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Abstract Let f be a normalized Hecke eigenform of even weight k > 2 for SLy(Z). In this work,
we establish an asymptotic formula for the shifted convolution sum of a general divisor function,
where the sum involves the Fourier coefficients of a multi-folded L-function weighted with a kernel
function.
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1 Introduction and main results

Number-theoretic functions, also known as arithmetic functions, play a fundamental role in under-
standing the divisibility properties of integers, the distribution of prime numbers, and various other
aspects of number theory. Several important arithmetic functions, such as the Md&bius function
wu(n), Euler’s totient function ¢(n), the divisor function d(n), and the sums of divisor function,
have deep applications in analytic number theory, algebra, quantum computing, and even string
theory.

A particularly interesting class of arithmetic functions was introduced by Ivié¢, Tenenbaum, and
Erdés in 1986-87; namely, arithmetic functions with a squarefull kernel (cf. [20, 10]). Any integer
n > 1 can be uniquely decomposed as n = g(n)t(n), where ged(g(n),t(n)) = 1, the factor g(n) is
squarefree, and t(n) is squarefull, meaning that p? | t(n) whenever p | t(n). A nonnegative integer-
valued arithmetic function v(n) is said to have a squarefull kernel, or be a 2-full kernel function,
if it satisfies v(n) = v(t(n)) for all n > 1 and grows at most polynomially in any arbitrarily small
exponent, i.e., v(n) < n¢ for any € > 0. The collection of such functions is denoted by Ko, as
introduced by Ivi¢ and Tenenbaum [20].

This concept extends naturally to higher orders. Given an integer m > 2, any integer n > 1
admits a unique factorization n = ¢(n)t(n), where ¢(n) is m-free and t(n) is m-full, meaning
that p™ | t(n) whenever p | t(n). The class of nonnegative integer-valued functions satisfying
v(n) = v(t(n)) for all n > 1 and the growth condition v(n) < n¢ for any € > 0 is denoted by
K,,. These functions, known as m-full kernel functions, generalize the framework developed for
squarefull kernel functions. Note that K, is not necessarily a class of multiplicative functions.
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One of the most well-known arithmetic functions exhibiting completely random behaviour is
given by the Fourier coefficients of a Hecke eigenform for the full modular group. In this work,
we establish an asymptotic result concerning the power-saving error term of an arithmetic function
involving the coefficients of an L-function associated with a Hecke eigenform, combined with a
weighted m-full kernel function v(n) € K,,. Recently, Venkatasubbareddy and Sankaranarayanan
[41, 40] established asymptotic formulae involving Hecke eigenvalues weighted by an m-full kernel
function. To present our main results, we begin with an introduction to modular forms and the
associated L-functions.

Let My (1) denote the space of modular forms of even weight k& > 2 for the full modular group
SLo(Z), and let Sk(1) be the subspace of cusp forms in My(1). A cusp form f € Si(1) is called a
Hecke eigenform if it is a simultaneous eigenfunction for all Hecke operators.

Let Af(n) be the normalized nth Fourier coefficient in the Fourier expansion of f € Si(1) at
infinity, given by

oo
[(z) = 3 Alnyn’z i
n=1
for all z € H, where H is the Poincaré upper half-plane. The function f is said to be normalized

if Af(1) = 1. The set containing normalized f € Sj(1) is denoted by S;(1). For f € S;(1), the
sequence {Af(n)},>1 defines a real multiplicative function satisfying Deligne’s bound

Ar(n)] < d(n) < n°

for any € > 0, where d(n) is the divisor function.

For a Hecke eigenform f € S} (1), we define the associated L-function L(f,s) by

L(f.s) = i)\ﬁf) :H<1_ Af(p) +is>_l :H<1_Oéf(M)_1 (1_W)—1
n=1 ) P

PP p* p*
for Re(s) > 1, where for any prime p, there exist complex numbers af(p) and S¢(p) such that

ap(p) + Br(p) = Ap(p), and |ay(p)| = |8r(p) =1, ap(p)Bs(p) =1. (1.1)

For more details, see Deligne [9].

