
Ergod. Th. & Dynam. Sys. (1990), 10, 295-318
Printed in Great Britain

The splitting of separatrices for analytic
diffeomorphisms

E. FONTICHt

Dept. de Matemdtica Aplicada, E.T.S.E.I.B., University Politecnica de Catalunya,

Barcelona, Spain

C. SIMO

Dept. de Matematica Aplicada i Analisi, University de Barcelona, Barcelona, Spain

(Received 12 April 1988 and revised 5 May 1989)

Abstract. We study families of diffeomorphisms close to the identity, which tend to
it when the parameter goes to zero, and having homoclinic points. We consider the
analytical case and we find that the maximum separation between the invariant
manifolds, in a given region, is exponentially small with respect to the parameter.
The exponent is related to the complex singularities of a flow which is taken as an
unperturbed problem. Finally several examples are given.

1. Introduction
In a previous paper [5] we considered families of differentiable diffeomorphisms
with hyperbolic points which reduce to the identity for a certain value of the
parameter. We studied the separation between the stable and unstable manifolds
near homo-heteroclinic points associated with the hyperbolic ones. Now we shall
study the analytic and conservative case. We refer the reader to [5] for the motivations
of this problem. The results were inspired by the previous work by Lazutkin [10]
for the standard map.

We study the complex invariant manifolds through the Birkhoff normal form of
a diffeomorphism in a neighbourhood of a hyperbolic point. For that we need
uniform behaviour of the normal form with respect to the parameter of the family.
As in the differentiable case we use an auxiliary family of diffeomorphisms defined
through the flow of an autonomous vector field with a homoclinic orbit. We compare
the invariant manifolds of the two families, first locally and then globally. From
the Birkhoff normal form we get a local first integral for the diffeomorphisms, which
can be extended in a neighbourhood of the invariant manifolds as a multivalued
function. With a suitable parametrization of the invariant manifolds, the evaluation
of the first integral extended along one manifold on the other manifold gives a
periodic function. The Fourier coefficients of that function can be bounded by using
integration over complex paths. From that we get the bound of the separation
between the invariant manifolds. Now we state the main result in a precise way.

t Permanent address: Dept. de Matematica Aplicada i Analisi, University de Barcelona, Barcelona, Spain.

https://doi.org/10.1017/S0143385700005563 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005563


296 E. Fontich and C. Simo

If F is a diffeomorphism defined in a neighbourhood of p e C" and p is a hyperbolic
fixed point of F, we denote by W*F(p) and Wp(/>) the stable and unstable invariant
manifolds of p for F. When no confusion is possible we shall skip some indices.

Let Fe: U-»R2 be a family of diffeomorphisms with [/cR2 and 0< e < e0 having
the form

) (1.1)

with A(x) = (Ax1,A"1x2), /(0) = g(0,e) = 0, Df(0) = Dxg(0,e) = 0, a > 0 , and
verifying
HI FE preserves area,
HI Fe is real analytic in U and depends analytically with respect to e,
H3 A = 1 + ae" + O(ea+1), a > 0 and a e N.

From (1.1) and H3 the origin is a hyperbolic fixed point of Fe (if e0 is small
enough). Let W* and Wu be the corresponding invariant manifolds.
HA For all e e (0, e0) there exists a homoclinic point, qe, associated with the origin

such that the pieces of W and Ws from the origin to q? are contained in a
compact set contained in U. (We include the trivial case when two branches
of the invariant manifolds coincide.)

We can prove

PROPOSITION. Under hypotheses H1-H4 the vector field given by

x = x + -
a

y = -y+-f2(x,y),
a

where fi andf2 denote the components off, is conservative, has the origin as a hyperbolic
point and has an analytic homoclinic orbit a such that for e small enough, the real
invariant manifolds of Fe are e-close to cr(R).

Let 50 be the distance from the real axis to the nearest singularity of a to it.
Furthermore we suppose that (1.1) verifies
H5 Fe can be extended analytically to a neighbourhood U of {cr(t), |Im f|<5},

with 0 < 5 < S 0 .

THEOREM A. Let FE be as (1.1) verifying hypothesis H1-H5. Then given pea there
exists a neighbourhood Vofp not depending on e such that for T] > 0 there exist eo> 0
and N>0 such that for 0< e < e0 the distance between Ws and W in V is less than

JVexp(-27r(5-rj)/lnA).

We notice that the bound obtained in Theorem A is exponentially small with
respect to e and that such a bound cannot be obtained by a classical theory of
perturbations.

We remark that we only consider pieces of W5, Wu that have only one component
in a small fixed neighbourhood of the origin. That is, we do not consider successive
approaches of the invariant manifolds to the origin.
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For families of diffeomorphisms obtained as Poincare maps of Hamiltonian
systems with two degrees of freedom or nonautonomous perturbations of conserva-
tive planar vector fields we can think of applying the Melnikov method [14,6].
Although we could compute the Melnikov function, the validity of the method is
not proved for the situation described in this paper [17].

The form (1.1) may seem restrictive but in general families with hyperbolic and
homo-heteroclinic points such that for some value of the parameter a hyperbolic
point becomes parabolic can be put in form (1.1) through linear (e depending)
changes of variables.

In the examples studied we have found numerically that the angle between the
invariant manifolds at homoclinic points (which is related to the maximum
separation between them) behaves asymptotically as

A(lnA)Bexp(-C/lnA),

with A > 0, B real and Re C > 0. Furthermore we have found that Re C = 2irS0 so
that the exponential part of the bound in Theorem A is optimal. Lazutkin has proved
this kind of behaviour for the standard map [10].

The authors are aware of very interesting recent results in the same direction
obtained by Holmes, Marsden and Scheurle announced in [9]. They consider the
case of high frequency periodic time depending perturbations of 1 degree of freedom
Hamiltonian systems.

In § 2 we recall the Birkhoff normal form for analytic diffeomorphisms and we
give a parametrization of the invariant manifolds to be used later. In § 3 we prove
the uniform behaviour of the normal form. In § 4 we study the proximity of the
local invariant manifolds of diffeomorphisms of two families. Next, in § 5 we prove
Theorem A and finally in § 6 we present several examples: the conservative (orienta-
tion preserving) Henon map, the Duffing equation perturbed with a high frequency
periodic function, a generalized standard map and the Henon-Heiles problem.

We shall use the definitions and notations introduced in [5]. However we indicate
that we shall represent the modulus of a complex number z by \z\. If

/ " \ 1 / 2

F:C"->C", |F(z)| = ( I \Fk(z)\2) where Fk(z)eC.

Finally we shall write \F\V<K if supzel / |F(z)|<K.

