it has eigen-unitaries, i.e, unitaries u such that for

some non-zero real number r we have αt (u) = eirt u. We will show that this cannot

occur in the type of C∗-dynamical system discussed in previous results.
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Let (B, β) be a C∗-dynamical system and suppose that 1 ∈ Bn ⊆ Bn+1 and

B = ∪∞
n=1Bn, where each Bn is a homogeneous C∗-algebra such that β restricts to

an action βn on Bn generated by an inner derivation given by a self-adjoint element

hn ∈ Bn, and that u is an eigen-unitary for β in B with eigenvalue a 6= 0. Then,

for some large enough n, there exists a unitary v ∈ Bn such that v is norm close to

u. Consider the mapping P : B → B given by P(x) = (1/2π)
∫ 2π

0
e−iatβt (x) dt. Then

P is a norm decreasing linear map such that P(u) = u. Also, P(Bn) = Bn for each

n, and P commutes with equivariant *-homomorphisms. Let π be the canonical

*-homomorphism onto one of the minimal quotients of Bn. Then π is equivariant

when the action on π(Bn) is that given by π(hn). Applying P repeatedly to v, we get

a sequence vm = Pm(v) such that ‖vm − u‖ is decreasing. Also, each vm, being norm

close to u, is invertible. Hence π(vm) is invertible in π(Bn). In a finite dimensional

C∗-dynamical system, each operator is a finite linear combination of eigen-operators.

Eigen-operators with eigenvalues distinct from a will be driven to zero by repeated

application of the map P, so for large enough m, π(vm) = Pm(π(v)) may be approx-

imated by an invertible element x that is an eigen-operator in π(Bn) with eigenvalue

a. But then x|x|−1 is an eigen-unitary with eigenvalue a in π(Bn). It is easy to see

that eigen-unitaries are not possible in a finite dimensional C∗-dynamical system

(see [1]).

Thus, the action α does not fall into the domain of any of the classification theo-

rems for C∗-dynamical systems found before. We shall give below a classification for

a class of C∗-dynamical systems that includes this one. We refer the reader to [6] for

general results about actions of R on C∗-algebras.

2 The Invariant

We shall take the view that a classification for a certain category consists of a functor,

called the invariant, into another category such that isomorphisms from the target

category lift to isomorphisms in the original category and that some class of auto-

morphisms in the original category that it is natural to regard as trivial are each sent

to an identity map. In our case, we shall regard equivariant inner automorphisms

coming from unitaries in the fixed point subalgebras as trivial (see [5] for a discus-

sion of classification). In this section, we describe the objects we are going to classify

and our invariant.

Definition 2.1 We shall call a C∗-dynamical system (A, α) of special form if A is

a finite direct sum of full matrix algebras over the continuous functions on the unit

circle, and the action α on each summand is given by αt ( f )(z) = f (eiat z) for some

non-zero a ∈ R and all t ∈ R, z ∈ T.

Lemma 2.2 Let (A, α) and (B, β) be C∗-dynamical systems of special form, each hav-

ing one minimal direct summand, and let ϕ : A → B be a unital equivariant *-homo-

morphism. Suppose the dimension of an irreducible representation of B is k times that

of an irreducible representation of A. Then there exist a natural number n and complex

numbers λ1, . . . , λk of modulus 1 such that, with suitable choices of matrix units for Aα

and Bβ , ϕ( f )(z) = diag( f ((λ1z)n), . . . , f ((λkz)n)) for all f ∈ A and z ∈ T.
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Proof A unital *-homomorphism ϕ : A → B is determined by what it does to Aα and

the canonical generator 1⊗z of the centre of A. Since 1⊗z is an eigen-unitary, so is its

image, so we have ϕ(1⊗z) = u⊗zn for some unitary u ∈ Bβ and n ∈ N.If v is a partial

isometry in ϕ(Aα) ′ ∩ Bβ , then v commutes with u ⊗ 1. Since ϕ(Aα) ′ ∩ Bβ ∼
= Mk, we

see that u = w ⊕ · · · ⊕ w (k copies) for some unitary w, with an appropriate choice

of matrix units for Bβ . The lemma follows.