The average behaviour of arithmetic functions often exhibits inherent randomness, making
them a subject of extensive study. Hecke [15], in 1927, established the bound

3" Af(n) < X3,
n<X
Subsequent works have refined this result, including
'X%‘*'E, Kloosterman
X%+E, Davenport, Salié
Xt Weil
Z Ar(n) < e X%+5, Deligne
=X X%, Hafner and Ivié
X3 (log X)~0-9652+¢ " Rankin
X3 (log X) 0185 Wy
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The second moment of Hecke eigenvalues was studied independently by Rankin [34] and Selberg
[35] in 1930, who proved that

3" N (n) = ¢ X +0(X5),

n<X

where ¢y > 0 is a constant depending on f. More recently, Huang [18] in 2021 improved this
estimate by showing that

1
Z )\?c(n) =crX +O(X =), where § < —
n<X 560°

Beyond classical summation results, one can also investigate the behaviour of Hecke eigenvalues
along polynomial sequences. For a monic quadratic polynomial g(x), Blomer [3] studied the first
moment of A\¢(n) along values of ¢(x) and established that

> Asrla(n) < X7+

n<X

for any € > 0. Similar results have been obtained for polynomials in two variables of degree 2, such
as q(z,y) = 2% + y?, in works by Banerjee and Pandey [2], and Acharya [1].

For ¢ > 1, following the work of Garret and Harris [11], we consider the multi-folded L-function
associated with the Hecke eigenform f € S} (1), defined as

A - - L
Lo fs) = 3 et () ®“‘ HH(l—a )07 @) af P )p~)
n=1
where o runs over the set of maps from {1,2,...,¢} to {1,2} satisfying
i ar(p), ifo(i
O‘f( )( ) = { £(p) . ()
Bf(p)v if J(Z)

It follows directly that the Fourier coefficient of the ¢-fold product L-function satisfies

Meafe o) = A5 (p)- (1.2)

1
2.

For 4 < ¢ < 8, Venkatasubbareddy and Sankaranarayanan [39] investigated the error term in
the asymptotic formula for an x M@ fe--o,f(n). Recent progress in this direction has been made
in |18, 28, 38, 16, 37|, which serves as the primary motivation for this work.

Let i > 1 be a fixed integer. For 1 < j <4, let o;j > 1 and r; > 1 be positive integers. We

define
2f< ) = Af&,f@ @ﬁ( n)-- )‘?:,f@.-.(g)éf(n)? (1.3)
where
Ar f@-@ef (N Z Af@@ef (M1)  Apgr@yf ()
n=ny--n;
3
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Denote ‘ .
7 7
R, .= Hr?j and A;:= Zaj.
j=1 j=1

Forn € Nand r <n, (:,l) denotes the binomial coefficient with the convention (:f) =0if r < 0. Let
[x] denote the greatest integer less than or equal to z. We now define the following terms:

wor=n ()~ (42)) wemn((4)-(42,)) 0o
Airs(n) =R ((gf) — (fAil)) : (1.5)

Bigy:=R; (([2%}2}) - ([8‘;1]4 1)) . (1.6)

Let ¢ be a positive integer. In this paper, we establish an asymptotic formula for the following

power sum:
Y Apsn), (1.7)

n<X+1
n=1(q)

Similarly, we define

where AZ s(n) is defined in (1.3). In particular, we prove the following result.

Theorem 1.1. Let f € Si(1) be a normalized Hecke eigenform of even weight k > 2. Let £,1 > 1
and q > 100 be positive integers. For any € > 0 and sufficiently large X, the following hold:

(i) If LA; is even and ¢ < X3¢, then we have

st (X

Z Azf(n) = X P(log X) Aien ¢(q)

n<X+1 q
n=1(q)

uniformly, where P(t) is a polynomial of degree A;s1 —1 and

138
46401 + 2014, 05 + 69 A2 A, o (n)(0A; — 20+ 1) + 46
Here, A1, Aivz2, and A;g3(n) are given in (1.4) and (1.5).

Ay =

e
(ii) If LA; is odd and ¢ < X *®¢ ~, then we have

> A < x' T g
n<X+1
n=1(q)

uniformly, where
| [e4i/2-

1
Be= m+f Z Am, )(LA; — 2n + 1).

Here, B; o1 and A;g3(n) are given in (1.6) (md (1.5).
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Next, we prove the following result on the shifted convolution of A} (n) involving an m-full
kernel function.

