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Abstract. We construct a general semiregularity map for algebraic cycles as asked for by
S. Bloch in 1972. The existence of such a semiregularity map has well known consequences
for the structure of the Hilbert scheme and for the variational Hodge conjecture. Aside from
generalizing and extending considerably previously known results in this direction, we give
new applications to deformations of modules that encompass, for example, results of Artam-
kin and Mukai. The formation of the semiregularity map here involves powers of the cotan-
gent complex, Atiyah classes, and trace maps, and is defined not only for subspaces of
manifolds but for perfect complexes on arbitrary complex spaces. It generalizes in particular
Illusie’s treatment of the Chern character to the analytic context and specializes to Bloch’s ear-
lier description of the semiregularity map for locally complete intersections as well as to the
infinitesimal Abel-Jacobi map for submanifolds.
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1. Introduction

Let Z be a closed complex subspace of a compact complex manifold X and let [Z]
denote the corresponding point in the Douady space Hy of X, the complex analytic
analogue of the Hilbert scheme. It is a classical fact that the tangent space of Hy at
[Z] is naturally isomorphic to H(Z, N 7/x), where N 7,y = Homy(J7, O7) denotes
the normal sheaf of Z in X with J C Oy the ideal sheaf of Z. Moreover, if Z is
locally a complete intersection in X then the vanishing of H'(Z, N z/x) implies that
[Z] is a smooth point of Hy. It was, however, already observed by Severi [Sev] that
the converse is not true in general. He introduced the notion of a semiregular curve
on a surface to mean that the restriction map H(X, wy) — H%(Z, wy|Z) is surjective
or, dually, that the semiregularity map H'(Z,N z/x) —> H 2(X, Oy) is injective, and
showed that the point of the Hilbert scheme corresponding to a semiregular curve
is always smooth. This result was extended to divisors in arbitrary projective com-
plex manifolds by Kodaira and Spencer [KSp]. In 1972, S. Bloch [Blo] was able to
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define more generally for every locally complete intersection Z of codimension ¢ in X
a semiregularity map ©: H'(Z, Nz/x) — HIT(X, Qg(_]) to show again that the injec-
tivity of 7 implies that [Z] is a smooth point of Hy. His semiregularity map admits
a simple description using Serre duality. However, in the case of an arbitrary sub-
space Z of X, the obstructions for extending embedded deformations lie in the tan-
gent cohomology group T§/X(Oz), and it is no longer possible to apply duality.
Thus, the problem arises to define such a semiregularity map by other means.

In our approach, we will more generally assign first a semiregularity map
a:Exti(]—' ,F) — HqZOH‘]’LZ(X , Q%) to every coherent Oy-module F on a complex
manifold. Indeed this map will be defined for any coherent Oy-module F of locally
finite projective dimension, or even for perfect complexes of modules, on arbitrary
complex spaces, and it occurs as the component ¢ = ¢ of a family of maps

o0 Exti(F, F) > [] H*"'(X,A’Ly), r>0,

g=0

where [y denotes the cotangent complex of X. We will outline in brief our construc-
tion when X is smooth, which special case is also subject of our survey [BFI2].

To begin with, we assign to F its Atiyah class, as originally defined in [At] for
locally free sheaves. Following [I11], a possible way of construction for any coherent
Oy-module is to use the extension on X x X that defines the module of analytic dif-
ferential forms,

0— J/T* 204 - Oxex/T* = Ox — 0, )

where J € Oy x is the ideal of the diagonal. With p;: X x X — X the ith projection
for i = 1,2, we tensor (1) with pj(F) and consider the resulting sequence

0 > F ®0o, Qy = pi(F) ®0y., Oxxx/T* > F =0
as an extension of Oy-modules via p,, so that it defines an element
AH(F) € ExtY(F, F ®o, Qy),

the Atiyah class of F. Taking powers gives elements At/(F) € Ext{(F,F @ Q).
Now the gth component of the semiregularity map ¢ is the composition of the
two maps

0,: ExGUF, ) IA Ex(F, F @ Q) = HIP(X,. ),

where Tr is the trace map as defined in [Ill, OTT]. Finally, to get a semiregularity
map for subspaces Z C X, we observe that there is a natural homomorphism from
T§/X((’)Z) into Ext’j}(@z,oz) for each k > 0. Composing this for k =2 with the
map o above in case F = O gives the desired semiregularity map

T =(t)),z0 Tx(02) - [ HP(X, Q%)

q=0
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for subspaces. We will verify in Section 8 that for a locally complete intersection Z in
X of codimension ¢ the component 7,_; of our semiregularity map coincides with the
classical one defined by Bloch.

To understand some of the geometrical implications of such semiregularity maps,
let us restrict further to the case of coherent modules on a compact algebraic mani-
fold, the case of subspaces being similar. With respect to the Hodge decomposition,
HAX,C) = EB,; gk HY(X,Q), the Chern character of a coherent sheaf is obtained
from its Atiyah class by the formula

k
ch(F) = Trexp(—At(F)) = » %Tr(Atk(}')),
k=0 ’
see [At] for the case of vector bundles and [Ill, OTT] for the general case.

Assume now given an infinitesimal deformation of X represented by a class
¢ e H'(X,0y), where Oy denotes the tangent bundle. By Bloch’s interpretation of
Griffiths’ transversality theorem, for fixed k > 0 the unique horizontal extension
of the cohomology class chy,;(F) relative to the Gauss—Manin connection stays
of Hodge type (k + 1,k + 1) if and only if the contraction of this class by ¢ vanishes,
(¢, chp1(F)) =0 in H2(X, Ql)‘}). On the other hand, let us consider the deforma-
tions of F itself instead of just extending its Chern character horizontally. The defor-
mations of F are controlled by the differential graded Lie algebra underlying
Ext}(F,F) so that the space of infinitesimal deformations is given by Ext}((]: ,F)
and the obstructions to extend deformations live in Ext}(F, ). Contracting against
the negative of the Atiyah class serves as an obstruction map

ob := (%, —At(F)): H'(X, Oy) — Ex3(F, F)

so that F admits a deformation into the direction of ¢ if and only if ob(&) = 0; see
[111] for the algebraic and 4.4 for the analytic case. A key observation is now that the
maps just described fit into a commutative diagram

HY(X,0y) 22D pxi2 (F, F)

(% Chyeyr (]‘-)>\‘ ,/fk

H2(X, Q%)

As a consequence (of a suitable generalization) of this fact and generalizing the argu-
ments of [Blo] we obtain for instance in Section 5 that the variational Hodge conjec-
ture holds for cycles that are representable as (k + 1)st component of the Chern
character of a k-semiregular sheaf F, where we mean by k-semiregular that the com-
ponent gy of the semiregularity map for F is injective. An analogous result holds for
subspaces Z C X that are (k-)semiregular in the corresponding sense.

Other important applications are to deformations of modules. In analogy with the
aforementioned results of Bloch we will show that the basis of the semiuniversal
deformation of F is smooth if the semiregularity map o is injective. We will deduce this
result more generally for arbitrary singular complex spaces X and also for relative
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situations. We derive as well analogous smoothness criteria for the Douady space
and the Quot-space, and give applications to deformations of holomorphic
mappings.

Ideally, the semiregularity map, say, for a module F should correspond to a
morphism between two deformation theories so that it maps the obstruction space
Extﬁ((}' , F) into the obstruction space of some other deformation theory. It seems
quite clear that this second deformation theory should be given in terms of the inter-
mediate Jacobians, or, more naturally, by Deligne cohomology. The map from the
deformations of F into the intermediate Jacobian, say J¥(X), should be a general-
ized Abel-Jacobi map that associates to a deformation of F over a germ (S, 0) the
map of S into the intermediate Jacobian given by integration over a topological cycle
whose boundary is the difference of the kth Chern characters of the special fibre and
the fibre over s. As the intermediate Jacobian is smooth this would provide a satis-
factory explanation of the fact that the injectivity of ¢ implies the smoothness of the
versal deformation of F, and it would show that all obstructions of F vanish under o
and not merely the curvilinear ones as we show here; for the special case of subma-
nifolds instead of modules see [Cle, Ran4]. Such an interpretation indeed applies for
the lowest component of the semiregularity map: the work of Artamkin [Art] and
Mukai [Muk] interprets a: Extg((]-" ,F) — H*(X,Oy) as the map between obstruc-
tion spaces for the deformations of F versus those of its determinant line bundle.
As a further clue that such interpretation might be true in general we verify in
Section 9 that for a submanifold Z of X the differential of the Abel-Jacobi map
admits the same homological description as the semiregularity map.