2. Birkhoff normal form and invariant manifolds
First we recall the Birkhoff normal form of an analytic diffeomorphism in a neigh-
bourhood of a hyperbolic fixed point.

THEOREM 2.1. [18]. Let t/<=C2 an open set containing the origin and F:U-*C2 be
an area preserving analytic diffeomorphism which takes the form

F(x,y) = (\x + P(x,y),\-ly+Q(x,y)), (2.1)

with P(0,0) = Q(0,0) = 0, DP(0,0) = DQ(0,0) = 0 and A > 1. Then there exists an
analytic change of variables C {non unique) defined in a neighbourhood of the origin
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such that N = C~x FC takes the form

W& V) = UWi&n), i,l W(fr,)), (2.2)

where W(^T,) = X + a2^r) + a4(^v)2+' ' " '•* analytic.
If F is real analytic so are N and C.
Furthermore N is unique.

N is called Birkhoff normal form of F at the origin.

Remarks
(1) N is area preserving but C need not to be. However there is always an area

preserving C such that N=C~1FC.
(2) If we write C(£ 77) = (#(£ 17), ¥ ( £ 77)), C is unique provided that the Taylor

series of D^-l and £),¥ —1 do not contain powers of £77 alone.
From (2.2) we have that N(£0) = (A£0) and 7V(0, 77) = (0, A^'TJ) and hence

£ = 0 and 77=0 represent W£(0,0) and W£(0,0) respectively. Then C(0,77) and
C(£ 0) are parametrizations of W^F(0,0) and Wu

F(0,0). C is not unique but neverthe-
less we have

PROPOSITION 2.2. Under the hypothesis of Theorem 2.1, if we suppose that DC(0,0) = /
then C(£ 0) and C(0, 77) are unique.

Proof. We prove that C(£ 0) is unique. The proof for C(0, 77) is analogous. From
CN = FC we have

CN(£0) = C(A£0) = FC(£0). (2.3)

Let C(£0) = ( X n a l a n r , L n 2 A n with a, = 1 and 6, = 0 and F(x,^) =
(I*,i=1 ^ ^ V . I y £ i 4pcV) with c,0 = A, dOi = A"1 and c0, = dio = 0.

The first order terms in (2.3) agree. The second order terms verify

a2A
2 = \a2 + c20,

b2\
2 = \-lb2+d20,

so that a2 and b2 are uniquely determined since A is not a root of 1.
Assuming that ak and bk are uniquely determined until order n -1 we have

anA" = kan + known terms,

fenA " = A ~' bn + known terms,

which as before determine an and bn uniquely. •

As a consequence of Theorem 2.1 we shall obtain new parametrizations of
) and

PROPOSITION 2.3. Let ( / cC 2 be an open set containing the origin and F: U->C2 be
an area preserving analytic diffeomorphism. Suppose that the origin is a hyperbolic
fixed point of F. Then
(1) There exist analytic functions u:KicC-»C2 and v:V2^£.^C2 such that

W"F(0,0)={u(t),teVl} and W*F(0,0) = {v(t), te V2}. Furthermore, if u(t),
v(t)e U, F(u(t)) = u(t + h) and F(v(t)) = v(t+h) where h=\n\ and A is the
eigenvalue of DF(0,0) bigger than 1.
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(2) There exists an analytic function E defined in a neighbourhood of the invariant
manifolds such that E{F{x,y)) = E(x,y) and E(u(t)) = E(v(t)) = O.

Proof. There exists a linear change C\ such that F= C\~lFCy is in form (2.1). Then
by Theorem 2.1 there exists C2 such that N = C2

lFC2 is in Birkhoff normal form.
Let C = C2CX. Let r > 0 be such that N and C are analytic in B(r). We represent
W>(0,0) by u(t) = C(exp(t-tQ),O) for Re f<Re fo + ln r and Ws

F(0,0) by v(t) =
C(0, exp (t'o-1)) for Re t> Re t'0-ln r. We have that

F(u(t)) = FC(exp (t -10), 0) = CN(exp (t-10), 0)

= C(exp(f-fo+ln A), 0) = u(t + h)

and the same holds for v(t). This relation lets us continue analytically u while u(t)
belongs to the domain of F.

Let £(£ TJ) = £17. We define £ = £ ° C"1. Since £ ° A/" = £ we have that

£ ° F = £ ° C ' ° F = £ ° N ° C~l = £ ° C"1 = £.

F u r t h e r m o r e E ( u ( t ) ) = E ° C~l ° C ( e x p ( t - t o ) , 0 ) = 0. T h e e x p r e s s i o n E ° F = E
allows us to continue analytically £ to a neighbourhood of invariant manifolds. If
there are homoclinic points £ will be, in general, a multivalued function. •

Remark. From the proof it is clear that if F is an entire function so are u and v.

3. Uniform behaviour of the Birkhoff normal form for families of diffeomorphisms
In the last section we dealt with only one diffeomorphism. Now we will study the
Birkhoff normal form for a near the identity family.

PROPOSITION 3.1. Let [/<= C2 be an open set which contains the origin and Fe: C/-»C2

be a family of area preserving analytic diffeomorphisms depending analytically on e
around e = 0 of the form

FAx, y) = A(x, y) + eaf(x, y) + ea+lg(x, y, e), (3.1)

where A{x, y) = (Ax, \~xy),f{0,0) = g(0,0, e) =0, Df(0,0) = Dg(0,0, e) = 0 andk =
l + aea + O(ea+t) with a>0 , a > 0 . Then there exist eo>0 and ro>0 (independent
of e) such that if 0< s < e0 the change CE and the normal form NE given by Theorem
2.1 are analytic in B(r0).

The proof closely follows that of the convergence of the Birkhoff normal form
in [18]. Before beginning the proof we introduce some notation. Given an analytic
function S we write

where Sn is the sum of the terms ak^
kri' with k-l = n,neZ. Notice that if u = u

with M ( 0 ) ^ 0 ,

Sn(ui, u'lv) = u"Sn(£, v).

We shall represent the series J.Kls0\akl\tv' by \S\, |S|(£ r,) or |S(£ i,)|. If

S(£,v)= I aufV, 5(£ij)= I b w fV and \akl\<bk, for all k, />0

we shall say that 5 is a majorant of S and we shall write S < S.
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We shall use an analogous notation for a series of one or more variables.

Proof. In order to simplify the notation we shall not write the dependence of Cc

and Nt and the quantities related to them with respect to e. We write

F(x, y) = A(x, y) + (P(x, y), Q(x, y)),

with
2 - - - and

neZ nsZ

- l lIt is formally proved in [18] that N = C FC and that C is unique if

do not contain powers of £77 alone.
We write

P(x,y,e) = ea £ bklhx
ky'eh.

