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where the sum involves the Fourier coefficients of a multi-folded L-function weighted with a kernel
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1 Introduction and main results

Number-theoretic functions, also known as arithmetic functions, play a fundamental role in under-
standing the divisibility properties of integers, the distribution of prime numbers, and various other
aspects of number theory. Several important arithmetic functions, such as the Möbius function
µ(n), Euler’s totient function φ(n), the divisor function d(n), and the sums of divisor function,
have deep applications in analytic number theory, algebra, quantum computing, and even string
theory.

A particularly interesting class of arithmetic functions was introduced by Ivić, Tenenbaum, and
Erdős in 1986-87; namely, arithmetic functions with a squarefull kernel (cf. [20, 10]). Any integer
n ≥ 1 can be uniquely decomposed as n = q(n)t(n), where gcd(q(n), t(n)) = 1, the factor q(n) is
squarefree, and t(n) is squarefull, meaning that p2 | t(n) whenever p | t(n). A nonnegative integer-
valued arithmetic function ν(n) is said to have a squarefull kernel, or be a 2-full kernel function,
if it satisfies ν(n) = ν(t(n)) for all n ≥ 1 and grows at most polynomially in any arbitrarily small
exponent, i.e., ν(n) ≪ nϵ for any ϵ > 0. The collection of such functions is denoted by K2, as
introduced by Ivić and Tenenbaum [20].

This concept extends naturally to higher orders. Given an integer m ≥ 2, any integer n ≥ 1
admits a unique factorization n = q(n)t(n), where q(n) is m-free and t(n) is m-full, meaning
that pm | t(n) whenever p | t(n). The class of nonnegative integer-valued functions satisfying
ν(n) = ν(t(n)) for all n ≥ 1 and the growth condition ν(n) ≪ nϵ for any ϵ > 0 is denoted by
Km. These functions, known as m-full kernel functions, generalize the framework developed for
squarefull kernel functions. Note that Km is not necessarily a class of multiplicative functions.
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One of the most well-known arithmetic functions exhibiting completely random behaviour is
given by the Fourier coefficients of a Hecke eigenform for the full modular group. In this work,
we establish an asymptotic result concerning the power-saving error term of an arithmetic function
involving the coefficients of an L-function associated with a Hecke eigenform, combined with a
weighted m-full kernel function ν(n) ∈ Km. Recently, Venkatasubbareddy and Sankaranarayanan
[41, 40] established asymptotic formulae involving Hecke eigenvalues weighted by an m-full kernel
function. To present our main results, we begin with an introduction to modular forms and the
associated L-functions.

Let Mk(1) denote the space of modular forms of even weight k ≥ 2 for the full modular group
SL2(Z), and let Sk(1) be the subspace of cusp forms in Mk(1). A cusp form f ∈ Sk(1) is called a
Hecke eigenform if it is a simultaneous eigenfunction for all Hecke operators.

Let λf (n) be the normalized nth Fourier coefficient in the Fourier expansion of f ∈ Sk(1) at
infinity, given by

f(z) =

∞∑
n=1

λf (n)n
k−1
2 e2πinz

for all z ∈ H, where H is the Poincaré upper half-plane. The function f is said to be normalized
if λf (1) = 1. The set containing normalized f ∈ Sk(1) is denoted by S∗

k(1). For f ∈ S∗
k(1), the

sequence {λf (n)}n≥1 defines a real multiplicative function satisfying Deligne’s bound

|λf (n)| ≤ d(n) ≪ nϵ

for any ϵ > 0, where d(n) is the divisor function.
For a Hecke eigenform f ∈ S∗

k(1), we define the associated L-function L(f, s) by

L(f, s) :=
∞∑
n=1

λf (n)

ns
=
∏
p

Å
1−

λf (p)

ps
+

1

p2s

ã−1

=
∏
p

Å
1−

αf (p)

ps

ã−1 Å
1−

βf (p)

ps

ã−1

for Re(s) > 1, where for any prime p, there exist complex numbers αf (p) and βf (p) such that

αf (p) + βf (p) = λf (p), and |αf (p)| = |βf (p)| = 1, αf (p)βf (p) = 1. (1.1)

For more details, see Deligne [9].
The average behaviour of arithmetic functions often exhibits inherent randomness, making

them a subject of extensive study. Hecke [15], in 1927, established the bound∑
n≤X

λf (n) ≪ X
1
2 .

Subsequent works have refined this result, including

∑
n≤X

λf (n) ≪f,ϵ



X
11
24

+ϵ, Kloosterman

X
4
9
+ϵ, Davenport, Salié

X
5
12

+ϵ, Weil

X
1
3
+ϵ, Deligne

X
1
3 , Hafner and Ivić

X
1
3 (logX)−0.0652+ϵ, Rankin

X
1
3 (logX)−0.1185, Wu
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The second moment of Hecke eigenvalues was studied independently by Rankin [34] and Selberg
[35] in 1930, who proved that ∑

n≤X

λ2
f (n) = cfX +O(X

3
5 ),

where cf > 0 is a constant depending on f . More recently, Huang [18] in 2021 improved this
estimate by showing that ∑

n≤X

λ2
f (n) = cfX +O(X

3
5
−δ), where δ ≤ 1

560
.

Beyond classical summation results, one can also investigate the behaviour of Hecke eigenvalues
along polynomial sequences. For a monic quadratic polynomial q(x), Blomer [3] studied the first
moment of λf (n) along values of q(x) and established that∑

n≤X

λf (q(n)) ≪ X
6
7
+ϵ

for any ϵ > 0. Similar results have been obtained for polynomials in two variables of degree 2, such
as q(x, y) = x2 + y2, in works by Banerjee and Pandey [2], and Acharya [1].