Theorem 1.2. Let f € Si(1) be a normalized Hecke eigenform of even weight k > 2. Let £,i > 1
and m > 2 be fized positive integers. Let v(n) € K, be the m-full kernel function. For any e > 0
and sufficiently large X, the following hold:

(1) If LA; is even, then we have

>~ v(m)A] f(n+1) = XP(log X) + O (Xl_(%_%)J“E) ,
n<X

where ﬁ(t) is a polynomial of degree A; o1 — 1 and 24, is given in Theorem 1.1.
(ii) If LA; is odd, then we have

. (L1 .
3 vlmAgpn+ 1) < x' (5w
n<X

where By is given in Theorem 1.1.

To establish Theorem 1.1, we first use the orthogonality relation to decompose the sum defined
in (1.7) over principal, primitive, and non-primitive characters modulo gq. As a second step, we prove
a decomposition result concerning the Dirichlet series associated with the coefficients of the power
sum in (1.7), expressing it in terms of automorphic L-functions. Subsequently, we determine the
error term using subconvex bounds, integral moments, and Hoélder’s inequality, along with Newton
and Thorne’s celebrated result on the automorphy of the symmetric power lift of f € S;(1). To
prove Theorem 1.2, we use Theorem 1.1 along with several summation techniques.

Notations. Throughout the paper, the symbol € represents an arbitrarily small positive quantity,
which may vary from one occurrence to another but always remains € > 0. We use the notation
s: =0 +it.

2 Preliminaries

This section provides a brief overview of twisted L-functions and symmetric power L-functions
associated with Hecke eigenforms, emphasizing their fundamental properties. We also examine
the relationships between the normalized Fourier coefficients of Hecke cusp forms and symmetric
power L-functions. Furthermore, we discuss key results concerning subconvex bounds and integral
moments. Finally, we present an essential result that plays a crucial role in establishing the main
theorems of this article. From now onward, f € S;(1).

The function Af(n) satisfies the following Hecke relation [21, Eq. (6.83)]:
mn
s = 3 (B, (2.1)
d|ged(m,n)

for all positive integers m and n.

For a Dirichlet character xy modulo ¢, the twisted Hecke L-function is defined as

L(f®X,8) ::ZW

n=1

for Re(s) > 1.
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It has the Euler product, satisfies a nice functional equation, and admits an analytic continuation
to the entire complex plane |21, Section 7.2|.

For j > 2, the jth symmetric power L-function of degree j + 1 associated with f is given by

_r . -1 ~ o
Lsymjfs H H ( (iiﬁf(p)> ::Z)‘S}’“;Zsf()

p 0<r<jy n=1

for Re(s) > 1, where ay(p), S¢(p) are complex numbers satisfying (1.1), and A (n) is a real

multiplicative function. For each prime p, we have

symJ f

Asymi f (P Zaf ) "By (p)"- (2.2)

By Deligne’s bound, it is well-known that

[Asymi p(n)| < dj1(n) < n,

for any € > 0, where dj;1(n) denotes the (j + 1)-fold divisor function.

Let Ag be the ring of adeles of Q. It is well known that f € S;(1) corresponds to an automorphic
cuspidal representation 7; of GLa(Ag), which in turn gives rise to an automorphic L-function
L(m¢,s) that coincides with L(f, s).

Langlands functoriality conjecture asserts that m gives rise to a symmetric power lift sym/ T,
that is an automorphic representation whose L-function is the symmetric power L-function attached
to f, i.e., L(syijf,s) = L(sym/f,s). For the known cases, the lifts are cuspidal, namely, there
exists an automorphic cuspidal self-dual representation, denoted by sym’ ny of GLj11(Ag) whose
L-function is the same as L(sym/f,s). For 1 < j < 8, the Langlands functoriality conjecture
has been rigorously established through a series of works by Gelbart and Jacquet [12], Kim [24],
Kim and Shahidi |25, 26], Shahidi [36], and Clozel and Thorne [5, 6, 7|. More recently, for all
j > 1, Newton and Thorne in [31, 32| proved that sym’ f corresponds with a cuspidal automorphic
representation of GLj;1(Ag). In particular, the authors established the existence of the symmetric
power liftings sym/ my for all j > 1 regarding the automorphy of the symmetric power lifting for
f € S;(1). Furthermore, by combining the results of Newton and Thorne with those of Cogdell and
Michel [8], it follows that the L-function L(sym’ f,s) admits an analytic continuation as an entire
function in the whole complex plane satisfying a functional equation of Riemann zeta-type. For
further details, readers may refer to [21, Chapter 5].