There exist constants M,, x0, y0, £i such that Iftwh^M^jc^oel1. Let e0 be such
that ejex < 1, and we define bM{e) ='Zh3:0 bklhe

h for |e| < e0- It is clear that

i with M2 = M,/ (1-e o / e i ) -

Let C/a = M2/xoy'o- Then e" Xfc+;a2 cuxky' is a majorant of P which in turn has a
majorant of the form

with c0 and c, positive and independent of e. We assume that c0 and c, are chosen
in such a way that G is also a majorant of (?. Writing CN = FC explicitly

¥( I I& t»>) = <?(*,¥) +A- '¥ ,

and taking into account that 4>R(u£, M~177) = u"<I>n(̂ , 77) we have

From (3.2) it is easy to see that <!>!(£ 77) = £ and ¥_,(£ T;) = TJ.

Now we shall prove that there exists c2>0 (independent of e) such that

(un-A)-1<c2e-a/(l-c2e-as), n * 1 (3.4)

(« n -A- 1 ) - 1 <c 2 e - a / ( l - c 2 e - a 5 ) , n ^ - 1 (3.5)

where s = |t>-A~1|. Indeed, if n <0,
1 I (H'-'A-1)

ItaO

1 1 c2e""
<—"7=7 <" ^ <"

- A " ' - 5 l - c 2 e " a s '

where c 2 >e" / ( l -A"1), the final bound being directly checked for n = 0.
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If n > l

(U"-A)-1 = u-n(l-Aw-'1)-1<H'1 I (AH")"
IcaO

< X (AH")k< I (A1/nH)fc

k>0 IcaO

where c2>Ae"/(A1 / 2-l) . (3.5) is proved_analogously.
From (3.3) [c2e"°/(l - c2g-a.s)]G(l*|, |¥|) is a majorant of both |*| - g an

and G(|*|, |*|) can also be taken as a majorant of_ijs = TJ|I> — A-1|.
We take ^ = 7; and denning W(f) = (|<I>|-f+ | ¥ | - f ) / f+c 2 e"°s we look for a

majorant of W. First

. - 1 G ( | ^ j , j ¥ | ) + c 2 B g 5 < _a
1 — c2e s 1 — c2e s

_By the definition of W, ( j*f-f)/f < W, (!¥[-£)/£< W and c2e-"s< W so that
| < f ( W + l ) . Then

1- W-2

so that

12coc2£(W+l)2

We define V such that

It is readily seen that W(g)< V(f). V satisfies a second order equation whose
coefficients are independent of e. Hence it is analytic in a ball B(r0) with r0

independent of e and on this ball it is bounded by some constant independent of
e. From the previous majorants we get that N and C are analytic in B(r0) and that

1 (e°). •

4. Proximity of the local invariant manifolds
In this section we shall compare the local invariant manifolds of two families of
diffeomorphisms. First we prove

PROPOSITION 4.1. Let Fe and Ge be two families of diffeomorphisms as in Theorem
3.1. Suppose that \Ft -Gt\v = O(ea+l) and that Spec DFe(0,0) = Spec DGC(0,0).
Then, ifCu and C2, are changes that transform Fe and Gc to their normal forms, there
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exist e0, r, K>0, independents of s, such that

for |f|, |7j|<r and 0 < e < e 0 -

Proof. As before we shall not write the dependence of e. In this proof if T is analytic
we shall write

j)= I ak,i
k
v'= I T(t,v))n where

We notice that

))n. (4.1)

We introduce the following notation

F(x, y) = (Ax, X-'y) + (P,(x, y), (?,(x, y)),

G(x, y) = (Ax, A"V) + (P2(x, y), Q2(x, y)),

From C,JV, = FCl and C2N2 = GC2 we have

(*,(A£0),¥,(A£0)) = (Pl(*,,¥l) + A*l, <?,(*„ ^ ) + A-'^,), i = l,2, (4.2)

where here and from now on all the expressions are evaluated at (£ 0) except the
ones given explicitly. From the wth order homogeneous parts of (4.2) and taking
into account (4.1) we have

We look for a majorant of 4>i(£ 0)-<52(£ 0). First we observe that

= (Zakl(x*y[-xk
ly'2))/(yi-y2)

= Iaklx
k

1(y[-1+y'2-
2+--

<\DyPl(x1,yi+y2)

and analogously

(Pi(xi, y2) - P\{x2,y2))/{xx-x2) •

Then

(*,(£, 0)-*2(fc0)),,
1

KI*,! +1*2 | , |V2 |) |* , -<D2|)n + (|P, - P2|(|*2|, |
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Since X = l + aea + • • • there exists 0<a'<a such that if e is small enough A>
1 + a'e" and hence A" - A > a'e" for n > 2. From that we have

1

and an analogous expression for \V\(f;,Q)-V2(i;,0)\. P, and (?, are of the form

ea I bklhxkyle\
k+ls2

By Proposition 3.1, <$>,, 4>2, ^ and ^P2 are analytic in a neighbourhood of the origin
and have the form (£ rj) + O(e°). Then there exists r0 such that

J ^ k J j ^ l j ^ f i ^ i i j i i i j ^ [ j i % i + W ) and

are analytic for |f |<r0. Let e°Cif/(l-Ci|) be a common majorant. P\-P2 and
Q\~Qj have a common majorant of the form eQf+1c2(x + 3')2/(l-c2(x + >')). We
define W{£) = \<bl-$2\{£,0) + \Vl-y2\{£,Q). It is clear from the last observations
that

2 / ( l - c2(*2

Let c3tj
2/(l - c^) be a majorant of C2(<&2 + ^ 2 ) 2 / ( 1 - c 2 ( * 2 + ^ 2 ) ) . We define V such

that

V(f) = [(c,f/(I - c , f ) ) V(£) + 2ec3fV(l - c3f )]/«'•

It is immediate that

V(f) = 2ec3f2(l - c,f )/[(l - c3f ) ( a ' - c,f (1 + a'))],

where the constants c, are independent of e. Then there exist r, Kx > 0 such that

l ( * . - *2 ) (& 0)1 < 1*1 -*2 | ( |g| , 0)

for | f |< r . From that we get | (C,-C2)(^ ,0) |<y2K,e_for | f | < r and analogously
|(C,-C2)(0,7j)|<V2A:2e. We take K = max (>/2X,, y/2K2). O

PROPOSITION 4.2. Le< Fs be as in Proposition 3.1 and Ge be the flow time h = In A of
a conservative vector field X of the form

x = x + gl{x,y)
(4.3)

y = -y + g2(x,y),

with Dg,(0,0) = Dg2(0,0) = 0. Suppose that X has a real homoclinic orbit, a, and
suppose that \Fe - Ge\u = O(e°+1). Let u and v be the parametrizations of W"F and
W*F given by Proposition 2.3. Then there exists r, K > 0 independent of e such that

\u(t)-o*(t)\<Ke for Re f<ln r+t0,

\v(t)-a(t)\<Ke for Re f> ln r+t'o,

https://doi.org/10.1017/S0143385700005563 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005563


304 E. Fontich and C. Simo

where t0 and t'o are suitable parameters (Note that cr(t) is not defined for arbitrary
Im t. See also Proposition 4.3).