A few remarks about the contents of the various sections: In Section 2 we review
the technique of Forster—Knorr systems, originally used in [FKn] and further exploi-
ted in [Pal, Flel], to construct a cotangent complex for complex spaces. Most of that
material is a largely generalized version of parts of [Flel]. As this source is not easily
accessible we use the opportunity to give an exposition of that technique of simplicial
spaces of Stein compact sets in the generality we need. Following [Pal] we will review
in brief the notion of resolvents and give the relevant descriptions of tangent (co)ho-
mology as used later on.

In Section 3 we construct the Atiyah class of a coherent sheaf F as a class in
Ext}((}' ,F ® Lyx), thereby generalizing the construction by Illusie [Ill] to the analy-
tic case. First we do this for modules on simplicial spaces of Stein compact sets and
then use the results of the previous section to descend to actual complex spaces. Fol-
lowing the classical approach of Atiyah [At], see also [ALJ], we will construct these
classes using connections, in our case on modules over the resolvent of a complex
space, thus verifying the basic functorial properties by explicit computation.

Section 4 contains the construction of the semiregularity map for modules as well
as for subspaces. We give an interpretation of the obstruction map for modules or
subspaces in terms of Atiyah classes and derive the aforementioned commutative
diagram. This is the basic tool in Section 5, where we prove the variational Hodge
conjecture for the special case described above.
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In Section 6 we prove some general criteria for the smoothness of the basis of a
semiuniversal deformation. We give a new and transparent proof of the T'-lifting
criterion of Ran and Kawamata [Kawl, Kaw2, Ran2, Ran3] and show how to
deduce their results by a simple argument from the well known Jacobian criterion
for smoothness. Our method also yields new generalizations to the relative case.
These results, together with the existence of the semiregularity map, have many
applications in deformation theory, some of which we treat in Section 7. In the first
part we deduce applications to deformations of modules as mentioned above. In the
second part we turn to the Douady space and give various criteria for its smoothness.
The more general case of the Quot-scheme is treated in the third part, and in the last
part we apply our constructions to deformations of mappings and define a semi-
regularity map under very general circumstances. For the special case of stable curves,
results in this direction were independently obtained by K. Behrend and B. Fantechi.

In the final Section 8, we compare our semiregularity map with the one construc-
ted by S. Bloch. This requires an explicit description of the trace map via a Cousin
type resolution. Moreover, we show how the infinitesimal Abel-Jacobi map fits into
this framework.

In an Appendix we collect some results on integral dependence and infinitesimal
deformations of complex spaces that are needed in Section 6. Especially the (elemen-
tary) characterizations of the subspaces of T} given by the curvilinear extensions,
respectively by Ext}((Qg(, Oy), seem to be new.

GENERAL NOTATION. We explain some notation used throughout this paper.

Categories are written in boldface and categories like Sets should need no further
explanation. Whenever we talk about isomorphism classes of objects from a category
C, it will be assumed that those classes form a set. Such a category C is sometimes
called essentially small.

A germ of a (formal) complex space is denoted (S, 0) or often simply S. As a rule,
every germ has 0 as its basepoint, and the same symbol represents the (reduced)
point. For a (formal) complex space X the sheaf of holomorphic functions is as usual
denoted Oy, whereas for a germ S = (S,0) the symbol Og indicates the local ring
Osp and myg its maximal ideal.

If X is a complex space then Coh(X) will be its category of coherent modules.
Similarly, if S = (S,0) is the germ of a (formal) complex space, Coh(S), Coh,.(S)
will denote the categories of finite, respectively finite Artinian Ogg-modules. A
closed embedding S S’ of complex spaces is an extension of S by M € Coh(S)
if the ideal Z := ker(Os — Oy) defining S in S’ is of square zero and isomorphic
to M as Og-module under a fixed isomorphism. In particular, S[M] indicates the
trivial extension whose structure sheaf Ogpq is the direct sum Og ® Me endowed
with the multiplication (s + me)(s' + n'e) = ss' + (sm’ + ms')e so that &2 = 0.

To reduce complexity of display, we use unadorned tensor products, suchas M @ N,
whenever the sheaf or ring over which the tensor product is taken should be clear from
the context. We also use ® instead of ®" to denote derived tensor products.
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2. Homological Algebra on Simplicial Schemes of Stein Compact Sets

Let X be a complex space and F a coherent Oy-module. In the introduction we
reviewed for X smooth the construction of the Atiyah class, At(F) e
Ext}( (F, F ®o, Qi(), of F that is given by the extension

0 — F ®o, Q — pi(F) @0y, Oxux/T> — F — 0.

In the singular case, however, we need to produce more generally the Atiyah class in
Ext}((f ,F ® o,Lix), where Ly is the cotangent complex of X and ® denotes the
derived tensor product.

In the algebraic setting this was done by Illusie [IlI] using simplicial methods.
Those do not immediately generalize to the analytic situation due to the lack of glo-
bal resolutions. Instead, we use the technique of Forster—Knorr systems [FKn] on
simplicial schemes of Stein compact sets and construct resolvents on complex spaces
as in [Flel, Pal]. Alternatively, one might be tempted to use the method of twisted
cochains as developed in [OTT], but this theory is so far only available for manifolds,
in particular the theory of cotangent complexes on singular spaces has not yet been
established in that framework.

We first state and (indicate how to) prove the results on the homological algebra
of Forster—Knorr systems that we will use. Key references are [Flel], [Pal]; see also
[BMi]. All our complex spaces are assumed to be paracompact.

2.1. A subset K of a complex space X is called Stein compact if it is compact, semi-
analytic and admits arbitrary small open neighborhoods that are Stein. We equip K
with the structure sheaf Ok := Oy/| so that the ring I'(K, Ok) consists of all K-germs
of functions that are analytic in an open neighborhood of K in X. In the extreme case
that K = {x} consists just of a point in X one retrieves the local analytic algebra Oy .
Every coherent Og-module for a Stein compact set K satisfies Cartan’s Theorems A
and B, and by a fundamental result of Frisch [Fri] the ring I'(K, Ok) is Noetherian.
These facts imply that a Stein compact set behaves like a Noetherian affine scheme:
for example, the category Coh Ok of coherent Og-modules is equivalent to the cate-
gory of finite I'(K, Ok)-modules, in particular it contains enough projectives. Again
as for affine schemes, these projectives are usually not projective objects in the cate-
gory of all Og-modules.
Note that the dimension of a Stein compact set is given by

dim K :=sup{dim Ok, | x € K} =inf{dim U | K € U C X, Uopen}.

If K C X, L C Y are Stein compact sets with X, ¥ complex spaces over some com-
plex space Z, then the product K x L C X x Y as well as the fibre product
K x7z L C X x, Y are again Stein compact sets.

A covering of a complex space X by Stein compact sets {X;},c; is called locally finite
if every point in X admits an open neighborhood that meets only finitely many X;.
Any two such coverings clearly admit common refinements and, as X is paracompact,
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each covering by open sets can be refined to a locally finite covering by Stein
compact sets.

2.2. We mainly work on simplicial schemes of Stein compact sets Z, = (Z,),c4-
Thus, 4 is a simplicial scheme consisting of a collection of finite subsets, called
the simplices, of a given set I such that with a simplex all its nonempty subsets are
in A. Furthermore, the Z, are Stein compact sets and there are given compatible
morphisms of ringed spaces Zg — Z, for each inclusion of simplices « € f. Denote
|| = k the dimension of the simplex o = {iy, ..., ix}, not to be confused with dim Z,,
the complex dimension of the Stein compact Z,.

Morphisms Z, =(Z.) ey — Z+« = (Z4),e4 of such simplicial schemes of Stein
compact sets are defined as usual. Such a morphism is said to be flat or smooth if
all induced morphisms of stalks have the corresponding property.

The following two examples are crucial in the sequel.

(a) Let X be a complex space over Y and {X i}ier @ locally finite covering of X by
Stein compact sets. The nerf of the covering is the simplicial scheme

a={acrix, =[x #01,

ico
whose simplices are thus finite subsets of 7, and X, is the simplicial scheme of
Stein compact sets (X,),.4 with the natural inclusions Xp — X, for o C f.