Similar to the twisted Hecke L-function, for each j > 2, we define the twisted jth symmetric
power L-function as follows:

L{sym!f @ x.8) = ) W
n=1

This function shares similar properties with the jth symmetric power L-function. Let ((s) and
L(s, x) denote the Riemann zeta function and the Dirichlet L-function, respectively, i.e.,

s) = Zn‘s and  L(s,x) ZX n~° for Re(s) > 1

n=1

where y is a Dirichlet character modulo gq.
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We adopt the following conventions:

L(sym"f, s) = ((s), L(sym’f ® x, s) = L(s, x),

1 1 (23)
L(Sym f? 8) = L(f? 8)7 L(Sym f®X>8) = L(f®Xa S)'

The following two lemmas are crucial in handling the error terms in our results. For Lemma
2.1, we refer to |19, Theorem 8.3| and [4], while Lemma 2.2 follows from [13]| and [23|. Their proofs
are omitted.

Lemma 2.1. For the twelfth integral moment of the Riemann zeta function, we have

T
/1 C(3 + e +it)|2dt < T (2.4)

uniformly for T > 1. Furthermore, for % < o < 2+ ¢, the Riemann zeta function satisfies the

subconvexr bound »
(o +it) < (1+ [t])maxctaa(i=o)0bte, (2.5)

Lemma 2.2. For any € > 0, the following bound holds for the L-function associated with f € S}(1):
L(f, 0 +it) < (1+ |t ymax{5(1-)0b+e

uniformly for % <o <1 and|t| > 1. Additionally, for the sizth integral moment, we have

T
/ IL(f, % + e +it)[0dt < T2+
1
uniformly for T > 1.

We now state the following lemma, which will be used in the sequel. It follows from [14], [33],
and [42].

Lemma 2.3. Let x be a primitive character modulo q. If ¢ < T?, then we have the bound:
L(o +iT, x) < (q(1 + |T|))max{5(1-0) 0+ (2.6)

uniformly for % < o < 2. Moreover, the fourth integral moment satisfies

T
/1 \L(o +it, )| dt < (qT)2(1=o)+ (2.7)

uniformly for% <o<l4+eandT >1.

Lemma 2.4. Let x be a primitive character modulo q. If ¢ < T2, then we have the subconvex
bounds: ]
L(sym?f, o +iT) < (1 + |T|)mo{5(1=0)0}+e (2.8)

and
Lisym®f ® x,0 +iT) < (q(1 + |T|))mx{5 (1=o).0}+e (2.9)

uniformly for% <o<2and|T|>1.
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Proof. The subconvex bounds in (2.8) and (2.9) follow from the Phragmén-Lindel6f convexity prin-
ciple and results by Lin, Nunes, and Qi [27], and Huang [18|, respectively. O]

Let £(s,.A) be a general L-function of degree 24 in the sense of Perelli [33].

Lemma 2.5. For the general L-function £(s, A) of degree 2A, we have the subconvezr bound
(o +it, A) < (|t| + 1)maxiA(l=0).0}+e (2.10)

uniformly for % <o < 1+¢€andlt] > 1. Assume that the coefficients a, of £(s,A) satisfy
S<x lan|* < X1 for any e > 0. Then

2T
/ £(0 + it, A)2dt < T2A0=0)+e (2.11)
T

uniformly for% <o<l4+eandT >1.

Proof. The results (2.10) and (2.11) follow from the maximum modulus principle and [33], respec-
tively. O

Lemma 2.6. Let x be a primitive character modulo q. For the general L-function £(s, A ® x) of
degree 2A, we have

2T
/ 1£(0 + it, A @ ) [2dt < T(qT)*@) ¥ 4 (qT)PA0-0)+e (2.12)
T

uniformly for % <o<1l4e€andT > 1, where

o {1 de=172
70, if12<o<t

Furthermore, we have
Lo +it, A® x) < (gft] + 1) tAt=o 0kt (2.13)
uniformly for% <o<1l+eandltl>1.