Proof. First we express a- in a suitable way for the comparison with u and v. Since
(4.3) is analytic and conservative there exists H analytic such that

dH
dy

dH
OX

In [15] it is proved that there exists an analytic canonical change of variables of
the form

such that

i?(£ v) = H ° C(fi v) = «ifij +

It is not difficult to prove that in our case at = 1. We take w = £77. Then

._3H_ dH
d-n~* dw

(4.4)
dH dH

and the flow solution is

#U 6 »?) = (f exp (Hw(w)t), V exp (-Hw(w)0). (4-5)

In particular the homoclinic orbit is given locally, in these variables, by

*(*) = (£exp/,O) = (±exp(f-fo),O) for Re(-f) big enough,

CT(0 = (0, f) exp (-<)) = (0, ±exp (t'0-t)) for Re f big enough.

Supposing that £ TJ > 0 we have

o-{t) = C(exp (t- to),0) for Re(-f) big enough,
(4.6)

a(t) = C(0, exp (fo~ 0) for Re t big enough.
Now we reinterpret the change C. Let <p, and <p, be the flow solutions of (4.3)

and (4.4). It is clear that (p, = C<p,C~\ Let Ge be the flow time h of (4.4). Then
Ge = C~xGtC. From (4.5) we see that Gc is in normal form and hence C is the
change which transforms Ge into its normal form. Notice that it is independent of
e. We take C2 = C and C\ the change (depending on e) which transforms F into
its normal form. The proof finishes using Proposition 4.1, (4.6) and the definitions
of u and v. D

As a consequence we have

PROPOSITION 4.3. Let a- be a homoclinic orbit of a vector field as (4.3). Then there
exists S>0 such that a can be extended analytically to {teC, |Im t\<8}.
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Proof. By the proof of Proposition 4.2 we know that there exist T, , T2 e R such that
o-(t) = C(exp(t-t0), 0) if Ref<r , and o-(t) = C(0, exp (t'0-t)) if Rer>T2 where
C is analytic. Then a is analytic on

{t € C, Re t < T,}u {< e C, Re f > T2}.

Furthermore a- is defined on [T,,T2]CI|R. Since this interval is compact we can
extend o~ to {(eC, T,<Re f <T2,|Im t\<8}. D

Remark. The maximal value of S which verifies Proposition 4.3 is the distance from
the real axis to the nearest singularity to it.

5. The distance between splitted separatrices for analytic diffeomorphisms
In the proof of Theorem A a very important role will be played by the vector field
described in the next proposition.

PROPOSITION 5.1. Under the hypothesis H1-H4 the vector field given by

x = x + -fi(x,y)
a

(5.1)

where fy, f2 denote the components off, is conservative, the origin is hyperbolic and
has a homoclinic orbit cr such that if e is small enough the real invariant manifolds of
Fc are e-close to <r(R). More precisely: for each point p o/cr(R) there is a neighbourhood
Vofp in <r(R) and parametrizations of V and a piece of the unstable invariant manifold
of FE which are e-close. The same is true for the stable manifold of Fe.

Proof. From the condition det DFe = 1 we have

and since Fe is analytic with respect to e we get Dx/, + Dyf2 = 0. It is immediate
that the origin is hyperbolic. The proximity between the invariant manifolds and cr
is a consequence of Theorems A and A' of [5]. Indeed, we define Ge as the flow
time aea of (5.1). It is clear that the origin is a hyperbolic fixed point of Ge and
that the corresponding invariant manifolds coincide with the ones of (5.1) so that
they are independent of e. The hypothesis of theorems A and A' are an immediate
consequence of Proposition 2.3 of [5] and the definitions. Then the invariant
manifolds of Ft are e-close to those of Ge. This implies that the invariant manifolds
of Ge coincide and hence we have <x. •

Proof of Theorem A. First we note that Lemmas 5.2, 5.3 and 5.4 will be used and
proved along the proof of Theorem A.

Let B(r,) be a ball centered at (0,0) such that the change Ce and the normal
form of Ft described in Proposition 3.1 are analytic on it. We know that

|C. -JL ( r i ) = O(e°) and |Ce-/U(r i )=O(|(x,^)|2)

and then there exists r2>0 such that Ce(B(ri))<= B(r2). We suppose that r2 is such
that the property of Proposition 4.2 is verified for 0 < e < e o with a suitable eo.
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Furthermore

|C:1- /U( r 2 ) = O(e°) and \C?-I\B(r2) = O(\(x,y)\2).

Let CTl be the ith component of C~\ Then

(C^C2')(x, y) = xy+ O(\x, y)\3) and Dy(CTlC2
l)(x, y) = x+ O(\(x, y)\2).

From that one has that there exist r3e(0, r2] and A>0 such that if (x,y)eB(r3)
then \Dy(CTiC2

1)(x,y)-x\<A\(x,y)\2. Therefore if

(x,y)e-Z = B(r3)n{(x,y), \x\<\y\}-B(r3/2) then

\Dy(C^C2
i)(x,y)\>\x\-A\(x,y)\2>r3(l-4Ar3)/4.

We assume that r3 is so small that 1 -4Ar3>0. Let d = r3{l -4Ar3)/4. Consider /,
a connex real piece of <T contained in 2 and let tx < t2 be such that <x('i) and cr(t2)
are the extremes of /, and <r(t) e B(r3) for t < t2. Since for Re t < T, one has

<r(t) =

for a suitable rt then |cr(f)|, and therefore |Im a(t)\, tend to zero when Re ( tends
to -oo. We can suppose, taking a smaller r3 if necessary, that for any small positive
T\ one has cr(t)e1 if

/€ A0 = {<eC, f,<Re <s t2, \lmt\<8-r)}.