(b) Let 4 be again a simplicial scheme on 7 and assume given for any vertex i € [ a

Stein compact set L; € C" x Y for some n;. Set W, := Hl);x L;, o€ A, where
HY denotes the fibre product over Y, and let the natural projections
Dap: Wy — W, for o C B serve as transition maps. The natural maps from

W, onto Y are smooth and compatible with the transition maps.

Returning to the complex space X with its given covering choose closed
Y-embeddings X;— L; C C" x Y with L; a Stein compact subset. These data yield
diagonal embeddings X, — W,,a € A, that define a morphism of simplicial schemes
X, — W, over Y. We will refer to it as a (simplicial) free smoothing of the given map
X—Y.

2.3. Now we consider (negatively graded, simplicial) DG algebras R, = @i<0Ri
over a simplicial scheme of Stein compact sets W,. The differential of such an alge-
bra is a derivation of degree +1 and will be denoted J%, or simply 0. The simplicial
structure consists of a system of compatible maps p;ﬁl (R.) = Rp for o C f that are
morphisms of DG algebras over Wp. If f'is a local homogeneous section of R, then
| f] denotes its degree. All our DG algebras will be (graded) commutative so that the
product on R, satisfies the sign rule fg = (—1)/¥g .
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Graded modules over R, are defined in the obvious way: An R.-module M,
consists of a family of graded right R,-modules M, = @jez M’a together with a
compatible collection of transition maps for o C f that are degree preserving
homomorphisms of right Rg-modules,

Pﬁ;;(/\/la) = P;/;l (M,) ®p;/;1(731) Rp — Mﬂ'

As we only consider commutative DG algebras, the sign rule allows to switch the
module structure from right to left, in particular one can form the tensor product
M, ®r N, of TR,-modules, defining it simplex by simplex through
(M* Rr, N*)a = fo ®R1 Nc{-

If M, is equipped with a differential 0 = dr, such that (M., d) becomes a DG
module over R, then we call M, a DG R.-module in brief. Such a module is said
to have coherent cohomology if H'(M,), the cohomology with respect to the differ-
ential on M,, is a coherent Oy, -module for each simplex « and each integer i; it
is said to be (locally) bounded above if for each simplex H'(M,) = 0 for i > 0, and
it is said to vanish (locally) above if already M; =0 fori>0.

2.4. Next we comment upon and fix some of the usual notations and conventions
from homological algebra that extend in a straightforward manner to (DG) R,-mod-
ules. We include these details in order to be able later to calibrate Atiyah classes
against Chern classes: Over time, the conventions and signs in constructing mapping
cones, distinguished triangles and their associated extension classes have changed,
say from [Har] over [Ver] to [ALG]; see also the comments in [SGA4, Exp. XVII]
and [Del3]. Whereas classically, e.g. in [At, ] or [Ill, V.5.4.1, 5.3.3], the first Chern
class is the trace of the opposite of the Atiyah class, it appears in [ALJ] as the trace
of the Atiyah class itself.

If i is an integer, M,[] is the shifted module with M,[i]" = A" and the same
right R,-module structure, whence the left structure becomes f(m[i]) = (—I)Wf !
(fm)[i]. In case M, is a DG module, M.,[i] becomes a DG module with respect to
the differential O,y :(—l)iaM*. Writing the shift functor on the left, say as
T'M, = M,][i], and considering T as an operator of degree —1, the conventions just
introduced obey the usual sign rule.

A morphism of Ry-modules M, — N, of degree i is a collection of homomor-
phisms f,: M, — N, of right R,-modules that satisfy f,(M’) € M for all j € 7
and are compatible with the transition maps. By convention, if no degree is specified,
a homomorphism of R.-modules is assumed to be of degree 0. We set

Hompg, (M., N,) :== @) Homj (M., N,),
i€/,

where Hom%* (M, N,) denotes the morphisms of degree i. If M,, N, are DG mod-
ules with differential & then Homg, (M., N,) is a complex of vector spaces with dif-
ferential /1 +— [, h] := 8h — (—1)""hd. Note that for any integer j, the maps A[ j] and h
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are identical once the grading is ignored, and so one usually suppresses the shift in
the notation of morphisms.

2.5. The morphisms of degree i are thus the (degree preserving) homomorphisms
M, — N,[i] of R,-modules, the cycles of degree i in the Hom-complex are the
homomorphisms M, — N,[i] of DG R,-modules, whereas the boundaries are the
homomorphisms that are homotopic to zero. The homotopy category K(R,) of
DG R,-modules has as its objects the DG R,-modules but its morphisms are the
homotopy classes, Homgr,)(M., N.) = H'(Homg, (M., N,)). The derived category
D(R.,) is obtained from K(R,) as usual by inverting all quasi-isomorphisms. Adorn-
ments such as ()f,"b or ()f, determine full subcategories of DG modules, where a
bounds the underlying graded objects on each simplex, b bounds the cohomology,
and c¢ refers to special structure of the cohomology modules. For example,
D_(R.) denotes the derived category of DG R,-modules that are bounded above
with coherent cohomology. In case R, is a structure sheaf, such as Oy,, we write
Homy, and D(X,) to reduce clutter.
The morphisms in D(R,) are denoted

Extl (M., N,) := Hompr, (M., Nk, keZ.

Similarly, if X is a complex space and M, N are complexes of Oy-modules then
Extl}(./\/t,/\/' ) will represent the set of morphisms of degree k in the derived category
D(X). Note that if A/ is bounded below and so admits an injective resolution, say, Z
then these Ext-groups are given as usual by the cohomology of the complex
Homy(M,Z). This definition allows in particular to define HX(X,N):=
Ext’(Oy, N') for any complex N of Oy-modules. Below we will show how to com-
pute these groups using projective ‘resolutions’ on X,.

2.6. For a homomorphism f: A", — N, of DG R,-modules, its mapping cone,
Con,(f) := N, @ N[1], is formed simplex by simplex according to the conventions
of [ALG, X.36ff] so that for local sections n of A/, and Tn' = n'[1] of J\/’;[l] the dif-
ferential in Con,(f) maps (n, Tn') to (O (n) — f(n'), =TO,~ (n')). The mapping cone is
again a DG R,-module, and the triangulated structure of either K(R,) or D(R,) is
now defined in terms of the distinguished triangles arising from mapping cones.

2.7. Generalizing the construction of mapping cones, if

Mi=(-— Mgf)i;/\/lff“) — )
is a complex of DG R,-modules, then the associated total complex M, = IL Mf)[i]
is a DG R,-module as well. The following simple fact will be used throughout: If the

complex M is acyclic and locally vanishes above, then the associated DG module
M, is again acyclic.
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2.8. As just done, we will often argue simplex by simplex and such arguments are alle-
viated by the following: For each simplex o, the restriction functor M, — M, is
exact and admits a left adjoint p} defined through

* . p*ﬂ(MO(), for o g ﬁv
Pa(Ma)g = {OjC otherwise,

whence one has
HomR* (P;(Mz),./\/*) = Home(MmNoc) (2)

for each R,-module M, and each R,-module N, see [Flel, Section 2], [BMi, 4.1], or,
even more generally, [Ill, VI.5.3]. The functor p} is compatible with differentials, it is
as well a left adjoint to the restriction functor on the category of DG R,-modules.

2.9. Inductive arguments based on the dimension of simplices often use the skeleton
filtration on an R,-module M, given by

Mcp = Im<@ PiM,) — M*> C M,.

lo| <k

For a DG module this filtration is by DG submodules.

2.10. Analogous facts and notions allow to argue degree by degree on W, for each
individual simplex . Consider, in general, (DG) R-modules M = ,.,, M’ over a
(negatively graded DG) Op-algebra R = P, ., R with (W, Oy) some ringed space.
For each fixed degree i € 7, the restriction functor M > M’ to Oy-modules is exact
and admits as left adjoint the functor Vi~V ®¢,, R[—i]. The corresponding canoni-
cal R-homomorphism P, M ' ®p,, R[—i] = M is an epimorphism of (DG)
R-modules. The analogue to the skeleton filtration is the degree filtration

MZF = lm(@/\/ﬂ ®o, R[—i] — M) C M,

i>k

whence M =¥ is just the (DG) submodule of M generated by all homogeneous com-
ponents in degrees at least k.
Now we turn to the existence and construction of resolutions for DG R.-modules.