For ℓ ≥ 1, following the work of Garret and Harris [11], we consider the multi-folded L-function
associated with the Hecke eigenform f ∈ S∗

k(1), defined as

L(f ⊗ · · · ⊗ℓ f, s) :=
∞∑
n=1

λf⊗···⊗ℓf (n)

ns
=
∏
p

∏
σ

Ä
1− α

σ(1)
f (p)α

σ(2)
f (p) · · ·ασ(ℓ)

f (p)p−s
ä−1

,

where σ runs over the set of maps from {1, 2, . . . , ℓ} to {1, 2} satisfying

α
σ(i)
f (p) =

®
αf (p), if σ(i) = 1,

βf (p), if σ(i) = 2.

It follows directly that the Fourier coefficient of the ℓ-fold product L-function satisfies

λf⊗f⊗···⊗ℓf (p) = λℓ
f (p). (1.2)

For 4 ≤ ℓ ≤ 8, Venkatasubbareddy and Sankaranarayanan [39] investigated the error term in
the asymptotic formula for

∑
n≤X λf⊗f⊗···⊗ℓf (n). Recent progress in this direction has been made

in [18, 28, 38, 16, 37], which serves as the primary motivation for this work.

Let i ≥ 1 be a fixed integer. For 1 ≤ j ≤ i, let αj ≥ 1 and rj ≥ 1 be positive integers. We
define

Λi
ℓ,f (n) := λα1

r1,f⊗···⊗ℓf
(n) · · ·λαi

ri,f⊗···⊗ℓf
(n), (1.3)

where

λr,f⊗···⊗ℓf (n) =
∑

n=n1···nr

λf⊗···⊗ℓf (n1) · · ·λf⊗···⊗ℓf (nr).
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Denote

Ri :=

i∏
j=1

r
αj

j and Ai :=

i∑
j=1

αj .

For n ∈ N and r ≤ n,
(n
r

)
denotes the binomial coefficient with the convention

(n
r

)
= 0 if r < 0. Let

[x] denote the greatest integer less than or equal to x. We now define the following terms:

Ai,ℓ,1 := Ri

ÇÇ
ℓAi

ℓAi/2

å
−
Ç

ℓAi
ℓAi
2 − 1

åå
, Ai,ℓ,2 := Ri

ÇÇ
ℓAi

ℓAi
2 − 1

å
−
Ç

ℓAi
ℓAi
2 − 2

åå
, (1.4)

Ai,ℓ,3(n) := Ri

ÇÇ
ℓAi

n

å
−
Ç

ℓAi

n− 1

åå
. (1.5)

Similarly, we define

Bi,ℓ,1 := Ri

ÇÇ
ℓAi

[ℓAi/2]

å
−
Ç

ℓAi

[ ℓAi
2 ]− 1

åå
. (1.6)

Let q be a positive integer. In this paper, we establish an asymptotic formula for the following
power sum: ∑

n≤X+1
n≡1(q)

Λi
ℓ,f (n), (1.7)

where Λi
ℓ,f (n) is defined in (1.3). In particular, we prove the following result.

Theorem 1.1. Let f ∈ Sk(1) be a normalized Hecke eigenform of even weight k ≥ 2. Let ℓ, i ≥ 1
and q ≥ 100 be positive integers. For any ϵ > 0 and sufficiently large X, the following hold:

(i) If ℓAi is even and q ≪ XAℓ−ϵ, then we have∑
n≤X+1
n≡1(q)

Λi
ℓ,f (n) = XP (logX)

ϕ(q)Ai,ℓ,1−1

qAi,ℓ,1
+O

Ç
X1−Aℓ+ϵq1+ϵ

ϕ(q)

å
,

uniformly, where P (t) is a polynomial of degree Ai,ℓ,1 − 1 and

Aℓ =
138

46Ai,ℓ,1 + 201Ai,ℓ,2 + 69
∑[ℓAi/2]−2

n=0 Ai,ℓ,3(n)(ℓAi − 2n+ 1) + 46
.

Here, Ai,ℓ,1, Ai,ℓ,2, and Ai,ℓ,3(n) are given in (1.4) and (1.5).

(ii) If ℓAi is odd and q ≪ X
1

2Bℓ
−ϵ, then we have∑
n≤X+1
n≡1(q)

Λi
ℓ,f (n) ≪ X

1− 1
2Bℓ

+ϵ
q1+ϵ,

uniformly, where

Bℓ =
1

2
Bi,ℓ,1 +

1

4

[ℓAi/2]−1∑
n=0

Ai,ℓ,3(n)(ℓAi − 2n+ 1).

Here, Bi,ℓ,1 and Ai,ℓ,3(n) are given in (1.6) and (1.5).
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Next, we prove the following result on the shifted convolution of Λi
ℓ,f (n) involving an m-full

kernel function.

Theorem 1.2. Let f ∈ Sk(1) be a normalized Hecke eigenform of even weight k ≥ 2. Let ℓ, i ≥ 1
and m ≥ 2 be fixed positive integers. Let ν(n) ∈ Km be the m-full kernel function. For any ϵ > 0
and sufficiently large X, the following hold:

(i) If ℓAi is even, then we have∑
n≤X

ν(n)Λi
ℓ,f (n+ 1) = X‹P (logX) +O

Å
X1−

Ä
Aℓ
3
− Aℓ

3m

ä
+ϵ
ã
,

where ‹P (t) is a polynomial of degree Ai,ℓ,1 − 1 and Aℓ is given in Theorem 1.1.
(ii) If ℓAi is odd, then we have∑

n≤X

ν(n)Λi
ℓ,f (n+ 1) ≪ X

1−
(

1
6Bℓ

− 1
6mBℓ

)
+ϵ
,

where Bℓ is given in Theorem 1.1.