Proof. The bound in (2.12) follows from Matsumoto [29, Section 3| and Perelli [33, Theorem 4].
The subconvex bound in (2.13) can be found in Jiang [22, Lemma 2.4]. O

In the following lemma, we provide the decomposition of the Dirichlet series associated with
the coefficients AZ f(n) twisted by x in terms of general L-functions.

Lemma 2.7 (Decomposition). Define the Dirichlet series

A Al (n)x(n
(a0 = 3= 20

n=1

for Re(s) > 1. Then, ‘ . ,
Ri(s,x) = Li(s, x)U; (s),

where
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(i) If LA; is even, then
[€Ai/2]-2
Li(s,x) = L(s, )0 Lsym* f @ x, 8) %02 [[ Dlsym™ 72" f @ x, 5) 030,

n=0
where Aj 1, Aig2, and Aje3(n) are given in (1.4) and (1.5). The function U(s) converges abso-
lutely and uniformly for o > % with U}(s) # 0 when o = 1.
(ii) If LA; is odd, then

[€A;/2]-1
Li(s,x) = L(f @x, )% J[  Llsym™ 72" f @ x, s) 40080,

n=0

where B; g1 and A; ¢5(n) are given in (1.6) and (1.5). The function U}(s) converges absolutely and
uniformly for o > % with U}(s) # 0 when o = 1.

Proof. Recall that

i

R, := HT]% and A;:= zz:aj.
j=1

j=1
Using (1.3) and from [17, (24)], we have

L) =AM ) ) = ([T ) ) (i)

=1
and
(632521 /2] i i
. £ 0
A (Taw) = Y << Z;nl g> _( an_ll a)) N i yap-an (P)

0
C&2L g a, 7y
= Z I Bl DA )\SymEAanf(p).
n=0

[¢A;/2]
=1 (Y () i
n=0

From [16], Afg..., f(n) is multiplicative, so its r-fold Dirichlet convolution A fg...q, (1) is also
multiplicative. Hence, by definition, Aj f(n) is multiplicative, and since x(n) is multiplicative,

This implies

Rz}(s, X) has an Euler product expansion:

' Aé L (pF )y (pF
Risoy) = [T (143 22 )

P k>1 p
[eAl/Q] LA; LA;
= H L(symEAi_an X X, S)Ri(( nl)i(nfl))Utﬂs)
n=0

—: Lis, \)Ui(s).

for Re(s) > 1, where U}(s) is absolutely and uniformly convergent for o > 3, and satisfies U} (s) # 0
when o = 1. Then, using (2.3), we get the result. O

https://doi.org/10.4153/5S0008439525100854 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439525100854

3 Proof of Theorem 1.1

From Deligne’s bound (resp. Weil’s bound), we know that Azf(n)x(n) < n¢ for any € > 0. Let x
be any Dirichlet character modulo ¢q. By the orthogonality relation, we have

> M =g A

n§:)1((+)1 X(q ’n<X+1
1 1 )
m Z Aef n)xo(n )+m Z Z Aj s(n)x(n)
n<X+1 q n<X+1 X#X0

X is primitive

¢ Z > Appmx(n)

n<X+1 X#X0

X is non-primitive

1
— + + . 3.1
(@) (X1 +22+2s) (3.1)
For ,, by Lemma 2.7 and applying Perron’s formula (see [30, Pg 67]), we have
1 I+et+iT (X + 1)5 <X1+e>
A v ——d .
> A s(n)xo(n) = o /1+eiT Ri(s,x0)—— s+O0{—

n<X+1

Shifting the line of integration parallel to Re(s) = % + € =: o9 and applying Cauchy’s residue
theorem, we obtain

Z A%,f(n)XO(n) =1;i:els R@(s,XO)M

n<X—+1
1 oo+iT’ 1+e+2T og—1iT" ) X + 1)8 Xl+€
+ — / +/ +/ R@(S,Xo)uds + 0 ( >
271 oo—iT oo+iT 14+e—iT S T

: X +1)°
= R_elsR%(s,xO)(l_)

X1+e
+I1+12+13+O< T )

It is easy to observe the following:

L(s, x0) = ((s) H (1 B p18>

plg
and .
) " (p) T
L(sym’ f ® xo,8) = L(sym’ f, s H H < w> :
plg 0<m<j P
for j > 1.