2.11. We will say in brief that an R,-module M, = @,.,, M’ has coherent homo-
geneous components if each M; is coherent as Oy, -module. By convention, our DG
algebras will always have coherent homogeneous components. The category of all
R.-modules with coherent homogenecous components is then Abelian and will,
slightly abusively, be denoted CohR,. The restriction to a simplex o and its left
adjoint p} preserve coherence of homogeneous components and the R.-module
D, c4Pi(M,) is in Coh R, along with M,.

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023999012081

A SEMIREGULARITY MAP FOR MODULES AND APPLICATIONS 145

2.12. A module P, € Coh R, will be called projective if it is a projective object in that
category, equivalently, if the functor Hompg_ (P, —) is exact on Coh R,. As remarked
above, such a projective module is in general not a projective object in the category
of all R,-modules. Note also that, in general, R, is not a projective module over
itself. In contrast, R,, being a module with coherent homogeneous components over
the Stein compact set W, is projective as a module over itself, and if P, is projective
in Coh R, then p}(P,) is a projective R,-module since a left adjoint of an exact func-
tor preserves projectives. A module F, € Coh R, is called graded free if it is a direct
sum of modules p}(P,) with graded free R,-modules P,. Thus graded free modules
are always projective. Each category Coh R, has enough projectives, for example,
the graded free modules. As the canonical R,-homomorphism @, , pi(M,) —
M, is an epimorphism, there are enough projectives in Coh R, as well.

Using the simplicial structure, and generalizing slightly [Flel, 2.3, (3)], one obtains
the following precise description of projective R,-modules.

LEMMA 2.13. (1) An R.-module P, is projective if and only if P, = @, , Pi(Q,) for
some projective R,-modules Q, with coherent homogeneous components.

(2) If Q, is a projective R,-module with Q; =0 for i>» 0, then Q, = ®je% Qg),
where Qg) is a projective R,-module generated in degree j.

Proof. By induction on the dimension of simplices, it clearly suffices to show the
following. If 4" C A consists of all simplices o’ such that P, = 0 for each strict subset
aC o, then @, , pi(Py) is a direct summand of P,. As P, is projective the
canonical epimorphism ¢: @, , pi(P,) — P, admits a section i . The definition of
A’ yields for each o € A" that ¢,, and thus also ,, is the identity on
(B,c4Pi(Py))y = Py. Composing the projection €, pi(Py) — pi(Py) with
then retracts the natural homomorphism pj,(P,) — P, and the claim (1) follows.

Repeating the argument with respect to degrees instead of simplices yields the
second assertion. O

From 2.13(1) it follows easily that the tensor product of projective modules is
again projective. Moreover, if P, is projective then its exterior and symmetric powers
AP, and S*P, are projective for k£ > 1 (whereas AP, =R, =8P, is not!)

If P, is a projective R,-module which also carries a DG structure, then we will say
in brief that P, is a projective DG R.-module, although, of course, P, is not neces-
sarily a projective object in the category of all DG modules with coherent homo-
geneous components.

For a projective module P, the skeleton filtration 2.9 is by direct summands: In
the notation of the preceding lemma, P ¢ = @M <1 P3(Qy), whence each such sub-
module as well as each subquotient P ¢ /P < 41 = @mzk i(Q,) is again projective.
Analogously, if P, vanishes above, each submodule or subquotient with respect to
the degree filtration is again projective. If P,, resp. P,, is a projective DG module,
then P <y, resp. P kis not necessarily a direct summand as DG module, but one
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has the following simple observations that reflect typical reduction steps when deal-
ing with projective DG P,-modules that locally vanish above.

LEMMA 2.14. If M, and P, are DG R..-modules with P, projective, then the natural
map

H’(Homg, (P, M,)) — lim H”(Homg, (P <, M.))
k

is bijective for each integer p. If M, and P, are DG R,-modules with P,, projective and
PL =0 for i > 0, then the natural map

H’(Homg, (Py, M,)) — lim H(Homg, (P> *, M.,))
k

is bijective for each integer p. If P, is generated in a single degree k, then there is a
natural number s such that the complex Homg,(Py, My) becomes a direct summand
of T(W, My[K])".

Proof. As said above, 0 > P<p — P, — P./P<i — 0 is an exact sequence
of projective R,-modules and so splits, whence the induced map
Homg, (P,, M,) — Homg, (P <k, M,) is surjective. The first claim follows imme-
diately and the second one is obtained replacing skeleton by degree filtration.

For the final assertion, note that the hypothesis yields a natural epimorphism of
DG R,-modules P’; ®0,, Ral—k] = P,. As P, is projective it has in particular
coherent homogeneous components and so P§ can be generated by a finite number
of sections over W,, which in turn provides an epimorphism R,[—k]' — P,.
Employing now fully that P, is projective, this epimorphism splits as a homomor-
phism of R,-modules. As P, is generated in a single degree, the differential necessa-
rily vanishes on the generators and the splitting is already a morphism of DG
modules. Finally use that Homg (R,[—k], M) = T(W,, M,[k]). O

An R,-module M, will be called W,-acyclic if H(W,, M,) =0 for all i > 1 and
o € A. For instance, by Theorem B every module M, € CohR, is W,-acyclic. The
point of the definition is of course that a quasi-isomorphism M, — N, of W,-
acyclic DG modules induces quasi-isomorphisms I'(W,, M,) — I'(W,,N,) over
each simplex.

LEMMA 2.15. For each DG R,-module M, there is a W-acyclic resolution, thus a
quasi-isomorphism M, — W*ﬁ‘om M, into a W-acyclic module V\Z The construction
is functorial in M.

Proof. Consider on each simplex o € 4 the canonical flabby resolution, say,
M, — W;. As this resolution is functorial, each component of the complex W is
naturally again a DG R,-module and the resulting system M, — W; is a resolution
by DG R,-modules. Now cut this resolution on the simplex « at the place
d(@) ==Y pc, dim Wy to obtain W, := W, for i < d(x), W} :=0 for i > d(x) and
Wi = Ker(W., — Wit for i = d(a).
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The choice of the cut-off point guarantees first, as d(o) > dim W,, that V\_/;l(“) is
W-acyclic along with the other components. Secondly, as d(«) < d(f) for o C B,
the truncated complexes still form a simplicial system. Finally, V\_{: is now a complex
that locally vanishes above and thus the canonical injection M, — W, into the DG
module obtained as the total complex associated to V\_J; provides the desired functor-
ial quasi-isomorphism into a W,-acyclic R,-module. O

COROLLARY 2.16. The inclusion of the full subcategory of D(X,) consisting of all
W-acyclic DG R.-modules into D(X,) is an equivalence of triangulated categories. An
inverse is given by associating to a DG R.-module its W-acyclic resolution.

To derive a functor on all DG R.-modules it suffices thus to derive it on the
W .-acyclic ones.

PROPOSITION 2.17. Let M, — N, be a quasi-isomorphism of DG R.-modules and
P. a DG R,-module that locally vanishes above.

(1) If Py is locally free then the map Py @r, My — P, @, N is a quasi-isomorphism.

(2) If My, Ny are Wi-acyclic and P, is a projective R.-module, then the map
Homp, (P, M,) — Homg (P.,N,) is a quasi-isomorphism. In particular, any
morphism P, — N, of DG R-modules lifts through the given quasi-isomorphism
to a morphism of DG R,-modules P, — M.

Proof. Assertion (1) can be verified locally and there [ALG, X.66, Section 4,
No.3] applies.

To prove (2), we may assume by the first part of Lemma 2.14 that P, =P <. In
this case the spectral sequence associated to the skeleton filtration on P, converges
and so it is sufficient to show the claim in case that P, = p*(P,) with a projective DG
Ry-module P,. In view of 2.8(2) this requires to show that the corresponding map

HomRi(’Pm Mm) - Home(PozaNoc) (*)

is a quasi-isomorphism. Because of the second part of Lemma 2.14 we may reduce to
the situation where P, is generated in finitely many degrees, in which case the spec-
tral sequence associated to the degree filtration on P, converges. It remains to deal
with the case that P, is generated in a single degree k& and then the final part of
Lemma 2.14 exhibits the map (%) as a direct summand of T'(W,, M,[k]’) —
(W, N [k]") for some s. As M, , N, are W, -acyclic, this last map is a quasi-
isomorphism and the claim follows. O

COROLLARY 2.18. Any quasi-isomorphism P, — Q, between projective DG
R.-modules that locally vanish above is a homotopy equivalence. In particular, for
every DG R.-module M, and any quasi-isomorphism P, — Q, the induced maps

HOI’I’IR*(Q,M M*) — HOI’I’IR* (P*a M*)
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and

are quasi-isomorphisms.