To establish Theorem 1.1, we first use the orthogonality relation to decompose the sum defined
in (1.7) over principal, primitive, and non-primitive characters modulo q. As a second step, we prove
a decomposition result concerning the Dirichlet series associated with the coefficients of the power
sum in (1.7), expressing it in terms of automorphic L-functions. Subsequently, we determine the
error term using subconvex bounds, integral moments, and Hölder’s inequality, along with Newton
and Thorne’s celebrated result on the automorphy of the symmetric power lift of f ∈ S∗

k(1). To
prove Theorem 1.2, we use Theorem 1.1 along with several summation techniques.
Notations. Throughout the paper, the symbol ϵ represents an arbitrarily small positive quantity,
which may vary from one occurrence to another but always remains ϵ > 0. We use the notation
s := σ + it.

2 Preliminaries

This section provides a brief overview of twisted L-functions and symmetric power L-functions
associated with Hecke eigenforms, emphasizing their fundamental properties. We also examine
the relationships between the normalized Fourier coefficients of Hecke cusp forms and symmetric
power L-functions. Furthermore, we discuss key results concerning subconvex bounds and integral
moments. Finally, we present an essential result that plays a crucial role in establishing the main
theorems of this article. From now onward, f ∈ S∗

k(1).
The function λf (n) satisfies the following Hecke relation [21, Eq. (6.83)]:

λf (m)λf (n) =
∑

d|gcd(m,n)

λf

(mn

d2

)
, (2.1)

for all positive integers m and n.
For a Dirichlet character χ modulo q, the twisted Hecke L-function is defined as

L(f ⊗ χ, s) :=
∞∑
n=1

λf (n)χ(n)

ns
for Re(s) > 1.
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It has the Euler product, satisfies a nice functional equation, and admits an analytic continuation
to the entire complex plane [21, Section 7.2].

For j ≥ 2, the jth symmetric power L-function of degree j + 1 associated with f is given by

L(symjf, s) =
∏
p

∏
0≤r≤j

(
1−

αj−r
f (p)βr

f (p)

ps

)−1

=:
∞∑
n=1

λsymjf (n)

ns

for Re(s) > 1, where αf (p), βf (p) are complex numbers satisfying (1.1), and λsymjf (n) is a real
multiplicative function. For each prime p, we have

λsymjf (p) =

j∑
n=0

αf (p)
j−nβf (p)

n. (2.2)

By Deligne’s bound, it is well-known that

|λsymjf (n)| ≤ dj+1(n) ≪ϵ n
ϵ,

for any ϵ > 0, where dj+1(n) denotes the (j + 1)-fold divisor function.
Let AQ be the ring of adeles of Q. It is well known that f ∈ S∗

k(1) corresponds to an automorphic
cuspidal representation πf of GL2(AQ), which in turn gives rise to an automorphic L-function
L(πf , s) that coincides with L(f, s).

Langlands functoriality conjecture asserts that πf gives rise to a symmetric power lift symjπf ,
that is an automorphic representation whose L-function is the symmetric power L-function attached
to f , i.e., L(symjπf , s) = L(symjf, s). For the known cases, the lifts are cuspidal, namely, there
exists an automorphic cuspidal self-dual representation, denoted by symjπf of GLj+1(AQ) whose
L-function is the same as L(symjf, s). For 1 ≤ j ≤ 8, the Langlands functoriality conjecture
has been rigorously established through a series of works by Gelbart and Jacquet [12], Kim [24],
Kim and Shahidi [25, 26], Shahidi [36], and Clozel and Thorne [5, 6, 7]. More recently, for all
j ≥ 1, Newton and Thorne in [31, 32] proved that symjf corresponds with a cuspidal automorphic
representation of GLj+1(AQ). In particular, the authors established the existence of the symmetric
power liftings symjπf for all j ≥ 1 regarding the automorphy of the symmetric power lifting for
f ∈ S∗

k(1). Furthermore, by combining the results of Newton and Thorne with those of Cogdell and
Michel [8], it follows that the L-function L(symj f, s) admits an analytic continuation as an entire
function in the whole complex plane satisfying a functional equation of Riemann zeta-type. For
further details, readers may refer to [21, Chapter 5].

Similar to the twisted Hecke L-function, for each j ≥ 2, we define the twisted jth symmetric
power L-function as follows:

L(symjf ⊗ χ, s) =

∞∑
n=1

λsymjf (n)χ(n)

ns
.

This function shares similar properties with the jth symmetric power L-function. Let ζ(s) and
L(s, χ) denote the Riemann zeta function and the Dirichlet L-function, respectively, i.e.,

ζ(s) =

∞∑
n=1

n−s and L(s, χ) =
∞∑
n=1

χ(n)n−s for Re(s) > 1,

where χ is a Dirichlet character modulo q.
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We adopt the following conventions:

L(sym0f, s) = ζ(s), L(sym0f ⊗ χ, s) = L(s, χ),

L(sym1f, s) = L(f, s), L(sym1f ⊗ χ, s) = L(f ⊗ χ, s).
(2.3)

The following two lemmas are crucial in handling the error terms in our results. For Lemma
2.1, we refer to [19, Theorem 8.3] and [4], while Lemma 2.2 follows from [13] and [23]. Their proofs
are omitted.

Lemma 2.1. For the twelfth integral moment of the Riemann zeta function, we have∫ T

1
|ζ(12 + ϵ+ it)|12dt ≪ T 2+ϵ (2.4)

uniformly for T ≥ 1. Furthermore, for 1
2 ≤ σ ≤ 2 + ϵ, the Riemann zeta function satisfies the

subconvex bound
ζ(σ + it) ≪ (1 + |t|)max{ 13

42
(1−σ),0}+ϵ. (2.5)

Lemma 2.2. For any ϵ > 0, the following bound holds for the L-function associated with f ∈ S∗
k(1):

L(f, σ + it) ≪ (1 + |t|)max{ 2
3
(1−σ),0}+ϵ

uniformly for 1
2 ≤ σ ≤ 1 and |t| ≥ 1. Additionally, for the sixth integral moment, we have∫ T

1
|L(f, 12 + ϵ+ it)|6dt ≪ T 2+ϵ

uniformly for T ≥ 1.