Definition 2.3 Let (A, α) be a C∗-dynamical system. An element u ∈ A is called

a partial unitary if and only if uu∗
= u∗u = (u∗u)2. A partial unitary u is called

an eigen-partial-unitary if and only if there exists a ∈ R such that αt (u) = eiat u for

all t ∈ R. In the case that u 6= 0, the a is clearly unique and we call it the eigenvalue

of u. (We say for convenience that 0 is an eigen-partial-unitary with eigenvalue zero.)

Define a relation ∼ on the set of eigen-partial-unitaries of A as follows. Say u ∼ w

if and only if there exists a sequence partial isometries vn ∈ Aα such that vnwv∗n → u

and v∗n uvn → w. Then ∼ is an equivalence relation. Write D̃(A, α) for the set of

equivalence classes of partial unitaries. If u and w are eigen-partial-unitaries with the

same eigenvalue, and u ⊥ w, then u + w is also an eigen-partial-unitary. Let G(A, α)

denote the abelian group generated by D̃(A, α) with the relations [u+v] = [u]+[v] if

v and u are orthogonal eigen-partial-unitaries with the same eigenvalue. Let G+(A, α)

denote the sub-semi-group of G(A, α) generated by the image of D̃(A, α) under the

canonical inclusion, and write D(A, α) for this image.

Next, we define a collection of additive maps πk : G(A, α) → G(A, a), k ∈ Z as

follows. If u is an eigen-partial-unitary, set

πk([u]) =





[uk] if k ≥ 1,

[u∗u] if k = 0,

[(u∗)|k|] if k ≤ 0.

It follows from the universal property of G(A, α) that these maps extend uniquely

to additive maps on all of G(A, α). Notice that if m, n ∈ Z, then πm ◦ πn = πmn.
We define an action of R on (G(A, α), G+(A, α), D(A, α), {πk}k∈Z) by α̃t ([u]) =

[αt (u)] for any eigen partial unitary u ∈ A. If (B, β) is another C∗-dynamical

system and ϕ : A → B is a *-homomorphism, then ϕ defines a homomor-

phism ϕ∗ of groups with distinguished positive cones and subsets by ϕ∗([u]) =

[ϕ(u)] for any eigen-partial-unitary u ∈ A. Furthermore, this map intertwines

the maps πk. By equivariance we have ϕ∗ ◦ α̃t = β̃t ◦ ϕ∗ for all t ∈ R. We call

(G(A, α), G+(A, α), D(A, α), {πk}k∈Z, α̃) the invariant of (A, α), and write Inv(A, α)

for it.

We define a target category C as follows. An object in C is a 5-tuple

(G, G+, D, {πk}, α), where G is an abelian group, D is a distinguished generating

subset of G, G+ is the sub-semi-group of G generated by D, {πk} is a collection of

additive maps from G to G indexed by the integers with πm ◦ πn = πmn for all n and

m, and α is an action of R on G preserving these other structures. A morphism in

C is a group homomorphism from the group in the first object to that in the second
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that preserves all of these other structures. With ϕ∗ defined as above, the invariant is

then a functor into the target category C.

Lemma 2.4 Let {(An, αn), ϕnm} be an inductive system of C∗-dynamical systems

of special form with equivariant connecting maps, and let (A, α) denote the limit C∗-

dynamical system. Then

Aα
=

∞⋃
n=1

ϕn∞(Aαn
n ).

Proof Let {(An, αn), ϕnm} and (A, α) be as above. We may assume without loss of

generality that the connecting maps are injective. Let a ∈ Aα, and let an ∈ An be

such that ϕn∞ → a in A. Let r1, . . . , rk be the distinct eigenvalues of the canonical

generators of the centres of the minimal direct summands of An, and consider the

maps Pm : A → A given by

Pm(x) =

r1

2π

∫ 2π/r1

0

αt1

(
r2

2π

∫ 2π/r2

0

αt2

(
· · ·

)
dt2

)
dt1

.