Proof. It follows from 2.16 and 2.17(2) that any quasi-isomorphism between
projective DG R,-modules that locally vanish above is represented by an actual
morphism f: P, —» Q, of DG R,-modules. Such a morphism is a homotopy
equivalence if the identity on the mapping cone C, = Con,( f) is homotopic to 0.
With Py, Q, also C, is projective, thus W,-acyclic, and locally vanishes above. So the
preceding result 2.17(2) applies to yield that Homg (C,C.) — Homg, (C,,0) =0isa
quasi-isomorphism. The rest follows immediately. O

A quasi-isomorphism /: P, — M, of DG R,-modules will be called a projective
approximation of M, if P, is a projective DG R,-module that locally vanishes
above. The preceding corollary shows that projective approximations of a DG
R.-module are unique up to homotopy equivalence. Their existence is settled next.

PROPOSITION 2.19. 4 DG R.-module M, admits a projective approximation if and
only if it is bounded above with coherent cohomology.

Proof. If h: P, - M, is a projective approximation, then M, is necessarily
bounded above with coherent cohomology as this holds for P, and /% is a quasi-
isomorphism. Conversely, it suffices by 2.15 to show the existence of a projective
approximation when M, is furthermore W,-acyclic. But if M, is W,-acyclic with
coherent, thus W,-acyclic, cohomology, then its submodule of boundaries,
B, = d(M,) C M, is also W,-acyclic: the exact sequences

0— K. - M, - B.—0
0— B! - K — H(M,) -0

yield for each j > 1 and each simplex a € 4 isomorphisms
H(W,,B)) — H*\(W,,K) < H*'(W,, B,

whence H/(W,,B.) o Hdm Wy, B-dmWay — o for each i.

In view of this observation, the classical construction of a projective resolution
applies: as H,(M.,) is coherent there exists a surjection from a graded free R°-
module Q, with coherent homogeneous components onto H(M.,) such that Q; vani-
shes in degrees i > dif H'(Mp) vanishes for those degrees for all simplices  C o. Due
to the W,-acyclicity of the boundaries B, € M., this homomorphism lifts from the
cohomology to the cycles IC, € M,, and the resulting morphism of DG R,-modules
Pfko) = Q, Qpo Ry — M, is surjective in cohomology. Now Pfko) is projective, thus
any submodule is W.-acyclic, and the usual process, see e.g. [Har, 1.4.6], produces
a complex .- — Pg) B Pio) — M, — 0 with projective DG R,-modules
ng) that becomes acyclic when H is applied. Moreover, on each simplex o the pro-
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jective modules Pfj) can be choosen to vanish uniformly above so that the DG R,-
module P, associated to the total complex of the Pf:) is again a projective
R.-module. The induced morphism #4: P, — M, then resolves, cf. 2.7, and consti-
tutes a desired projective approximation. O

EXAMPLE 2.20. Let F, be a locally free R,-module with coherent homogeneous
components such that the transition maps pjﬂ(}' ») — JFp are quasi-isomorphisms. In
general, such a module will not be projective. However, each F, is projective over
R,. This fact can be used to construct the following explicit, and natural, projective
approximation. First consider the co-Cech complex

s D P Fee) > D D PF @) > QD) piFael) — 0,

lel=p =1 [2|=0

where the direct sums are indexed by ordered simplices, o« = (o, ..., 0,), and the
differential o is dual to the differential of the Cech complex so that

oe(og, - .., ap)) = Z(—l)je(oco, ey Oy, 0lp).

This differential is a homomorphism of DG modules and each term of the complex is
a projective R,-module by 2.13. The augmentation map EB|M|:0PZ(7m)€(“) —(>v.7-'*,
sum of the natural maps pi(F,) — F,, realizes the total complex of this co-Cech
complex as a projective approximation of F, as an R,-module: using a simple spec-
tral sequence argument the restriction of the augmentation map to any simplex is
seen to be a quasi-isomorphism.

The total complex associated to this co-Cech complex gives thus a projective
approximation P, of F,, see 2.7 or the proof of 2.19. Note that P, =
@D pi(F)llell, where the sum is taken over all ordered simplices o.

As we mentioned earlier in 2.12, and as can be seen easily from 2.13, R, is in gene-
ral not a projective module over itself. However, the construction above provides a
canonical projective approximation of R, over itself.

Remarks 2.21. (1) It follows that a projective approximation 4 P, — M, can be
realized as a pair of morphisms of DG R,-modules P, — /\A/l/* <~ M,, where the
morphism M, — M* is a W,-acyclic resolution and P, — M* is a projective
approximation as constructed in the proof.

(2) If so desired, one may clearly modify the above construction to obtain in the
end a projective approximation F, — M, with F, a graded free DG R,-module.

(3) With the notation of the proposition, if 4" C A4 is a set of simplices such that
H(M,) = 0 for all simplices o that do not contain a simplex from A’, then the above
construction produces a projective approximation with P, = 0 for the same simplices.

Analogously, if H(M,) = 0 for i > i, then the construction provides a projective
approximation /: P, — M, with Pi =0 for i > i.

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023999012081

150 RAGNAR-OLAF BUCHWEITZ AND HUBERT FLENNER

2.22. Now we can describe the Ext-functors of DG R,-modules when the contra-
variant argument admits a projective approximation. Recall that by our conventions
for R.-modules M,, A, the Ext‘-functors are given by the set of morphisms
M, — N, of degree k in the derived category so that

Extly (M., NV,) = Hom e, (M., NL[K]).

The following proposition summarizes 2.19, 2.17(2), and 2.16. The reader should
compare the result with [III, VI.10.2.4] in the algebraic case.

PROPOSITION 2.23. If M, is a DG R.-modules that is bounded above with coherent
cohomology, and N, is any DG R.-module then

Exty (M., N,) = H'(Homg,(P., N.)) forkeZ,

where P, — M, is a projective approximation and N'» — N, is a quasi-isomorphism
into a W-acyclic DG R.-module. O

2.24. Projective approximations allow as well to derive tensor products of DG
R.-modules. Calling a DG R.-module M, flat if M, @z, ( ) preserves quasi-iso-
morphisms of DG R,-modules, a projective module that locally vanishes above is
flat by 2.17(1). Indeed, for flatness it suffices already that the module locally vanishes
above and that its restriction to each simplex is projective. For example, R, itself is
always flat. If P, — M, is a projective approximation of a DG R,-module M,,
necessarily bounded above with coherent cohomology, and if N, is any DG
R.-module, then P, ®%, N, represents M, ® g N, the derived tensor product of
M, with NV, over R,.

By 2.18, the derived tensor product is well defined up to homotopy equivalence,
and by 2.17(1) and 2.18 a pair of quasi-isomorphisms M, — M., N, — N, of
DG R,-modules induces a quasi-isomorphism M, ® g, N, — M. ® r N,. If
N, admits a projective approximation as well, say Q, — N, then M, Qr, O,
represents M, ® r N, too. If N, is flat and locally vanishes above then, again
by [ALG, X.Prop.4], the given quasi-isomorphism P, — M, induces a quasi-
isomorphism M, ® g N, —> M, ®%, N, and so, for example, M, ® r, R« = M,.

A useful consequence of the preceding considerations is the following result that is
again well known in the algebraic case, see [Ill, VI.10.3.15].

COROLLARY 2.25. Let R — Sy be a quasi-isomorphism of DG algebras over Oy,

(1) If My, Ny are DG R.-modules that are bounded above with coherent cohomology,
then there are natural isomorphisms

Exth (M., N,) — Exti (M, ® 2.5, N, ® z.5.)

for each integer k.
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(2) If M, isin D (R.) and N any DG S,-module, then for each integer k there is a
natural isomorphism

Extly (M., N,) — Exti (M, ® z.5.,N.).