Let T,>0 and foe('i+ T], t2+ T,) be such that p = cr(t0), where p is the point in a
introduced at the statement. Since |Im a-(t)\ also tends to zero when Re t tends to
oo there exists T2>0 such that o-(f)e B(r2) if

t e A2 = {t e C, t, + T, + T2< Re r < t2+ 7, + T2, |Im t\ < 8 - TJ}.

Let ft0 = {z = o'(0, (£Ao} and let <p be the flow solution of (5.1). It is clear that
<p is defined on [0, T,+ T2]xfl0. By continuity there exists r>0 such that (p is
defined on

[0, T, + T2] x (fto+ r), <p(f, z) e B(r2) if (t, z) e [T, + T2) f2- f, + T, + T2] x (tlo+ r)

and

verifies 0.^0 (see hypothesis H5).
To simplify the notation we shall write the equation (5.1) in the form z=f(z)

with z = (x, y). Then

) and

Let M2, M3>0 be such that | / | n s M 2 and | D / | n s Af3. Let M4 = aM3+1 so that
if e0 is small enough |DFe|n< l + M4e

a and |DF; ' | n < 1 + M4ea. Let ft0, ft? and
5 > 0 be such that ft? is open, flto111 £*? c 2 and

We define Ge as the flow time h (see Proposition 2.3) of (5.1). We notice that
this definition of Ge is slightly different from the one used in Proposition 5.1.
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LEMMA 5.2. There exist M,, eo> 0 such that for 0< e < e0

Proof. The first bound is proved in an analogous way as in Proposition 2.3 of [5].
The second one is a consequence of Proposition 2.2 of [5]. •

Let M5 = max((M1/M4)exp(M4TC))M2/£)) with T = max(T,, T2) and let C,
D be constants such that 0< D < e"/h <C for 0< e < e0.

Reducing e0 if necessary we consider ClJ and ft{, j = 1, 2, 3, such that il{ are
open sets, C!(fl,)cQj, a(il{+1)dl{,j = 0, 1, 2, and

ft> = {z = ,p(,, w), o< t< T,+ T2, w€flJ,}c= no-2;M5eo.

Let a{ = {z = (p(Tl, w), w6fl{} and fiJ
3 = {z = (p(T, + T2, w), w6O{}. Let TV, be

the integer part of TJh and TV2 the integer part of T2/h.

LEMMA 5.3. For 0<e<e0 we have
(1) / / zen i ,F?(z)ef l /o rO<n<TV, ,
(2) Ifzen], \Fn

e(z)-G"(z)\<M5e for 0<n<TV,,
(3) F.N'(n|)=»nL
(4) F;>])c(l .̂

Proof. We shall prove (1) and (2) by induction. In fact we shall prove that

\F"E(z)- G"e(z)\< M, "
k=0

T ' M 4 CIt is clear that this last expression is less than M1eT'M4Ce/M4< TVf5e. For n = 1 it
is a consequence of Lemma 5.2. Assuming that it is true for n — 1, n < TV, we can write

\F"e{z) - GnAz)\ < \F.F:-\z) - FeG
n
E-\z)\ + \FtG

nr\z) - GeG"e~\z)\

(c=0

because as \F" \z)-G" \z)\<Mse, the segment which connects those points is
contained in fi and so we can apply the mean value theorem to Fe. This proves (2)
and also that Fn

E{z) e B(M5e, Gn
E(z))<= Cl.

To prove (3), first we check as before that

iFr(z)-Gr(2)i^M,"i'(i
Jc=O

and from that we see that if z € Cl\,

Since

= \zo-<p(-0h,zo)l

https://doi.org/10.1017/S0143385700005563 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005563


308 E. Fontich and C. Simo

with zo = (pi-Nih, z) and 0< 0 < 1, and furthermore

\<p(-0h, z0) - zo\ < M26h < MsDh < M5e
a,

we have that B(Mse, G;N'(z))<= B(2M5e, <p{-T,, z))<=ftj.
To prove (4), analogously as before we begin by showing that if z € ill

\F;n(z) - G:n(z)\ < Mx V (1 + M4e)V+1

and from that \F~N2(z) — G^Nl(z)\<M5e. Finally, following the same ideas as in
(3) we have

F;N*(z)e B(M5e, G;N*(z))<=B{2M5e, <f>{-T2, z))<=Cl2
2. U

Now let v be the parametrization of Wp^O, 0) given by Proposition 2.3. It is clear
that F~N2(v(t)) = v(t- N2h). By Proposition 4.2 if s and e0 are small enough one
has v(t)eill if feA2 and hence u ( / -N 2 ' ' ) e^2 if feA2. Let £ be the local first
integral given by Proposition 2.3. We extend E analytically to a neighbourhood of
H^e(0,0) until il2

2 by using E(z) = E(F;N'(z)) and (3) of Lemma 5.3.
Now we define the analytic function ^ by V(t) = E(v(t)) on

il£ = {t e C, f, + T, + T 2 - N2/i < Re t < f2+ T, + T2- N2h, |Im f| < S - 77}.

LEMMA 5.4. For 0< e < e0 we have
(1) •*? is h-periodic,
(2) TTiere exists K,>0 SMC/J f/iar | * ( 0 | ^ X , on il$,
(3) 77iere exists K > 0 SMC/I t/iat |¥(f)| < X exp (-2TT(5 - r))/h) on il$nR.

Proof.
(1) Let us suppose that e0 is small and let t be such that t, t + heil^. Then

(2) If teil$, nt) = E(v(t)) = E(F;N'(v(t))) with F;N'(«(l))en|.
£ is bounded in ill since it is analytic in a neighbourhood of ft1.

(3) By (1) we can write ^( / ) =X^>
=_0O cn exp (in2irt/h) with

J t
V(s)exp(-in27rs/h)ds.

To evaluate the last integral we consider, for n > 0, the complex path given in
figure 1, where 5, = 5 - 77. By Cauchy's theorem the integral along the path is zero
and by periodicity the integrals along the vertical sides cancel. Hence we have

Jl+h

t + h

t-d,i\ „

FIGURE 1
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Therefore
rt+h

' | dsr
<K1exp(-n2n8i/h).

For «<0 we consider the path given in figure 2 and we obtain |cn |s
X, exp(-|n|27r5,/fc). Then

|¥( f ) - co| <2X, exp (-277-5,/ft)/( 1 -exp (-2ir8Jh)) <4Kt exp {-2<rr8Jk),

if e0 's small enough. Since there are real homoclinic points, there are real values
of t such that V(t) = 0. Then \co\ < 4/C, exp (~2ir8Jh) and the lemma follows easily.