Let x be a non-primitive character modulo ¢, and let x* be a primitive character modulo
q1(# q) induced by x. Then we have

L(s,

p\q
rlay

10
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Jj—m m *

rlq,
ptay
and .
o) " (p)BF ()X* (p) 1
H <1— / J; < q¢  for §+€<Re(s)<1+e.
plg, P
plat,
0<m<j
This implies that, for >, and ) 4, it is enough to consider the sum ) ,. By Perron’s formula,
we get

. 1 I4e+iT . X 4 1)¢ Kl+e
> Ao = o [ RS a0 (7).
n<X+1 14-e—iT

L X7XO0
X 1s primitive
Moving the line of integration parallel to Re(s) = % + € =: g9, using Cauchy’s residue theorem and
from Lemma 2.7, we have

; 1 oo+iT 1+e+iT oo—iT ; X +1)8 Xl-‘,—e
Z AE,f(”)X(”) = 90 {/ +/ +/1 RIZ(SaX)(S)dS + 0 ( 7 )

n<X+1 o—1iT o+iT +e—iT

X7EXo
X 18 primitive

X1+e
—if4+f5+16+0< T >

Now, we estimate the integrals I; (1 < j < 6) based on the parity of £A;.
Case (i): Suppose (A4; is even. From Lemma 2.7 and using (2.4), (2.5), (2.8), (2.11), and applying

Holder’s inequality, we get
T .
’Il‘ <K X0 —|—/ ‘L;(Uo—i-’it, Xo)‘XUOt_ldt
1

1 Aje1—6
C<2 + e+ it)

A
1 i,0,2
L<sym2f, 3 +e+ it)

< X9 + X7 su
T p max

1< <t \ Ll <i<my
Ty 1 ‘
X /;;1 €<2+6+Zt>

12 3
dt)
Ty [6A:/2]-2 N 1
lA;—2n ¢ ~ .
><</T21 H L(sym f,2+e+zt

n=0

)

>Az‘,e,3(n)

1

2 2
dt> }
[eA; /2] -2

. e g><%(Ai,z,1*6)+%X%><&,e,2+%+i(ano Ai,z,s(n)(EAz‘QnJrl))Jrﬁ
K X327+

11
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0A;)2]—2
L éiAi,ergAi,e,eri(ZL_é/ ! Ai,e,g(n)(€A¢2n+1)>+ll41+e
< Xater )

One can notice that |Io| + |[I3] < |I1]. The function R)(s, xo) has a simple pole at s = 1 of order
A; 1. Therefore, we have

. Aip s X 14e
> A (n)xo(n) = XP(logX)% +O (Xztepi-lie) 4 0( )
) q 1,0,1 T
n<X+1
where P(log X)) is a polynomial of degree A;,; — 1 and
B P (S e )+ L
Ve = s4 1,0,1 5 1,0,2 4 . i,0,3\1 ) n 14°
n=

Now, we compute the vertical segment using (2.6), (2.7), (2.9), (2.12), and applying Holder’s
inequality

T
|1y < X°° + / |Li(og + it, x| X0t dt
1

1 Aie1—2
L<2 + € +it, X)

1 Ai 2
L<sym2f ® X, 5 +e+ z't)

<« X% + X7 su
T p max

1< <T \ B <<ty
1
T 4 2
X / dt
T
2
T
>< /
T

1
L(symM"Q"f ® X5 tet it
2

1
L<§+e+it,x)

[¢A;/2]—2 )Ai,é,S(n)

1
2 2
dt> }
n=0

X3te { 35 (Aie1=2)+ 5 x5 (Aie2)+5+7 < pDrivir Ai,z,s(n)(fAz'?nJrl)) +e
(¢T)

< X3t 4

LA;/2]—2
%Ai,fz,ﬁ%f“i,e,ﬁi(ZL:é/ ] Ai,fz,3(”)(“i—2"+1)>+%+€

< X%+e(qT) T_l.