(3) Restriction of scalars from S, to R and ( ) @ r,S« form a pair of inverse exact
equivalences between D ;(S.) and D_,(R.).

Proof. Let P, - M, and Q, — N, be projective approximations as DG
R.-modules. By 2.17(1), Q, — Q, ®x, S« is a quasi-isomorphism and so

Exty (P., Q.) — Exth (P, Q. ®z. S.).

As Hompg (P, Q. ®r, Sx) = Homg, (P, ®r, Sk, Qx ®r, Si) and P, ®x, S, is a pro-
jective DG S,-module that locally vanishes above, assertion (1) follows from 2.23.

To obtain (2), let P, — M, be as before and N, — N, a W,-acyclic resolution
that is a morphism of DG S,-modules. One has then

Exth, (M., N,) = H(Homg, (P., N.)) by 2.23,
~ H*(Homg, (P, ®r, S., N.)) by adjunction,
o Extg*(M* ® =.Se, Ny) by 2.23 again.

For (3), note that ( ) ® r,S« on D_, (R,) is fully faithful by (1). This functor takes
its values in D__; (S.), and to establish it as an equivalence with inverse as indicated,
it suffices to remark that for each N, in D_,(S.) the natural morphism
N, ® RSk = N, obtained from (2) is an isomorphism in D_,(S,). Indeed, let
N, — N, be again a W,-acyclic resolution that is a~m0rphism of DG S.-modules
and choose a morphis~m of DG R,-modules Q, — N/, that constitutes a projective
approximation. As ./\/:k is already a S,-module, this quasi-isomorphism factors as
Q, = Q, ®r, S« = N, the morphism Q, — Q, ®x, S, is a quasi-isomorphism
by 2.17(1), and thus so is Q. ®g, Sx — N,. Now the pair of quasi-isomorphisms
Q. ®r, S« —> N, < N, represents the morphism N, ® z,S. — N, whence the
latter is an isomorphism in D_; (S.). ]

2.26. Considering Oy, as a DG algebra concentrated in degree 0, (projective) DG
Oy,-modules are just complexes of (projective) Oy, -modules. In this situation, the
restriction functor to a simplex « is easily seen to admit a right adjoint, given by

o pﬁa*(Mat)a for ﬁ Coa,
Pur(Ma)p = {0, otherwise,

cf. [Flel, Section 2], or, again more generally, [I1l, VI.5.3]. As it is right adjoint to an

exact functor, p,, transforms an injective Oy,-module Z, into the injective Oy, -mod-
ule p,«(Z,). The canonical map M, — [],., Psx(My) is a monomorphism for each
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Oy,-module M,, and embedding in turn each M, into an injective Oy, -module Z,
yields by composition a monomorphism M, — [],, p«(Z,) into an injective Oy, -
module. Thus the category of Oy,-modules has enough injectives. In particular, for
complexes M., N, of Oy, -modules one may calculate Extlj(* (M, N,) in the ‘classi-
cal’ way as Hk(HomX*(M*,I*)) if N, admits an injective resolution A/, — Z,. By
2.23, if M, is a complex of Oy, -modules that is bounded above with coherent coho-
mology, then these groups can be calculated using a projective approximation of M,.

2.27. Restricting a given Oy-module M to the Stein compact sets of the given cover-
ing defines the Oy,-module M, = j*M with M, := M|X,. This functor is exact and
so induces directly a functor j*: D(X) — D(X,) between the derived categories.

To describe a right adjoint, denote j,: X, — X the inclusion and associate to a
module M, on X, the Cech complex C*(M,) with terms CP(M,,) := H|a|:pja*(Mz)7
where the product is over all ordered simplices, and the differential is defined in the
usual way by means of the transition maps for M, and the given ordering on the
simplices. The functor j,(M,) := H’(C*(M.)) is a right adjoint to j* on the category
of Oy, -modules, and the canonical homomorphism of Oy-modules M — j,j* (M)
is an isomorphism.

As the given covering is locally finite, the complex C*(M,) is locally bounded; the
localization at a point x € X vanishes in degrees greater than max{|«|, x € X,}. As the
covering is by closed sets, the functors j,,, and then also C?( ), are exact. These two
facts together imply that the total complex (associated to) C*(M3) is acyclic when-
ever M; is an acyclic complex of Oy,-modules. Accordingly, C* can be viewed as a
functor from D(X,) to D(X). Note that the terms of the complex C*(M3) are flat
Oy-modules whenever M is flat over Oy, for each simplex o.

We now show that C* represents Rj,, the right derived functor of j,: for an Oy, -
module of the form p,.(M,), the complex C*®(py(M,)) is nothing but the usual
(sheafified) Cech complex of M, on X, with respect to the trivial covering
{X, N X; = X,}ic,» then extended by zero to the rest of X. Clearly C*(p..(M,))
resolves ju(pus(My)) =2 juu(M,), the extension of M, by zero. By 2.26, each
Oyx,-module M, admits a resolution by Oy, ,-modules of the form [[,_, pou(N5),
whence the natural morphism of functors Rj,— C*, induced by the universal prop-
erty of the derived functor, is indeed an isomorphism. The relationship between
D(X') and D(X,) can now be summarized as follows.

PROPOSITION 2.28. The functor j*: D(X) — D(X,) embeds D(X) as a full and
exact subcategory into D(X,) and C* =2 Rj, is an exact right adjoint. In particular, for
M,N € D(X) and N, € D(X,) there are functorial isomorphisms

M= C(j* M),
Exth(M, N) = Exth, (j*(M),j*(N)),

and
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Exty (7 (M), V) = Exty(M, C(W).
The adjoint pair j*, Rj, satisfies the projection formula: the canonical morphism
M® Oij*(N*) — R, "M @ OX*N*)

is an isomorphism in D(X) for M € D(X) and N, € D, (X,).

Proof. As mentioned above, the natural morphism of functors id — j,j* is an
isomorphism on the level of modules. It induces an isomorphism id — (Rj,)j*= C*j*
of the corresponding derived functors on D(X), whence the functor j* is still fully
faithful on D(X).

To prove the projection formula, observe first that the natural map

J* M &0, M) — j* (M) ®o,, j* (M)

is an isomorphism as this holds on each simplex. As j* is exact, this isomorphism
passes to the derived tensor products as soon as those exist. Adjunction then yields
a morphism M ® o, M'— Rj,(j*(M) ® o, j*(M')). Now set M" = Rj, N, and
compose the corresponding morphism with the one induced by the adjunction
map j*Rj,(N4) — N, to obtain the morphism in the projection formula. Given
the existence of this natural morphism, to establish it as an isomorphism for
N, € D, (X,), we first replace N/, by a projective approximation P,, then use
2.13 to reduce to the case N, =pi(Ox,) for some simplex o Now
Rj.(p;(Ox,)) = C*(Ox|X,) is a finite complex of flat Oy-modules that resolves
Oxl|X, and Rj,(G*M ® o, p;(Oyx,)) = C*(M|X,) resolves M|X,. The desired iso-
morphism in D(X) follows thus from the obvious one for Oy-modules,
MIX, = M o, (OxX,). 0

EXAMPLE 2.29. If NV is any complex on X then, by our conventions, its coho-
mology groups H*(X,N) are the groups Ext’}(@x,/\/ ) and so can be computed by
the complex Homy, (P,, N,), where P, — Oy, is a projective resolution of Oy, as a
module over itself and AN, — N, is a quasi-isomorphism into a W,-acyclic com-
plex. Using the projective approximation P, of Oy, constructed in 2.20 it follows
that Homy, (P,, N.) is the usual Cech-complex I'(X, C*( \V,)).

Remarks 2.30. (1) Note that the preceding constructions work more generally on
the category of all sheaves of Abelian groups Aby on X and Aby, on X,. In parti-
cular, later on we will need the Cech functor in this context, where it is still exact and
defines with the same arguments as before the derived functor Rj, from D(Aby,) into
D(Aby).

(2) As j* is fully faithful, the essential image of D(X) under this functor is easily
seen to consist of all complexes A, in D(X,) for which the transition maps
p:ﬁ(/\/a) —> N are quasi-isomorphisms for all simplices o, f with o C f. In this case
the natural map j*C*(N,) — N, is a quasi-isomorphism, and 2.28 implies that for
each complex M € D(X ), there are isomorphisms
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Extly (N, j*M) =2 Exti(C* (W), M), i€ . ]
We now turn to the construction of algebra resolutions and resolvents.