We now state the following lemma, which will be used in the sequel. It follows from [14], [33],
and [42].

Lemma 2.3. Let χ be a primitive character modulo q. If q ≪ T 2, then we have the bound:

L(σ + iT, χ) ≪ (q(1 + |T |))max{ 1
3
(1−σ),0}+ϵ (2.6)

uniformly for 1
2 ≤ σ ≤ 2. Moreover, the fourth integral moment satisfies∫ T

1
|L(σ + it, χ)|4dt ≪ (qT )2(1−σ)+ϵ (2.7)

uniformly for 1
2 ≤ σ ≤ 1 + ϵ and T ≥ 1.

Lemma 2.4. Let χ be a primitive character modulo q. If q ≪ T 2, then we have the subconvex
bounds:

L(sym2f, σ + iT ) ≪ (1 + |T |)max{ 6
5
(1−σ),0}+ϵ (2.8)

and
L(sym2f ⊗ χ, σ + iT ) ≪ (q(1 + |T |))max{ 67

46
(1−σ),0}+ϵ (2.9)

uniformly for 1
2 ≤ σ ≤ 2 and |T | ≥ 1.

7
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Proof. The subconvex bounds in (2.8) and (2.9) follow from the Phragmén-Lindelöf convexity prin-
ciple and results by Lin, Nunes, and Qi [27], and Huang [18], respectively.

Let L(s,A) be a general L-function of degree 2A in the sense of Perelli [33].

Lemma 2.5. For the general L-function L(s,A) of degree 2A, we have the subconvex bound

L(σ + it,A) ≪ (|t|+ 1)max{A(1−σ),0}+ϵ (2.10)

uniformly for 1
2 ≤ σ ≤ 1 + ϵ and |t| ≥ 1. Assume that the coefficients an of L(s,A) satisfy∑

n≤X |an|2 ≪ X1+ϵ for any ϵ > 0. Then∫ 2T

T
|L(σ + it,A)|2dt ≪ T 2A(1−σ)+ϵ (2.11)

uniformly for 1
2 ≤ σ ≤ 1 + ϵ and T ≥ 1.

Proof. The results (2.10) and (2.11) follow from the maximum modulus principle and [33], respec-
tively.

Lemma 2.6. Let χ be a primitive character modulo q. For the general L-function L(s,A ⊗ χ) of
degree 2A, we have ∫ 2T

T
|L(σ + it,A⊗ χ)|2dt ≪ T (qT )ω(σ)+ϵ + (qT )2A(1−σ)+ϵ (2.12)

uniformly for 1
2 ≤ σ ≤ 1 + ϵ and T ≥ 1, where

ω(σ) =

®
1, if σ = 1/2,

0, if 1/2 < σ ≤ 1.

Furthermore, we have
L(σ + it,A⊗ χ) ≪ (q|t|+ 1)max{A(1−σ),0}+ϵ, (2.13)

uniformly for 1
2 ≤ σ ≤ 1 + ϵ and |t| ≥ 1.

Proof. The bound in (2.12) follows from Matsumoto [29, Section 3] and Perelli [33, Theorem 4].
The subconvex bound in (2.13) can be found in Jiang [22, Lemma 2.4].

In the following lemma, we provide the decomposition of the Dirichlet series associated with
the coefficients Λi

ℓ,f (n) twisted by χ in terms of general L-functions.

Lemma 2.7 (Decomposition). Define the Dirichlet series

Ri
ℓ(s, χ) :=

∞∑
n=1

Λi
ℓ,f (n)χ(n)

ns

for Re(s) ≫ 1. Then,
Ri

ℓ(s, χ) = Li
ℓ(s, χ)U

i
ℓ(s),

where

8

https://doi.org/10.4153/S0008439525100854 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525100854


(i) If ℓAi is even, then

Li
ℓ(s, χ) = L(s, χ)Ai,ℓ,1L(sym2f ⊗ χ, s)Ai,ℓ,2

[ℓAi/2]−2∏
n=0

L(symℓAi−2nf ⊗ χ, s)Ai,ℓ,3(n),

where Ai,ℓ,1, Ai,ℓ,2, and Ai,ℓ,3(n) are given in (1.4) and (1.5). The function U i
ℓ(s) converges abso-

lutely and uniformly for σ > 1
2 with U i

ℓ(s) ̸= 0 when σ = 1.

(ii) If ℓAi is odd, then

Li
ℓ(s, χ) = L(f ⊗ χ, s)Bi,ℓ,1

[ℓAi/2]−1∏
n=0

L(symℓAi−2nf ⊗ χ, s)Ai,ℓ,3(n),

where Bi,ℓ,1 and Ai,ℓ,3(n) are given in (1.6) and (1.5). The function U i
ℓ(s) converges absolutely and

uniformly for σ > 1
2 with U i

ℓ(s) ̸= 0 when σ = 1.

Proof. Recall that

Ri :=
i∏

j=1

r
αj

j and Ai :=
i∑

j=1

αj .