•
Let 5e rFi(0,0)nil2

2nU2 and Re W\(0,0)nil2
2nU2 such that if

R' = (R\,R2) = F;N'(R) and S' = (S[,S2) = F:N>(S)

we have /?! = S[. From the definition of E we have

DyE = Dy(E o C~l) = DyiC^C?).

On the other hand

E(S)-E(R) = E(S')-E(R') = DyE(e0)(S2-R'2) with 0o€ftj.

Then

\S'2-R2\ = \DyE(60)\-
l\E(S)-E(R)\<d-1\E(S)\

<(K/d)exp(-2Tr(8-v)/h)

since £(/?) = 0. Finally, if 0,

and so

\S-R\ = \F^(S')-F?>(R')\< \DF^(et)\ \S'2-R'2\

< eM<\K/d) exp (-2ir(S - ij)/*).

Remark 1. If instead of hypothesis H5 of Theorem A, FE can only be extended to

U = {(*,, z2) e C2, (Re z,, Re z2) € C/, |Im z,|, |Im z2| < r}

with r independent of e, the conclusion is that there exist e0, N, 8 > 0 such that the
separation between the invariant manifolds is less than N exp (-2v8/\n A) for
0< s < e0. The value of 8 is related to the singularities of cr and to a value f such
that |Im f| < f implies cr(t) e L/.
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Remark 2. In the examples, hypothesis H4 is not easy to verify. However we can
substitute H4 by
H4' (5.1) has a homoclinic orbit <x contained in a compact set contained in U.

Indeed, as in Proposition 5.1, the invariant manifolds of Fe are e- close to the
ones of Ge. Since two branches of the invariant manifolds of Ge coincide with <r,
those of Fe are e- close between them. Since Fe preserves area they intersect or
coincide [13].

Remark 3. A similar bound is true for the angle at a homoclinic point in V with a
somewhat bigger 17. A bound of the same type is also true for the area of the loops
between W\ and W*Fm. If we consider the stable manifold after returning just once
to a neighbourhood of the hyperbolic point, the tongues entering V are at a distance
from the unstable manifold of the same order, i.e., bounded by TV exp ( - 2 T T ( 5 -

77)/lnA) for 0 < e < e 0 .

Remark 4. With minor changes Theorem A can be proved for the heteroclinic case.

6. Examples
(1) The non-trivial quadratic diffeomorphisms of the plane which preserve area
and orientation with a fixed point can be put after a linear change of variables into
the one parameter family [4]

Fc(x,y) = (y,-x + 2y2 + 2cy) c>l . (6.1)

In particular that holds for the Henon map Fab(x,y) = (l+y-ax2,bx) when
b = - 1 and a > - l .

Fc has one fixed point, (0,0), for c = 1 which is parabolic and two fixed points,
(0,0) and (1 - c, 1 - c), for c > 1. The first one is hyperbolic for all c and the second
is elliptic for 1< c <3 , parabolic for c = 3 and hyperbolic for c> 3. We are interested
in the invariant manifolds of the origin which we call W and W*. The eigenvalues
of DFE(0,0)are

A± = c± (c 2 - l ) 1 / 2 = l±V2e + O(e2) where e = (c - l ) 1 / 2 .

Putting the linear part in diagonal form and scaling by Ce(x, y) = (s2x, e2y) we get

+O(e2).

We consider the vector field given by

which comes from the Hamiltonian

H(x,y) =

Its homoclinic orbit a is given by

o-,(f) = -3(cosh (f/2) + sinh (f/2))/4 cosh3 (t/2),

o-2(0 = -3(cosh (f/2) -sinh (t/2))/A cosh3 (t/2).
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It is immediate that S0=TT. Since Fe is denned in C2 we can take S = S0. By
Theorem A and Remark 2 after it, given 17>0 there exist e0, N>0 such that for
0 < e < e0 the separation between the invariant manifolds of Fe in a neighbourhood
of a given point is less than

N exp (277-(-TT+ ij)/ln A) = N exp ((-2TT2+ r/')/V2e).

The bound of the separation between Wu and W* is the same as before by a
factor O(e2) due to the changes to send Fc to FE.

Now we compare the bound with the numerical results. Because of the symmetries
there is a homoclinic point on the line y = x. We have computed the angle between
W" and W5 at that point. This gives a measure of the maximum separation between
W and W5 in a neighbourhood of it. Some of the results, computed using arbitrary
precision routines, are shown in table 1.

If we fit the data in the expression

A(lnA)Bexp(-C/lnA)

and we determine the values of A, B and C from the data corresponding to A = 1.3,
A = 1.29 and A = 1.28 we get A = 87 692 502, B = -8.268891734 and C = 19.78502818.
From that the angle predicted for A = 1.04 is 0.3102 x 10"199 which is strikingly
accurate. On the other hand the theoretical value of C is essentially 2TT2 = 19.739209.
The role of 77 in the theoretical bound is to bound the factor (In A)B if B < 0. If we
determine C from the data corresponding to A = 1.050, A = 1.045 and A = 1.040 we
get C = 19.739507. We notice that the relative error is only 1.51 x 10"5. The related
values of A and B are 1.08346 x 108 and -8.0082713.

(2) We consider the following perturbed Duffing equation

x = y,
, (6.3)

y = x-x + e cos (t/e).

For e small it has a hyperbolic periodic orbit of period lire near the origin
(Propositions 5.1 and 5.2 of [5]). We are interested in the existence of homoclinic
orbits and in the separation between the invariant manifolds in a given neighbour-
hood. For that we consider the map time lire of (6.3) in suitable variables so that

TABLE 1

A e c Angle

0.9944869868 E-20
0.1293376504 E-20
0.1443569127 E-21
0.8470514533 E-33
0.1833626865 E-73
0.6795065162 E-157
0.1368763698 E - 175
0.5260040656 E-199

1.3
1.29
1.28
1.2
1.1
1.050
1.045
1.040

0.18605210
0.18054611
0.175
0.12909945
0.06741999
0.03450327
0.03112715
0.02773501

1.03461538
1.03259690
1.03062500
.01666667
1.00454545
1.00119048
1.00096890
.00076923
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we could apply Theorem A. In order to simplify the notation we write (6.3) in the
more compact form

z=f(z) + eg{t/e), (6.4)

with z = (x, y) not necessarily real. First we translate the periodic orbit ye(t) to the
origin to have it fixed. The new equation is

i=f(z+ye(t)) + eg(t/e)-ye(t). (6.5)