2.31. A morphism R, — R, of DG algebras over W, is called free if there is a gra-
ded free DG R,-module F, such that 7~2* =~ Sg,(F.) as R.-algebras, where the sym-
metric algebra functor is to be understood in the graded context. Analogously we say
that R, is locally free if ﬁa,x is free as R, ,-algebra for each simplex o and each
x € W,. The composition of (locally) free morphisms of DG algebras is again
(locally) free.

If R,— S, is any morphism of DG algebras over W,, a factorization
R, — R.—> S, with R, — R, locally free and R, — S, a surjective quasi-
isomorphism of DG algebras will be called a DG algebra resolution of S, over
R.. Such a DG algebra resolution will be called free if R, is free.

The result 2.25 together with the next one are the crucial ingredients in the con-
struction of cotangent complexes following Quillen’s original approach [Quil],
[Qui2]. In his framework of closed model categories, the free morphisms are the cofi-
brations and the surjective quasi-isomorphisms are the acyclic fibrations.

PROPOSITION 2.32. Every morphism R, — S, of DG algebras admits a free DG
algebra resolution.

Proof. According to our general assumption on DG algebras, the R,-module S,
is in Coh R, and so 2.19 and 2.21(a),(b) guarantee a projective approximation of S,
in form of a morphism of DG R,-modules from a graded free DG R,-module, say
F io) —> S,.. The induced morphism Rio) = Sy, (F 10)) —> S, of DG algebras induces
a surjection in cohomology and the structure map R, — RSFO) is free.

Now assume constructed for some integer kK > 0 a morphism of DG R,-algebras
Rgf‘) —> S, with Rﬁf‘) free over R, that is surjective in cohomology and such that
H‘(RS@)—) H'(S,) is an isomorphism for i > —k. As the kernel of the surjection
H_k(Rfkk))—> H5(S,) is coherent, one may choose a graded free coherent Ow,-
module F.*~! that is concentrated in degree —k—1 and a morphism
: f;k_‘ —>Rfkk) of graded Oyw,-modules of degree 1 that maps .7-';1‘_1 into the
cycles of R® and such that the sequence of Oy, -modules

F'—HHFRD) — HHK(S)—0
is exact. Now set

RED 2 8,0(F ! ®0,, RY) 2 52, (F ! ®0,, Re) @, RY
and use ¢ to extend the given differential. This DG algebra is free over Rgf‘) and the
structure map is an isomorphism in degrees greater than —(k + 1). The composed
map, say, 7 .7-'*_1‘_l — Rfkk) —> S, maps .7-'*_]‘_l into the boundaries, hence we can

find a lifting ]—";’"1 — 8;]{_1 so that y = 9y. There is a unique homorphism of
R®._algebras R*+D — S, that restricts to 7 on F_*~!. By construction it is also
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a morphism of DG algebras, and it is surjective in cohomology with H’(Rff*”) —
H'(S,) an isomorphism for each i > —(k + 1). Finally set R, = 11_m> Rfkk). O
k

To remember the graded free DG R,-modules F ;k ®0,, R. that were successively
adjoined in the construction of the algebra resolution we also write R, =
RF ;k ®0y, Ra; k = 0], and the sequence of free DG algebra morphisms

Res > RO =RF ®0, Rik=iz=0— - = R,

is sometimes called the associated Postnikov tower. This construction is useful for
inductive proofs. For example, one easily shows in this way the following result that
we will use later on.

LEMMA 2.33. Let S, be a free Ry-algebra on W, over Y. Every Qy-linear derivation
{5: R.—> M, into a module M, € CohS, extends to an Oy-linear derivation
0. Sy — M,.

Following [Flel], we now introduce the notion of a resolvent (see also [Pal]).

DEFINITION 2.34. Given a morphism of complex spaces f: X—> Y, a resolvent for
X over Y consists of a triple X = (X, W,, R,) satisfying the following conditions.

(1) Xy = (Xa)yueq 1s the simplicial space associated to some locally finite covering
(X1);er of X by Stein compact subsets as in 2.2
(2) W, = (Wy),ecq 18 a smoothing of f. By this we mean that there is a factorization

XAC___’___.W%
N A
Y

where W, = (W,),c4 1s a simplicial system of Stein compact sets, i is a closed
embedding and }7 is smooth, i.e. for every point x € W, the analytic algebra
Ow, x is smooth over Oy 7 .

(3) R, is a DG algebra resolution of Oy, — Oy, see 2.31.

The resolvent X is said to be free if W, is a free smoothing as in 2.2 and R, is a free
Ow,-algebra.

Given X, and W,, we will sometimes also refer to R, as a resolvent of Oy,. The
preceding results have the following application.

COROLLARY 2.35. A4 free resolvent (X, Wy, Ry) of X over Y exists and one may
assume that Ow, —> RY is an isomorphism, thus that R, = Ow, [F.*; k = 1] with
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suitable graded free Ow,-modules F ;/‘ concentrated in degree —k. For any resolvent,
the induced functor () @ =, Ox,: D, (R«) — D_,(X.) is an exact equivalence of
categories.

Remark 2.36. Up to this point, all results are valid with insignificant modi-
fications for a finitely presented morphism X —> Y of arbitrary locally Noetherian
schemes if one replaces ‘Stein compact set’ by ‘affine scheme’. If one further replaces
‘coherent’ by ‘quasi-coherent’, the preceding results hold even for any morphism of
schemes. O

We finish this section with the relevant results on cotangent complexes, and here
we need characteristic zero, as otherwise DG algebra resolutions are not sufficient,

[Qui2], [Qui3].

2.37. Let R, be a DG algebra over a simplicial scheme of Stein compact sets W, as
before. By definition, Oy, ., w, = Ow,®0,Ow,, where ® denotes the analytic tensor
product. Abusively, we set

R ®0, Ry =Ry ®0y. (Ow,®0,0w,) ®0,, R

and note that R, ®p, R. is naturally a DG algebra over the simplical scheme
Wi Xy Wy = {Wy xy Wy},eq of Stein compact sets, see 2.2.

Let w R.®p, R« — R, denote the multiplication map and set
T, :=kery € Ry ®o, R«. The DG R,-module Q;a*/y = I*/Ii is the module of (ana-
Iytic) differential 1-forms of R, over Y. As R, has coherent homogeneous compo-
nents by hypothesis, Q;a* Y is a DG R,-module in Coh(R,). The universal
derivation d: R, — Q;z* sy maps a local section f of R, to the class
df=1®f-f®1eZ,mod Ii. It is a map of degree zero that has the desired univer-
sal property with respect to homogeneous Y-derivations into graded R.-modules in
Coh R,. More precisely, with Der,(R., ) the group of Y-derivations of degree i
into the R.-module N, one has a natural inclusion

HomY, (Q%*/Y,N*) 4 Derl(R., N)

that becomes an isomorphism for N, € Coh R,. As the classes df locally generate
Q;z /v its differential, inherited from R, ®o, R, is uniquely determined through
a(df) = d(of).

The module of (analytic) differential forms of degree k > 0 is the DG R,-module
Q’;z Jy = A%Q%3 /v the alternating or (graded) exterior power of Q;a Jy» See, for
example, [Lod 5.4.3]. These DG modules are again in CohR,. For later use we recall
that (graded) symmetric and exterior powers are related through S;‘z (Q;z* /Y[l]) =

Qécz* / y[k]-
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2.38. For any resolvent X = (X, W,, R.), the differential module Q;z* /Y is a locally
free R,-module and so are the exterior powers Qé‘z /v If the resolvent is free, then
these modules are even projective over R, for k > 1.

For any resolvent, the natural maps Q’;z Yy —> Qé‘z /vy ®R. Oy, for k = 0 are quasi-
isomorphisms by 2.17. The Cech-complex C’(Q%Z* /y ®r, Ox,) on X is a cotangent
complex of X over Y and is denoted [Ly/y. By construction, it is a complex in
D, (X) whose terms are flat Oy-modules. The isomorphism class of Ly/y in
D(X') is well defined, see [Flel], in the sense that it does not depend on the choice
of the resolvent (X, W,,R,). Furthermore, we set AkLX/Y = C‘(Q’{Z*/Y(X)R*
Oy,) for k = 0. These complexes are also in D, (X) and their isomorphism classes
are again well defined. Indeed, they represent the derived exterior powers of L,y in
the sense of [DPu,Qui2] or [Ill, 1.4.2.2].