Using (1.3) and from [17, (24)], we have

Λi
ℓ,f (p) = λα1

r1,f⊗···⊗ℓf
(p) · · ·λαi

ri,f⊗···⊗ℓf
(p) =

Ñ
i∏

j=1

r
αj

j

é
λf (p)

(
ℓ
∑i

j=1 αj

)
and

λf (p)

(
ℓ
∑i

j=1 αj

)
=

[ℓ
∑i

j=1 αj/2]∑
n=0

ÇÇ
ℓ
∑i

j=1 αj

n

å
−
Ç
ℓ
∑i

j=1 αj

n− 1

åå
λ

sym
(ℓ

∑i
j=1

αj)−2n
f
(p)

=

[ℓAi/2]∑
n=0

ÇÇ
ℓAi

n

å
−
Ç

ℓAi

n− 1

åå
λsymℓAi−2nf (p).

This implies

Λi
ℓ,f (p) = Ri

[ℓAi/2]∑
n=0

ÇÇ
ℓAi

n

å
−
Ç

ℓAi

n− 1

åå
λsymℓAi−2nf (p).

From [16], λf⊗···⊗ℓf (n) is multiplicative, so its r-fold Dirichlet convolution λr,f⊗···⊗ℓf (n) is also
multiplicative. Hence, by definition, Λi

ℓ,f (n) is multiplicative, and since χ(n) is multiplicative,
Ri

ℓ(s, χ) has an Euler product expansion:

Ri
ℓ(s, χ) =

∏
p

Ñ
1 +

∑
k≥1

Λi
ℓ,f (p

k)χ(pk)

pks

é
=

[ℓAi/2]∏
n=0

L(symℓAi−2nf ⊗ χ, s)Ri((ℓAi
n )−( ℓAi

n−1))U i
ℓ(s)

=: Li
ℓ(s, χ)U

i
ℓ(s),

for Re(s) > 1, where U i
ℓ(s) is absolutely and uniformly convergent for σ > 1

2 , and satisfies U i
ℓ(s) ̸= 0

when σ = 1. Then, using (2.3), we get the result.
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3 Proof of Theorem 1.1

From Deligne’s bound (resp. Weil’s bound), we know that Λi
ℓ,f (n)χ(n) ≪ nϵ for any ϵ > 0. Let χ

be any Dirichlet character modulo q. By the orthogonality relation, we have∑
n≤X+1
n≡1(q)

Λi
ℓ,f (n) =

1

ϕ(q)

∑
χ(q)

∑
n≤X+1

Λi
ℓ,f (n)χ(n)

=
1

ϕ(q)

∑
n≤X+1

Λi
ℓ,f (n)χ0(n) +

1

ϕ(q)

∑
n≤X+1

∑
χ̸=χ0

χ is primitive

Λi
ℓ,f (n)χ(n)

+
1

ϕ(q)

∑
n≤X+1

∑
χ̸=χ0

χ is non-primitive

Λi
ℓ,f (n)χ(n)

= :
1

ϕ(q)

(∑
1+
∑

2+
∑

3

)
. (3.1)

For
∑

1, by Lemma 2.7 and applying Perron’s formula (see [30, Pg 67]), we have

∑
n≤X+1

Λi
ℓ,f (n)χ0(n) =

1

2πi

∫ 1+ϵ+iT

1+ϵ−iT
Ri

ℓ(s, χ0)
(X + 1)s

s
ds+O

Å
X1+ϵ

T

ã
.

Shifting the line of integration parallel to Re(s) = 1
2 + ϵ =: σ0 and applying Cauchy’s residue

theorem, we obtain∑
n≤X+1

Λi
ℓ,f (n)χ0(n) =Res

s=1
Ri

ℓ(s, χ0)
(X + 1)s

s

+
1

2πi

®∫ σ0+iT

σ0−iT
+

∫ 1+ϵ+iT

σ0+iT
+

∫ σ0−iT

1+ϵ−iT

´
Ri

ℓ(s, χ0)
(X + 1)s

s
ds+O

Å
X1+ϵ

T

ã
= : Res

s=1
Ri

ℓ(s, χ0)
(X + 1)s

s
+ I1 + I2 + I3 +O

Å
X1+ϵ

T

ã
.

It is easy to observe the following:

L(s, χ0) = ζ(s)
∏
p|q

Å
1− 1

ps

ã
and

L(symjf ⊗ χ0, s) = L(symjf, s)
∏
p|q

∏
0≤m≤j

(
1−

αj−m
f (p)βm

f (p)

ps

)
.

for j ≥ 1.
Let χ be a non-primitive character modulo q, and let χ∗ be a primitive character modulo

q1( ̸= q) induced by χ. Then we have

L(s, χ) = L(s, χ∗)
∏
p|q,
p∤q1

Å
1− χ∗(p)

ps

ã
,

10
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L(symjf ⊗ χ, s) = L(symjf ⊗ χ∗, s)
∏
p|q,
p∤q1,

0≤m≤j

(
1−

αj−m
f (p)βm

f (p)χ∗(p)

ps

)
for j ≥ 1,

∏
p|q,
p∤q1

Å
1− χ∗(p)

ps

ã
≪ qϵ for

1

2
+ ϵ < Re(s) < 1 + ϵ

and ∏
p|q,
p∤q1,

0≤m≤j

(
1−

αj−m
f (p)βm

f (p)χ∗(p)

ps

)
≪ qϵ for

1

2
+ ϵ < Re(s) < 1 + ϵ.

This implies that, for
∑

2 and
∑

3, it is enough to consider the sum
∑

2. By Perron’s formula,
we get ∑

n≤X+1
χ ̸=χ0

χ is primitive

Λi
ℓ,f (n)χ(n) =

1

2πi

∫ 1+ϵ+iT

1+ϵ−iT
Ri

ℓ(s, χ)
(X + 1)s

s
ds+O

Å
X1+ϵ

T

ã
.