Each Pm : A → A is a norm decreasing map that fixes Aα and maps Am to Aαm
m . Thus,

Pm(am) → a, so a ∈ ∪∞
n=1ϕn∞(Aαn

n ).

Lemma 2.5 Let (A1, α1) and (A2, α2) be two C∗-dynamical systems. Then we have

Inv(A1, α1) ⊕ Inv(A2, α2) = Inv(A1 ⊕ A2, α1 ⊕ α2).

Proof This is immediate from the definition.

Lemma 2.6 Let A = Mn(C(T)) and let αt ( f )(z) = f (eiat z) for f ∈ A, t ∈ R, z ∈ T,
where a 6= 0. Then Inv(A, α) is singly generated as an object in C by x = [p⊗ z], where

p is a minimal projection in Mn, and has the following universal mapping property: If

(G, G+, D, {πk}, βt ) is an object in C and g is an element of D with β2π/a(g) = g, then

there exists a morphism ϕ : Inv(A, α) → (G, G+, D, {πk}, βt ) such that ϕ(x) = g.

Proof Any eigen-operator in A is of the form b ⊗ zm for some b ∈ Aα ∼
= Mn and

m ∈ Z. If the eigen-operator is a partial unitary, then b is a partial unitary. Thus, any

class in D̃(A, α) is a sum of finitely many classes [eiamt0 p ⊗ zm] where p is a minimal

projection in Aα. We have [eiamt0 p⊗zm] = αt0
(πm([p⊗z])), so Inv(A, α) is generated

by [p ⊗ z] as described.

Let h be an element of D̃(A, α). Then we have that h may be written in the form

h = αt1
(πm1

(x)) + · · ·+αtk
(πmk

(x)) for some t1, . . . , tk ∈ R and m1, . . . , mk ∈ Z. The

mapping property will follow if we show that this expression for h is unique up to the

periodicity of α. Let τ denote the trace at 1, and the additive functional on D̃(A, α) it

defines. We have that τ (π0(h)) = k, so the number of terms in the expression for h is

unique. In general, τ (πn(h)) =

∑
i tn

i . By a straight forward induction argument, this

gives that the symmetric functions in the tis, and so the tis themselves, are uniquely

determined up to reordering. Consider the additive function ϕn : D̃(A, α) → R given

by ϕn([u]) =

∫
T

tr(u(z)z−n) dm. We have that ϕn(πl(x)) = δnl. This shows that

the mis are determined with their multiplicities. Finally, we may decompose our

expression for h into terms with the same mi and use the argument with τ above on

each term separately, so the tis and mis must match.
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Lemma 2.7 Let {(An, αn), ϕnm} be an inductive system of C∗-dynamical systems

of special form with equivariant connecting maps, and let (A, α) denote the limit C∗-

dynamical system. Then Inv(A, α) = lim{Inv(An, αn), Inv(ϕnm)} in the category C.

Proof It will suffice to show that all of the canonical generators are in the images

of the invariants of the finite stages, and that the canonical relations are also realised

at finite stages. We begin by showing the first statement. Let u be an eigen-partial-

unitary in A. Then we may approximate u by a partial unitary w in An for some n, and

since u∗u and w∗w are equivalent projections in Aα, we may suppose u∗u = w∗w.
Suppose that αt (u) = eiat u, where a 6= 0. Consider the map P : A → A given

by P(x) = (1/2π)
∫ 2π

0
αt (x)e−iat dt. Then P is a norm decreasing linear map such

that P(u) = u. We can approximate the components of w in each minimal direct

summand of An by a finite linear combination of the form a1 ⊗ zn1 + · · · + ak ⊗ znk .
Applying P repeatedly, we send all the elementary tensors with eigenvalues distinct

from a to zero, while improving the approximation of u. Call the new approximation,