Also, one can check that |I5| + |Is| < |I4]. Hence, from (3.1), we have

; p(q) et ( X )
A} (n) =X P(log X +0

Z 0 r(n) (log X) = 572 o

n=1(q)

A1+ 8L A p o+ ( 2528/2]72 Ai,473(n)(ZAi—2n+1)> +(1;+ET_1)

+0 <X%+f (qT)
Take T = %ﬂe to make the above error terms comparable. This yields

. ¢(q)Ai,Z)171 lengJreqlJre
A} ¢(n) =X P(log X)—— )

n<ZX(+)1 q o1 ¢(Q)

n=1(q
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for ¢ < X% ¢, where

138
[tA;/2]—2
46 A;01 + 2014, 02 +69( >, 20 Air3(n)(CA; —2n+ 1)) + 46

Ay =

and P(t) is a polynomial of degree A4;,; — 1.

Case (ii): Suppose ¢A; is odd. Similar to Case (i), we get the following by making use of Lemma
2.2, (2.11), and applying Holder’s inequality

T
|| <« X7° —|—/ |Ly(o0 + it, Xo)‘tleUOdt
1

1 1, 1 Bie1-3
< X2t Xate_! sup max (f, —|—e—|—zt>

I<STI<T \ L <t<hy

)

1 1
7e) 6 3 T, | [€A:/2]-1 A p3(n))2 3
x (/T <f, —l—e—i—zt) dt) (/Tl 11 L(Symm ~2np 1 +€+Zt> dt) }
2 2 n=0

1 i(zﬁfﬁ‘g/ 2=t Ai,e,g,(n)(mi2n+1))+6
< )(2"'E +X2+€T T5 X5 (Bie1—3)+e o Tite o T

LA;/2]

Xl+ET%Bi,z,1+i <ZEL:5 -t Ai,4,3(n)(414¢—2n+1)> —1+e
K X2 .

One can check that [Io| 4 |I3] < |I1]. Since the function Rj(s, xo) is analytic in the obtained region.
Therefore, we have

iBica+3 < 2528/2]71 Ai,Z,S(n)(gAi_%'L"‘l)) —l+e  ylde
Y Ais) (n) < X321 +

n<X+1

Using Lemma 2.6 and applying Cauchy-Schwarz’s inequality, we have

T
|I4] < X0 +/ |Li(o0 + it, x) [t X 0dt
1

lie lie 1 n 1 . Bie
K X2T 4+ X2T°—¢ sup LI fRx,=+e+it
T |icn<r\ /2 2

1
2\ 2
dt)

Ty | Ai/2)-1 1 Aje,3(n) 2 3
LA;—2n - .
X</7;1 ||0 L<sym f®x,2+e+zt> dt) }
n=

R | {( );BZ,“ﬁ(zZ"‘g/mIAZ,Z,g(n)(zAZ2n+1))+5}
< Xateqp xate_d (qT
T

1Biea1+7 ( 2528/2]_1 Ai,tz,B(n)(fAi%Jrl)) +e

< Xz te(qT) 71,
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One can check that |I5| + |Is| < |I4]. Therefore,

) 1 1B 1+1 <Z£ff8/2]_1 Ai,e,3(”)(ff4i—2n+1))
> Apn)x(n) < X2¥(qT)

n<X+1

L X7XO0
X 1s primitive

1
Now, take T' = % to optimize the error term. This gives

S A < X' T eyl

n<X+1
n=1(q)

1
for ¢ < X?%¢ °, where
(€A, /2)—

1
By = B+ ( Z AMS éAi—2n+1)).

4 Proof of Theorem 1.2
Recall that
v(n) =v(t(n)) < n® (by definition) and Azf(n) <« n.

A
Let 1< HLX 3 be a parameter to be chosen appropriately later. Then, we have

SvmA 1) = > vm)An+1)+ Y w(n)Ajp(n+1)

n<X n<X n<X
- t(n)<H t(n)>H

= Y vn)Aj(n+1)+0
t(’ng H<t(n)<X a(m< 25
B (g(n),t(n))=1

= Z u(n)A@,f(n—l-l)—i—O

n<X
t(n)<H

tn) > (tn)g(n))
H<t(n)<X a(n)< 5355
(a(n),t(n))=1

‘ 1+e
S y(n)AZf(n‘i'l)“'O( > ’f(”>e<t()i>>

t(’ﬁ;{ H<t(n)<X
) 1

= Z I/(n)AZf(n—i—l)-f-O )(1+E Z m

t(rgécH H<it(n)<X "
= Y w(n)A};(n+1)+O( (X m .