Moving the line of integration parallel to Re(s) = 1
2 + ϵ =: σ0, using Cauchy’s residue theorem and

from Lemma 2.7, we have∑
n≤X+1
χ ̸=χ0

χ is primitive

Λi
ℓ,f (n)χ(n) =

1

2πi

®∫ σ0+iT

σ0−iT
+

∫ 1+ϵ+iT

σ0+iT
+

∫ σ0−iT

1+ϵ−iT

´
Ri

ℓ(s, χ)
(X + 1)s

s
ds+O

Å
X1+ϵ

T

ã
=: I4 + I5 + I6 +O

Å
X1+ϵ

T

ã
.

Now, we estimate the integrals Ij (1 ≤ j ≤ 6) based on the parity of ℓAi.
Case (i): Suppose ℓAi is even. From Lemma 2.7 and using (2.4), (2.5), (2.8), (2.11), and applying
Hölder’s inequality, we get

|I1| ≪ Xσ0 +

∫ T

1
|Li

ℓ(σ0 + it, χ0)|Xσ0t−1dt

≪ Xσ0 +
Xσ0

T

{
sup

1≤T1≤T

(
max

T1
2
≤t≤T1

∣∣∣∣ζÅ12 + ϵ+ it

ãAi,ℓ,1−6∣∣∣∣∣∣∣∣LÅsym2f,
1

2
+ ϵ+ it

ãAi,ℓ,2
∣∣∣∣
)

×

(∫ T1

T1
2

∣∣∣∣ζÅ12 + ϵ+ it

ã∣∣∣∣12dt) 1
2

×

(∫ T1

T1
2

∣∣∣∣ [ℓAi/2]−2∏
n=0

L

Å
symℓAi−2nf,

1

2
+ ϵ+ it

ãAi,ℓ,3(n)
∣∣∣∣2dt

) 1
2
}

≪ X
1
2
+ϵ +

X
1
2
+ϵ

T

{
T

13
42

× 1
2
(Ai,ℓ,1−6)+ 6

5
× 1

2
×Ai,ℓ,2+

2
2
+ 1

4

Å∑[ℓAi/2]−2
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
+ϵ
}
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≪ X
1
2
+ϵT

13
84

Ai,ℓ,1+
3
5
Ai,ℓ,2+

1
4

Å∑[ℓAi/2]−2
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
+ 1

14
−1+ϵ

.

One can notice that |I2| + |I3| ≪ |I1|. The function Ri
ℓ(s, χ0) has a simple pole at s = 1 of order

Ai,ℓ,1. Therefore, we have

∑
n≤X+1

Λi
ℓ,f (n)χ0(n) = XP (logX)

ϕ(q)Ai,ℓ,1

qAi,ℓ,1
+O
Ä
X

1
2
+ϵT γi

ℓ−1+ϵ
ä
+O

Å
X1+ϵ

T

ã
,

where P (logX) is a polynomial of degree Ai,ℓ,1 − 1 and

γiℓ =
13

84
Ai,ℓ,1 +

3

5
Ai,ℓ,2 +

1

4

Å [ℓAi/2]−2∑
n=0

Ai,ℓ,3(n)(ℓAi − 2n+ 1)

ã
+

1

14
.

Now, we compute the vertical segment using (2.6), (2.7), (2.9), (2.12), and applying Hölder’s
inequality

|I4| ≪ Xσ0 +

∫ T

1
|Li

ℓ(σ0 + it, χ|Xσ0t−1dt

≪ Xσ0 +
Xσ0

T

{
sup

1≤T1≤T

(
max

T1
2
≤t≤T1

∣∣∣∣LÅ12 + ϵ+ it, χ

ãAi,ℓ,1−2∣∣∣∣∣∣∣∣LÅsym2f ⊗ χ,
1

2
+ ϵ+ it

ãAi,ℓ,2
∣∣∣∣
)

×

(∫ T1

T1
2

∣∣∣∣LÅ12 + ϵ+ it, χ

ã∣∣∣∣4dt) 1
2

×

(∫ T1

T1
2

∣∣∣∣ [ℓAi/2]−2∏
n=0

L

Å
symℓAi−2nf ⊗ χ,

1

2
+ ϵ+ it

ãAi,ℓ,3(n)
∣∣∣∣2dt

) 1
2
}

≪ X
1
2
+ϵ +

X
1
2
+ϵ

T

{
(qT )

1
3
× 1

2
(Ai,ℓ,1−2)+ 67

46
× 1

2
(Ai,ℓ,2)+

1
2
+ 1

4

Å∑[ℓAi/2]−2
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
+ϵ
}

≪ X
1
2
+ϵ(qT )

1
6
Ai,ℓ,1+

67
92

Ai,ℓ,2+
1
4

Å∑[ℓAi/2]−2
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
+ 1

6
+ϵ

T−1.

Also, one can check that |I5|+ |I6| ≪ |I4|. Hence, from (3.1), we have∑
n≤X+1
n≡1(q)

Λi
ℓ,f (n) =XP(logX)

ϕ(q)Ai,ℓ,1−1

qAi,ℓ,1
+O

Å
X

ϕ(q)T

ã
+O

Å
X

1
2
+ϵ(qT )

1
6
Ai,ℓ,1+

67
92

Ai,ℓ,2+
1
4

Å∑[ℓAi/2]−2
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
+ 1

6
+ϵ

T−1

ã
.