with eigenvalue a, w1. The components in each minimal direct summand of An of this

element w1 are of the form b⊗ zm. It follows that b is approximately a partial unitary,

and since being a partial unitary is a stable relation, we may assume that b, and hence

w1, is a partial unitary. Since w∗
1 u ∈ Aα, we can choose a sequence vm with vm ∈ Am

such that vm → w∗
1 u. It follows that [u] = [w1] in D̃(A, α). Finally, we deal with

the case where u ∈ Aα. This follows easily from the observation that being a partial

unitary is a stable relation and from Lemma 2.4.

Next, we show that the relations come from the finite stages. Suppose that

w1, w2 ∈ Am, are eigen-partial-unitaries, and that [w1] = [w2] in D̃(A, α). Then

there exists a sequence {vn} of partial isometries in Aα with vnw1v∗n → w2. Using

Lemma 2.4, we may suppose vn ∈ Aαn
n . Also, we have that w1 and w2 have the same

eigenvalue. Each of w1 and w2 may be written as a finite linear combination of terms

of the form ai ⊗zni , with the ai partial unitaries with finite spectrum having orthogo-

nal support projections for different is. Moving further along in the inductive system

if necessary, vnw1v∗n → w2 implies that the eigenvalues of these ais match for the two

unitaries, and that the corresponding spectral projections are equivalent. It follows

that [w1] = [w2] in Inv(An, αn) for some large enough n.

3 Classification

The proof of our main theorem (Theorem 3.3) follows the pattern known as Elliott’s

intertwining argument (see [4] for a discussion of this type of argument).

Lemma 3.1 Let (A, α) and (B, β) be two C∗-dynamical systems of special form, and

let ϕ : Inv(A, α) → Inv(B, β) be a morphism in the category C. Then there exists an

equivariant *-homomorphism ϕ̃ : A → B such that ϕ = ϕ̃∗.

Proof Let (A, α), (B, β), and ϕ : Inv(A, α) → Inv(B, β) be as above. Consider first

the case where A and B each have one minimal direct summand and ϕ([1A]) =

[1B]. Let A and B be identified with Mn(C(T)) and Mnk(C(T)) in such a way as to

express them as C∗- dynamical systems of special form with eigenvalues a and b,

respectively. Let x denote the canonical generator of [e11⊗z] of Inv(A, α) as described
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in Lemma 2.6, and let y = [v11 ⊗ z] be one for Inv(B, β). From Lemma 2.6, since

ϕ(x) ∈ D̃(B, β), ϕ(x) = βt1
(πn(y)) + · · · + βtk

(πn(y)) for some k, n, and t1, . . . , tk.
The *-homomorphism ϕ̃( f )(z) = diag( f ((eibt1 z)n), . . . , f ((eibtk )n)) thus meets our

requirements.

Now we consider the general case. From Lemma 2.5, we may reduce to the case

where both A and B have one minimal direct summand. Cutting down B by a pro-

jection in Bβ with class ϕ([1])in D̃(B, β) then brings us to the situation dealt with

above.

Lemma 3.2 Let (A, α) and (B, β) be two C∗-dynamical systems of special form, and

let ϕ and ψ be two equivariant *-homomorphisms from A to B such that Inv(ϕ) =

Inv(ψ). Then there exists a unitary u ∈ Bβ such that ψ = Ad u ◦ ϕ.

Proof Let (A, a), (B, β), ϕ, and ψ be as above. Notice that any tracial state τ on A

defines an additive homomorphism, which we shall also call τ , from G(A, α) to C

such that τ ([v]) = τ (v) for any eigen-partial-unitary u.