Let (pi(t, T, z, e) be the solution of (6.5) such that <pi(r, T, Z, e) = z. Since (6.5) is
2 TTC-periodic we are interested only in re[0,2ne) . Then we write r = 2irea with
a e [0,1). We also consider the equation

i = / ( z ) (6.6)

and its solution <p2(t, r, z, e) such that <p2(r, r,z,e) = z. When no confusion is possible
we shall write for short <pi{t) and <p2{t). For any a e[0,1) we define

F"(z) = (pi(2irea+2ve,2'7Tea, z, e) and Ge{z) = <p2(2TTea + 2Tre,2irsa, z, e)
= <p2(2ire, 0, z, e)

on suitable domains. Since (6.5) and (6.6) are Hamiltonian then F" and Ge preserve
measure. To prove that F" is analytic and depends analytically on e we begin by
considering the equation

z = eRz) + e2g{t), (6.7)

which is obtained by scaling time in (6.4). Let <p3(f, T, Z, e) and <pA(t, T, Z, e) be the
solutions of (6.4) and (6.7), respectively. Since (6.7) is analytic, <p4 is analytic and
depends analytically on e. We define

H°(z) = (p4(2va+2TT, 2ira, z,e) and Ha
e(z) = <p3(2vea +2we, 2-rrea, z, e).

The periodic orbit of (6.7) is ye(t) = ye(et). To prove that it depends analytically
on e we look for the initial condition z(e) of this orbit for t = r. It must satisfy that
H"(z(e)) = z(e). For that we consider the function defined by ij)(e,z) =
(He(z)-z)/e for e # 0 and <A(0, z) = 2irf(z). \\i is analytic since H" is analytic and
H"{z) = Z + 2TT£/(Z)+ O(e2). Also DziK0, z) = 2wDf(z) so that D^(0,0) = 2irDf(0)
is invertible and, by the implicit function theorem, za(e) is analytic with respect to
s. Then yE(t) = <p4(f, 2tra, z"(e), e) is analytic. Furthermore

<p3(t, T, z, e) = <p4(t/e, r/e, z, e)

and

<pt(t, r, z, e) = <p3(t, T, z+ye{r), e) - y3(r)

and hence

F"(z) = (p4(2Tra +2ir, 2ira, z+ye(2ira), e) - ye{2-rra)

is also analytic. To compute the eigenvalues of DF"(0) we compare DF"{0) with
DGe(0). We have that

D,Dt<Pl(t, T, 0, e) = Df(<pAt, r, 0, e) + yAt))Dz<Pl(t, T, 0, s)
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and

D,Dz<p2(t, T, 0, e) = Df((p2(t, T, 0, e))Dz<p2(t, T, 0, e)

with

Dz<px{r, T, 0, e) = Dz<p2(T, T, 0, e) = I.

Since ^(f, T, 0, e) = (?2(f, T, 0, e) = 0 we can write

Dz<p2(t) - Dz<p,(t) = I [Df(0)Dz<p2(s) - Df(ye(s))Dz<p2(s)] ds
J T

and hence

From Theorem 5.1 of [5] we know that there exist c>0 and eo>0 such that
||-ye(s)|| < ce2 for 0< e < e0. Then taking a neighbourhood Uo of 0 independent of
e and M, and M2 such that ||D/|| L,0< M, and ||£>2/|| Ug<M2 and taking into account
that Dz<p2(t) = exp (D/(0)(f- T)), by Gronwall's Lemma we get that

||D2(p2(0-Dz<pI(0||s27rcM2e3exp(M12ire)exp(M1(r-T)) for te|>, T + 27re]

and hence ||DF:(0) - DGe(0)|| s Me3 with M > 2TTCM2 exp (47rMie0)-
On the other hand it is not difficult to compute that

G.(x, y) = (x + 2irey + 2Tr2e2(x -x3) , y + 27re(x -x3) + 27r2e2(y-3x2>')) + O(e3)

so that

V

Then the eigenvalues of £>Fe(0) are 1 ± 2-n-e + O(e2).
To apply Theorem A we should have F" in form (1.1). It is accomplished by a

linear change of variables C" which put the linear part in diagonal form. It is easily
seen that C" can be taken as

and it is analytic with respect to e. Clearly

(C-y'ix,y) = ((x + y)/2, (x-y)/2)+O(e).

Then we have that

TTe(x-(x-y)3/4,-y-(x-y)3/4)+O(e2).

We notice that F" is the map time 2ire of equation (6.5) after having performed
the same change C", that is,
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Now we should consider the vector field given by

x = x-(x-y)3/4,
(6.8)

y = -y-(x-y)3/4

and the map time h of it which we call Ge. Hypotheses HI, H2 and H3 are then
satisfied. It remains to verify hypotheses H4 and H5. Equation (6.8) has two
homoclinic orbits given by

a+(t) = (e~'/cosh21, -e'/cosh21),

o-_(<) = -o-+(0.

We focus the attention on <r+(t). Now hypothesis H4 follows from Corollary 4.1 of
[5]. Clearly So = it 12. Given any 77, 0 < 17 < So, by the existence theorem for ordinary
differential equations in the complex domain there exist a neighbourhood ft,, of
£„ = {cr+(t), |Im t\ < 80-r}/2} (for instance £„ +1) and e, > 0 such that forO< e < e,,
Gt and F" are well defined on ft,,. We emphasize that both for Ge and F" the
initial conditions are complex but the increment of time is kept real. Then, by
Theorem A, there exist N > 0 and e2 > 0 such that if 0 < e < e2 the separation between
the invariant manifolds of F" in a fixed neighbourhood is less than

N exp (-2TT-(50- 77/2- ?7/2)/ln A) = N exp (-ir/2e).

The same is true for the invariant manifolds of F° and also for the ones of H".
Finally the same is also true for the invariant manifolds of (6.4) since their intersec-
tion with the plane t = r coincide with the ones of H".

The Melnikov function for (6.3) is

M(t0) = V2(TT/e) sin {t0/e)/cosh (TT/2E).

We notice that the exponential part of M(t0) is essentially the same as that of
the upper bound we have found. From that we conjecture that the Melnikov function
gives the right measure of the separation.

(3) We consider

Fe(x,y) = (x + ey + e2V'(x),y + eV'(x)) (6.9)

as a generalization of the standard map, where V is an even, 27r-periodic, entire
function which has a unique minimum in (-TT, TT] located at x = 0 with V"(0)>0.
Fe is a family of analytic area preserving diffeomorphisms. The only real hyperbolic
points are (2kir, 0), keZ. We are interested in their invariant manifolds, which we
consider as identified with the ones of (0,0) by the periodicity of FE. If we set
a = V"(0), the eigenvalues of DFe(0,0) are

A± = 1 + e2a/2± (s2a + eV /4 ) 1 / 2 = 1 ±4ae + O(e2).