n<X

t(n)<H
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Define g(I) :== > u(d), so that g(q(n)) = 1. Then, we obtain

ad™m=]

Y vmAp ()= Y v(tn) Y App(t(n)e(n) +1)
t(n)<H

n<X

X
Hm)<H 1< 70y

(g(n),t(n))=1

= v(t(n) Y gla(n)A,(t(n)g(n) +1)

t(n)<H a(m<Es
(a(n),t(n)=1
= v(tn) Y p(d(n))Ag p(H(n)g(n) + 1)
t(n)<H am< gy aln)d™(n)=q(n)

(g(n),t(n))=1

= vtn)) D pldn) Y 0.5 (t(n)a(n)d™ (n) +1)

t(n)<H u s a(m) < sy
atm=( 255 ) ™ (amy ot
(d(n),t(n))=1
=i+ (4.2)
where
Si= S wem) S wdm) S AL (Hm)a(n)d™ (n) + 1),
Hn)<H d(m)<H 7T ()< gyam iy
(d(n),t(n))=1 (a(n),t(n))=1
and

Yo=Y vtn) > pldmn) > b (t(n)a(n)d™ (n) + 1),
t(n)<H L ()< gy rmy

1
= X
i <am<(5) (a(n),b(n))=1

(d(n),t(n))=1

For Y5, we see that

Yr< Y, ) Y Y. (ta(n)d™(n))

a(n),t(n))=1
) X 1+e
t € d me ( )
< Y tm)* D dn) Hn)dm ()
t(n)<H d(n)>H
< XUreHmL (4.3)
Since > p(d(n)) =1, we can express » ; as
5(n)|(a(n),t(n))
Yi= Y v(tn) wdn) D u(d(n)) Aj s (t(n)ar(n)d(n)d™(n) +1).
t(n)<H d(n)gH% d(n)|t(n) a1(n)d(n)t(n)d™(n)<X
(d(n),t(n))=1
Write
Aj f(t(n)ar(n)d(n)d™(n) + 1) = > Aj 4(n).
ai(n)é(n)t(n)d™(n)<X n<X+1
! n=1(H(m)3(n)d™ (n))
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From this point onward, we divide the proof into two cases based on the parity of £A;.

Case (i): Suppose £4; is even. By looking at Theorem 1.1(i), we split the sum as ] = > + 37,
where

/ )8 (n)d™ (n))Aie1—1
Si= D0 vtm) Y0 pldn) D0 p(d(n) x XP “‘)gX)¢(<tt(<n)>5(<r3>dm(<n)>)>/w ’

t(n)<H d(n)<Hw 8(n)t(n)
(d(n),t(n))=1
and
o te (H(R)S(n)d™ (n)) 1 He
{= o( >oovltm) >0 udm) DD u(dm) x XN (qf(tzngézn)d(mz;)) )
t(n)<H d(n)gH% d(n)[t(n)
(d(n),t(n))=1
Note that % < log(log q). So, we see that
"« X1Aetepy (4.4)
and
S = XP(log X) + O (X' mHm1). (4.5)

Combining (4.1)-(4.5), it follows that

S" v(m)Aj s(n+1) = XPlog X) + O (X H= 1) + 0 (Xl—%eﬂi).
n<X

By Theorem 1.1, we have ¢ = §(n)t(n)d™(n) with §(n),t(n),d™(n) < H, which implies ¢ < H3.
Moreover, by Theorem 1.1, g satisfies
g < XQLE_G.

2A
We choose the optimal value of H = X ¢ to obtain

Z v(n) Zf(n +1)=XP(logX)+ O (le(%fg%)“) , as desired.

n<X

Case (ii): Suppose ¢A; is odd. We proceed with similar arguments as in the previous case, with
slight modifications. As a result, we have

. (1 c
S )L+ 1) = 0 (31 (@) )
n<X
as desired. O
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