Consider first that case in which A and B have one minimal direct summand and

the maps are unital. Then ϕ and ψ are in the form given by Lemma 2.2. Suppose that

k is the K0 multiplicity of the maps, and let λ1, . . . , λk be the complex parameters

of modulus 1 associated with ϕ, and let γ1, . . . , γk be those for ψ. Let x denote a

canonical generator of Inv(A, α) in G(A, a) as described in Lemma 2.6, and let y be

one for Inv(B, β). Then for each of ϕ and ψ, the integer parameter for each (the

winding number) is given by the ratio of the period of β̃ on the image of x to the

period of y, so these two numbers are the same, n say. Now fix identifications of A

with Mm(C(T)) and of B with Mmk(C(T)) that express the systems in special form.

Let τ1 denote the trace associated with the fibre at 1. We then have τ1(ϕ(πl(x)) =∑k
j=1(λ j)

l
= τ1(ψ(πl(x)) =

∑k
j=1(γ j)

l for all integers l. It is now straightforward to

show that the symmetric functions in the λs are equal to those in the γs, so that after

reordering, we have λ1 = γ1, λ2 = γ2, . . . , λk = γk. It is then immediate that there

exists a unitary u ∈ Bβ such that ψ = Ad u ◦ ϕ.

Now consider the general case. We may use Lemma 2.5 to reduce to the case where

both A and B have only one minimal direct summand. Since ψ([1]) = ϕ([1]), we

may conjugate by a unitary in Bβ to get ϕ(1) = ψ(1), and cutting B down by this

invariant projection brings us to the case discussed above.

Theorem 3.3 Let (A, α) and (B, β) be two C∗-dynamical systems that arise as induc-

tive limits of C∗-dynamical systems of special form, and suppose that η̃ : Inv(A, α) →
Inv(B, β) is an isomorphism of invariants. Then there exists an equivariant isomor-

phism η : A → B such that η̃ = Inv(η).

Proof Let {(An, αn), ϕnm}, {(Bn, βn), ψnm}, (A, α), (B, β), and η : Inv(A, α) →
Inv(B, β) be as above, and suppose that ζ is the inverse of η.

Using Lemmas 2.5, 2.6, and 2.7, and a standard argument, we may pull back the

pair of inverse isomorphisms η, ζ to a commutative diagram (possibly after passing
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to subsequences and renumbering):

Inv(A1, α1) //

γ1

²²

Inv(A2, α2) //

γ2

²²

. . . // Inv(A, α)

γ

²²

Inv(B1, β1) //
ζ1

88
q

q
q

q
q

q
q

q
q

q

Inv(B2, β2) //
ζ2

::
u

u
u

u
u

u
u

u
u

u

. . . // Inv(B, β).

ζ

OO

By Lemma 3.1, we may lift each of the homomorphisms between the invariants at the

finite stages to equivariant *-homomorphisms between the C∗-algebras, so we have

a not necessarily commutative diagram

(A1, α1) //

γ1

²²

(A2, α2) //

γ2

²²

. . . // (A, α)

(B1, β1) //
ζ1

::
t

t
t

t
t

t
t

t
t

(B2, β2) //
ζ2

;;
x

x
x

x
x

x
x

x
x

x

. . . // (B, β),

where the images of the maps in this diagram under the invariant are the correspond-

ing maps in the diagram above.

Now consider the first triangle in the diagram above:

(A1, α1) //

γ1

²²

(A2, α2)

(B1, β1).

ζ1

99
t

t
t

t
t

t
t

t
t

.

Using Lemma 3.2, we may choose a unitary u ∈ Aα2

2 such that replacing ζ1 by Ad u◦ζ1

makes the triangle commute. This will not change the image of this map under the

invariant. Proceeding left to right through the diagram above, we may alter each

of the vertical maps in turn, so that each triangle commutes. Thus we may replace

the diagram above with one that is commutative. This gives rise to a pair of in-

verse isomorphisms between the limit algebras, and since all of the vertical maps are

equivariant, these will be equivariant as well. That they induce the given maps on the

invariant follows from functoriality.

4 Closing Remarks

It should be noted that, since they are not simple or of real rank zero in general, the

C∗-algebras discussed in this paper do not fall into the classes that have been classified

by the Elliott program.
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