Putting the linear part of (6.9) in diagonal form we have
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which leads us to consider the vector field given by

x = x + (V'(x + y)-a(x + y))/(2a),
(6.10)

y = -y-(V'(x + y)-a(x + y))/(2a),

which comes from the Hamiltonian

-(a/2)(x + y)2)/(2a).

It has a homoclinic orbit. Remark 2 after Theorem A shows that Fc and so Fe have
homoclinic points (or the invariant manifolds coincide). In [3] it is proved that if
Fe has homoclinic points, there must be one on the line x = n. (We remark, however,
that Ŵ  is not forcibly obtained from Wu by symmetry with respect to the y-axis).
The singularities of the homoclinic orbit of (6.10) are given by

\ (V(V2u)-V(0)rU2du, (6.11)
Jfc

where 2~1/2(x(0) + >>(0)) = b. The integral (6.11) is evaluated on a complex path
from b to oo. In general (6.11) depends on the path because V(\/2 M ) - V(0) may
have complex zeros. To get the nearest singularity to the real axis we must consider
all the possible paths and compare the results. In that way we obtain So. If
V(x) = -£™=i (ck/k) cos kx, (6.11) becomes

where the coefficients dk are obtained from the coefficients ck.
If V(x) = -cos x - (c/2) cos 2x we can do the calculations and we get that given

1} > 0 there exist e0, N> 0 such that in a given neighbourhood and for 0< e < e0

the separation between the invariant manifolds of FE is less than

Nexp(-7r(arccos(-4c-l)-2i7)/ lnA) for - l / 2 < c < 0

and less than

Nexp(-(7r2-2Tj)/lnA) for c>0.

These bounds agree with the analytical results of Lazutkin [11].

(4) As a final example we consider the Henon-Heiles problem [8]. We take for
granted that a suitable modification of the argument used in Example 2 allows us
to use the extension of Theorem A to heteroclinic connections. This is a 2 degrees
of freedom Hamiltonian system with

H(x,y) = (x2,+y2
l + x2

2 + y2
2)/2 + x3

i/3-x1xl (6.12)

It is known [8,7,1,12] that it has hyperbolic periodic orbits near the origin for
small values of the energy. Their invariant manifolds intersect so that (6.12) has
heteroclinic orbits. We wish to study the maximum separation of the invariant
manifolds near one of such orbits. To apply Theorem A we shall construct a family
of dilfeomorphisms (the parameter being related to the energy) through Poincare
maps on suitable sections.
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For that we consider small positive values of the energy h0 and we take e = hl
0

/2.
Scaling variables through xt = eqt, yt = ept, i = 1,2, we pass to the equivalent system
given by

on the energy level K(q,p) = 1.
For e = 0 the system reduces to an harmonic oscillator. We consider the Poincare

return map on the section q2 = 0, p2 = 0- Let us call it Fc. It is clear that Fo= I.
Using the Gustavson Normal Form [7] up to sixth order, the fourth being not

sufficient [12], and using the same method of [1] (see also [2]) we have that Fe is
approximated by the time 2TT map of the Hamiltonian flow given by

K6(qt, Pi) = Oe2/6)[q2-q2(q2 +

+ {-4q\-24q\p]-36q\p4-\(>p\)l

The critical points of K6 are [12]

P2 = (0,2"1/2), P3 = (0,~2-1/2), P4=(0,0),

P5 = (0,-(3/2)1/2), P6 = (0,(3/2)1/2), P7 = (l + O(e
2),0),

P8 = (-1 + O(e
2),0).

The boundary of the disk where Fe is defined is also a periodic orbit of K that we
call P,. These critical points of K6 are related to nearby fixed points of Fe and,
hence, to periodic orbits of the Hamiltonian K. It is easily seen that P,, P2 and P3

are elliptic with eigenvalues

P4, P5 and P6 are hyperbolic with eigenvalues

exp(±147r3"1/2e3(l + O(e)))

and, finally, P7 and P8 are elliptic with eigenvalues

exp(±(147r/3)e2i(l + O(e)).

The invariant manifolds of the hyperbolic points originate pairwise heteroclinic
points (see figure 3) and hence homoclinic points.

We concentrate our attention on the connection between P4 and P6. As this
connection is very close to the p, axis we scale variables as follows: qx = ex and px = y.

We denote by Fe the family of diffeomorphisms in the new variables. It is readily
seen that

Hence Fe is close to the time 7TT£3/3 map of the Hamiltonian flow given by

Now we look for the heteroclinic orbit of K. Since P4 and P6 are on the level
K(x,y) = 0 we get x = (3y-2y3)(3-3>'2/2)"1/2 on the separatrix. Therefore y =
-(y-(2/3)y3){l -y2/2)1/2, which is easily integrated to obtain 3y-2>>3 = V2/cosh t

https://doi.org/10.1017/S0143385700005563 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005563


The splitting of separatrices

I Pi

317

FIGURE 3

where the constant of integration has been selected to have t = 0 when y = 2~1/2,
and we have normalized the time in order to have the equations in the form (4.3)
for the diagonal variables.

The singularities of the separatrix closer to the real axis are ±7ri/2 and hence
So = TT/2. By Theorem A (see Remark 4 after it), given TJ > 0 the maximum separation
between the invariant manifolds of FE will be bounded by

N exp (-2ir((ir/2) - ij)/ln A) - N exp (-T72/(Uir3'l/2e3)).

The separation for the invariant manifolds of Fe and also the separation of the
invariant manifolds of the periodic orbits of (6.9) are of the same kind.

In table 2 we reproduce part of the numerical results given in [12] for e ranging
from 0.35 to 0.23. Here a means the angle at a heteroclinic point. The value of A
given is obtained numerically because in that range the approximation In A —
147r31/2e3 is too crude. Using the values A = 2~1/2 and r = —5 (a guess!) the formula

TABLE 2

e

0.35
0.34
0.33
0.32
0.31
0.30
0.29

A

3.6157
3.2470
2.9300
2.6584
2.4232
2.2218
0.0485

Angle

6.412 E - 2
3.538 E - 2
1.811 E - 2
8.414 E - 3
3.457 E - 3
1.221 E - 3
3.590 E - 4

e

0.28
0.27
0.26
0.25
0.24
0.23

A

[.8993
1.7706
1.6596
.5637

1.4808
1.4089

Angle

8.49 E - 5
1.54 E - 5
2.06 E - 6
1.87 E - 7
1.07 E - 8
3.5 E-10
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a =2~1/2e~5 exp (—ir2/\n A) gives results which agree with the computed ones with
a relative error less of than 4%.
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