Take T = XAℓ

q to make the above error terms comparable. This yields

∑
n≤X+1
n≡1(q)

Λi
ℓ,f (n) =XP(logX)

ϕ(q)Ai,ℓ,1−1

qAi,ℓ,1
+O

Å
X1−Aℓ+ϵq1+ϵ

ϕ(q)

ã
12
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for q ≪ XAℓ−ϵ, where

Aℓ =
138

46Ai,ℓ,1 + 201Ai,ℓ,2 + 69
(∑[ℓAi/2]−2

n=0 Ai,ℓ,3(n)(ℓAi − 2n+ 1)
)
+ 46

and P(t) is a polynomial of degree Ai,ℓ,1 − 1.
Case (ii): Suppose ℓAi is odd. Similar to Case (i), we get the following by making use of Lemma
2.2, (2.11), and applying Hölder’s inequality

|I1| ≪ Xσ0 +

∫ T

1
|Li

ℓ(σ0 + it, χ0)|t−1Xσ0dt

≪ X
1
2
+ϵ +X

1
2
+ϵ 1

T

{
sup

1≤T1≤T

(
max

T1
2
≤t≤T1

∣∣∣∣LÅf, 12 + ϵ+ it

ãBi,ℓ,1−3∣∣∣∣
)

×

(∫ T1

T1
2

∣∣∣∣LÅf, 12 + ϵ+ it

ã∣∣∣∣6dt) 1
2
(∫ T1

T1
2

∣∣∣∣ [ℓAi/2]−1∏
n=0

L

Å
symℓAi−2nf,

1

2
+ ϵ+ it

ãAi,ℓ,3(n)
∣∣∣∣2dt

) 1
2
}

≪ X
1
2
+ϵ +X

1
2
+ϵ 1

T

{
T

2
3
× 1

2
(Bi,ℓ,1−3)+ϵ × T 1+ϵ × T

1
4

Å∑[ℓAi/2]−1
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
+ϵ
}

≪ X
1
2
+ϵT

1
3
Bi,ℓ,1+

1
4

Å∑[ℓAi/2]−1
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
−1+ϵ

.

One can check that |I2|+ |I3| ≪ |I1|. Since the function Ri
ℓ(s, χ0) is analytic in the obtained region.

Therefore, we have

∑
n≤X+1

Λi
ℓ,f (n)χ0(n) ≪ X

1
2
+ϵT

1
3
Bi,ℓ,1+

1
4

Å∑[ℓAi/2]−1
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
−1+ϵ

+
X1+ϵ

T
,

Using Lemma 2.6 and applying Cauchy-Schwarz’s inequality, we have

|I4| ≪ Xσ0 +

∫ T

1
|Li

ℓ(σ0 + it, χ)|t−1Xσ0dt

≪ X
1
2
+ϵ +X

1
2
+ϵ 1

T

{
sup

1≤T1≤T

(∫ T1

T1
2

∣∣∣∣LÅf ⊗ χ,
1

2
+ ϵ+ it

ãBi,ℓ,1
∣∣∣∣2dt

) 1
2

×

(∫ T1

T1
2

∣∣∣∣ [ℓAi/2]−1∏
n=0

L

Å
symℓAi−2nf ⊗ χ,

1

2
+ ϵ+ it

ãAi,ℓ,3(n)
∣∣∣∣2dt

) 1
2
}

≪ X
1
2
+ϵ +X

1
2
+ϵ 1

T

{
(qT )

1
2
Bi,ℓ,1+

1
4

Å∑[ℓAi/2]−1
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
+ϵ
}

≪ X
1
2
+ϵ(qT )

1
2
Bi,ℓ,1+

1
4

Å∑[ℓAi/2]−1
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
+ϵ

T−1.

13

https://doi.org/10.4153/S0008439525100854 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525100854


One can check that |I5|+ |I6| ≪ |I4|. Therefore,

∑
n≤X+1
χ ̸=χ0

χ is primitive

Λi
ℓ,f (n)χ(n) ≪ X

1
2
+ϵ(qT )

1
2
Bi,ℓ,1+

1
4

Å∑[ℓAi/2]−1
n=0 Ai,ℓ,3(n)(ℓAi−2n+1)

ã
+ϵ

T−1 +
X1+ϵ

T
.

Now, take T = X
1

2Bℓ

q to optimize the error term. This gives∑
n≤X+1
n≡1(q)

Λi
ℓ,f (n) ≪ X

1− 1
2Bℓ

+ϵ
q1+ϵ

for q ≪ X
1

2Bℓ
−ϵ, where

Bℓ =
1

2
Bi,ℓ,1 +

1

4

Å [ℓAi/2]−1∑
n=0

Ai,ℓ,3(n)(ℓAi − 2n+ 1)

ã
.

4 Proof of Theorem 1.2

Recall that
ν(n) = ν(t(n)) ≪ nϵ (by definition) and Λi

ℓ,f (n) ≪ nϵ.

Let 1 ≤ H ≤ X
Aℓ
3 be a parameter to be chosen appropriately later. Then, we have∑

n≤X

ν(n)Λi
ℓ,f (n+ 1) =

∑
n≤X

t(n)≤H

ν(n)Λi
ℓ,f (n+ 1) +

∑
n≤X

t(n)>H

ν(n)Λi
ℓ,f (n+ 1)

=
∑
n≤X

t(n)≤H

ν(n)Λi
ℓ,f (n+ 1) +O

á
∑

H<t(n)≤X

ν(t(n))
∑

q(n)≤ X
t(n)

(q(n),t(n))=1

Λi
ℓ,f (t(n)q(n) + 1)

ë
=

∑
n≤X

t(n)≤H

ν(n)Λi
ℓ,f (n+ 1) +O

á
∑

H<t(n)≤X

t(n)ϵ
∑

q(n)≤ X
t(n)

(q(n),t(n))=1

(t(n)q(n))ϵ

ë
=

∑
n≤X

t(n)≤H

ν(n)Λi
ℓ,f (n+ 1) +O

Ñ ∑
H<t(n)≤X

t(n)ϵ
Å

X

t(n)

ã1+ϵ
é

=
∑
n≤X

t(n)≤H

ν(n)Λi
ℓ,f (n+ 1) +O

Ñ
X1+ϵ

∑
H<t(n)≤X

1

t(n)

é
=

∑
n≤X

t(n)≤H

ν(n)Λi
ℓ,f (n+ 1) +O(X1+ϵH

1
m
−1). (4.1)
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Define g(l) :=
∑

αdm=l

µ(d), so that g(q(n)) = 1. Then, we obtain

∑
n≤X

t(n)≤H

ν(n)Λi
ℓ,f (n+ 1) =

∑
t(n)≤H

ν(t(n))
∑

q(n)≤ X
t(n)

(q(n),t(n))=1

Λi
ℓ,f (t(n)q(n) + 1)

=
∑

t(n)≤H

ν(t(n))
∑

q(n)≤ X
t(n)

(q(n),t(n))=1

g(q(n))Λi
ℓ,f (t(n)q(n) + 1)

=
∑

t(n)≤H

ν(t(n))
∑

q(n)≤ X
t(n)

(q(n),t(n))=1

∑
α(n)dm(n)=q(n)

µ(d(n))Λi
ℓ,f (t(n)q(n) + 1)

=
∑

t(n)≤H

ν(t(n))
∑

d(n)≤
Å

X
t(n)

ã 1
m

(d(n),t(n))=1

µ(d(n))
∑

α(n)≤ X
t(n)dm(n)

(α(n),t(n))=1

Λi
ℓ,f (t(n)α(n)d

m(n) + 1)

=:
∑∗

1 +
∑∗

2, (4.2)

where ∑∗
1 =

∑
t(n)≤H

ν(t(n))
∑

d(n)≤H
1
m

(d(n),t(n))=1

µ(d(n))
∑

α(n)≤ X
t(n)dm(n)

(α(n),t(n))=1

Λi
ℓ,f (t(n)α(n)d

m(n) + 1),

and ∑∗
2 =

∑
t(n)≤H

ν(t(n))
∑

H
1
m <d(n)≤

Å
X

t(n)

ã 1
m

(d(n),t(n))=1

µ(d(n))
∑

α(n)≤ X
t(n)dm(n)

(α(n),t(n))=1

Λi
ℓ,f (t(n)α(n)d

m(n) + 1).

For
∑∗

2, we see that∑∗
2 ≪

∑
t(n)≤H

t(n)ϵ
∑

d(n)≥H
1
m

∑
α(n)≤ X

t(n)dm(n)

(α(n),t(n))=1

(t(n)α(n)dm(n))ϵ

≪
∑

t(n)≤H

t(n)2ϵ
∑

d(n)≥H
1
m

d(n)mϵ

Å
X

t(n)dm(n)

ã1+ϵ

≪ X1+ϵH
1
m
−1. (4.3)

Since
∑

δ(n)|(α(n),t(n))
µ(δ(n)) = 1, we can express

∑∗
1 as

∑∗
1 =

∑
t(n)≤H

ν(t(n))
∑

d(n)≤H
1
m

(d(n),t(n))=1

µ(d(n))
∑

δ(n)|t(n)

µ(δ(n))
∑

α1(n)δ(n)t(n)dm(n)≤X

Λi
ℓ,f (t(n)α1(n)δ(n)d

m(n) + 1).

Write ∑
α1(n)δ(n)t(n)dm(n)≤X

Λi
ℓ,f (t(n)α1(n)δ(n)d

m(n) + 1) :=
∑

n≤X+1
n≡1(t(n)δ(n)dm(n))

Λi
ℓ,f (n).
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From this point onward, we divide the proof into two cases based on the parity of ℓAi.

Case (i): Suppose ℓAi is even. By looking at Theorem 1.1(i), we split the sum as
∑∗

1 =
∑′

1+
∑′′

1,
where∑′

1 =
∑

t(n)≤H

ν(t(n))
∑

d(n)≤H
1
m

(d(n),t(n))=1

µ(d(n))
∑

δ(n)|t(n)

µ(δ(n))×XP(logX)
ϕ(t(n)δ(n)dm(n))Ai,ℓ,1−1

(t(n)δ(n)dm(n))Ai,ℓ,1
,

and

∑′′
1 = O

( ∑
t(n)≤H

ν(t(n))
∑

d(n)≤H
1
m

(d(n),t(n))=1

µ(d(n))
∑

δ(n)|t(n)

µ(δ(n))×X1−Aℓ+ϵ (t(n)δ(n)d
m(n))1+ϵ

ϕ(t(n)δ(n)dm(n))

)
.

Note that q
ϕ(q) ≪ log(log q). So, we see that∑′′

1 ≪ X1−Aℓ+ϵH
2
m (4.4)

and ∑′
1 = X‹P(logX) +O

Ä
X1+ϵH

1
m
−1
ä
. (4.5)

Combining (4.1)-(4.5), it follows that∑
n≤X

ν(n)Λi
ℓ,f (n+ 1) = X‹P(logX) +O

Ä
X1+ϵH

1
m
−1
ä
+O

Å
X1−Aℓ+ϵH

2
m

ã
.

By Theorem 1.1, we have q = δ(n)t(n)dm(n) with δ(n), t(n), dm(n) ≤ H, which implies q ≤ H3.
Moreover, by Theorem 1.1, q satisfies

q ≪ XAℓ−ϵ.

We choose the optimal value of H = X
Aℓ
3
−ϵ to obtain∑

n≤X

ν(n)Λi
ℓ,f (n+ 1) = X‹P(logX) +O

(
X1−(

Aℓ
3
− Aℓ

3m
)+ϵ
)
, as desired.

Case (ii): Suppose ℓAi is odd. We proceed with similar arguments as in the previous case, with
slight modifications. As a result, we have∑

n≤X

ν(n)Λi
ℓ,f (n+ 1) = O

Å
X

1−
(

1
6Bℓ

− 1
6mBℓ

)
+ϵ
ã
,

as desired.
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