The functoriality of the formation of the cotangent complex and its powers has the
following consequence: the natural morphisms of complexes of Oy, -modules

A/(LX/Y ¥ —> Q{/CZ,/Y ®’R1 OX7 (3)

are quasi-isomorphisms for each simplex o and each k > 0.
Recall that the tangent cohomology functors of X over Y are defined by
T}/Y(N) := Exty(Ly/y,N), i€,
for any Ox-module, or, more generally, for any complex A in D(X). Note that in

view of 2.30(2) and the quasi-isomorphism (3) for k=1 the right-hand side is
isomorphic to Extégx (Q;z* /v OR, Oy.,N,). Thus, according to 2.25 (2),

Ty y(N) = Exty, (Qr_ v, N, @)

The following description in terms of free resolvents will be frequently used in this
paper.

PROPOSITION 2.39. If (Xy, Wi, Rs) is a free resolvent of X over Y, then for every
complex N € D(X) and each integer i there are canonical isomorphisms
T)"(/ yWN) = Hi(HomR*(Q;z*/Y, NY), where Ny, —> N, is a quasi-isomorphism of
Ny :=J*(N) into a W-acyclic complex of Oy, -modules. Moreover, if N is a complex
of coherent Ox-modules then these groups are as well isomorphic to H'(Der y(R, N ).

Proof. The claimed isomorphism follows from (4) as Q}z Y is a projective
R.-module for a free resolvent. The final assertion is a consequence of the usual
universal property of the module of analytic differentials, see 2.37. O

3. The Atiyah Class

We first define and investigate Atiyah classes and their powers on D_, (R.) for any
DG algebra R, over a simplicial scheme of Stein compact sets W, over a complex
space Y in terms of connections, then descend to D ,(X) by means of resolvents
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and the Cech functor. We keep the notations of the preceding section, and una-
dorned tensor products will be over R,. Moreover 0 will indiscriminately denote
the differentials of the respective DG modules.

3.1. ATIYAH CLASSES VIA CONNECTIONS

Recall that a connection on an R,-module M, is a map of degree 0, V: M, —
M, ® Q;z* ne that satisfies the usual product rule, V(mf) = V(m)f + m ® df, for local
sections m in M, and fin R,.

We first collect some basic and simple facts about connections.

LEMMA 3.1. Every projective R.-module that locally vanishes above admits a
connection.

Proof. As the direct sum of a family of connections is again a connection, we may
restrict by 2.13 to the case that P, = p%(P,), where P, is a projective R,-module
generated in a single degree, say k. If P, is graded free, then P, = V[k] ®c R, with V'
a finite-dimensional vector space over C, and the collection of maps

1®d: VIkl®c Rg— VK] ®c Q;Wy, % C B,

defines a connection on V[k] ®c pi(R,). In the general case P, embeds into a free
module such that F, = V[k] ®c R, = P, & Q,. If V: pi(F,) — pi(F,) ® Q;z*/y is
a connection on p}(F,), then the composition

incl.

% « \Y% % roj. «
PiP) 55 piFL) — PUF) @ Qk y > PP @ QL y

is easily seen to be a connection on pi(P,). OJ

PROPOSITION 3.2. For any connection V: M, — M, ® Q}z*/y on a DG R,-
module M., the map [0, V] of degree 1 is a homomorphism of DG R.-modules, so that
[0, V] =0V —V0 e Hom%z* M, M, ® Q;a*/y) is a cycle. Its cohomology class in
H!(Homg (M,, M, ® Q;z*/y)) is independent of the choice of connection.

Proof. That [0, V] is a homomorphism of right R,-modules is easily verified by
explicit calculation. Moreover,

[8,[0, V]] = 9[0, V] + [0, V]d = d(OV — V) + (OV — Vd)d = 9*V — V&* = 0,

whence [0, V] is a homomorphism of DG modules, thus a cycle.

Ifv,Vy My — M, ® Q;z*/y are connections, then V; — V; is R,-linear and so
[0,Vi] =[0,V2]+ [0,V — V5], which means that the cycles [0,V],[0,V,] are
cohomologous. O

This construction of a well defined cycle from a connection can be iterated: for
each k > 0, the cycle [0, V] defines a morphism of DG R,-modules of degree k,

.
[0, VI': M, — M. ® (Qf, ;)™ 25 M ® .y
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where Ak: (Q;a* /Y)®k—>§217‘2* % is the natural projection. The class of [8,V]* in
H/"(HomR*(M*, M, ® Qé“z /y)) is again independent of the chosen connection as fol-
lows from the case f=1idy,, in the next result that deals more generally with the
functoriality of these iterated classes.

LEMMA 3.3. Let f: M, —> M. be a morphism of DG R.-modules. If
VM, —> M. ®Qp y and V:M,— M, QQ

are connections, then (f® 1)o]0, VI and [0,V'] of represent the same class in
H'(Homg, (M., M, ® Q).
Proof. 1f k = 0, the classes in question are equal to fitself. If kK > 0, the map

gi=(f®1oVo[d VI =V o[g VI ofi My — M. 00k

of degree k — 1 is R,-linear. As [, g] is equal to (f® 1)o[d,V]F — [0,V o f the
claim follows. O

Applying the preceding result when f'is a homotopy equivalence between projec-
tive approximations of the same DG R,-module shows that the following definition
is independent of the choice of projective approximation or connection on it.

DEFINITION 3.4. Let M, be a DG R.-module that is bounded above with
coherent cohomology. Let P, —> M, be a projective approximation as in 2.19 and
let V be a connection on P, that exists by 3.1. The Atiyah class of M, with respect to
R./Y is the image of [0, V] under the isomorphism

H'(Hompg, (P., P, ® Q) 2 Exty (Mo, M, ® Q)
[0,V] = At(M.,),

and the class of [0, V]* is mapped to the kth power of the Atiyah class of M.,

[0,V]' > At"(M,) € Ext (My, M, ® Q).

3.5. Now let ¢: R, — S, be a morphism of DG algebras over W, and M, an
R.-module with connection V. The composition

Vel 1 1®dp 1 = 1
M — Mi®Qg /y @S — M, ®Qg )y > (My®S,) s, Qg /vy

extends by the product rule to a connection Vs, on the S,-module M, ® S.. If M, is
a DG R,-module, one verifies easily that

[0,Vs,]" = (1 ® A"de) o ([0, V]F ® S,),

where AFde: (Al Qp /y) ® 8y 2 A§ (Qp, )y ® S.) — Al Qf y is the morphism of
DG S,-modules induced by d¢. These considerations imply the following result.
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PROPOSITION 3.6. Let ¢: Ry —> Sy be a morphism of DG algebras over W, and
M, € D (R.). Under the natural maps induced by do,

(A'de),: Exth, (My, M, ® @ y) — Ext§ (M, ® Su, M, ® Q. y),
the powers of the Atiyah class of M, are mapped to those of M, @ S.. ]
3.7. The definition of a connection does not involve the grading of the underlying
R.-module. In particular, if V is a connection on the DG R,-module M,, it is as well

one on the shifted module M,[i] for each integer i. As Op,; = (=1)'dp4., the cano-
nical identification

k [ . P
Exti, (M, My @ Q jy) —> Bxtyp (MLl Mu[1] @ @ /y)
for M, in D__; (R.) maps Atk(M*) to (—l)kiAtk(M*[i]), thus, in short,
AFMLLI) = (DNAE ML
3.8. The sign in this last equality disappears if one changes slightly the point of view:

recall that for any DG R.-modules M., N, and any integer k one has a natural iso-
morphism of DG R,-modules that moves the shift functor T* to the second factor,

M ®NJK — M. ®WLIKD, THm@n) = (=1)"me T,

where m is a local homogeneous section of M, and 7 is a local section of A/,.
Composing At“(M,) with this isomorphism yields then a morphism

k . o . = ~
M, At (M,) M, ® Q%*/Y)[k] — M, ® (Q;‘z*/y[k]) — M, ® ék(Q;a*/Y[l])

that we denote, abusively, again by At*(M,). In this form, 3.3 and 3.7 translate into
the following

PROPOSITION 3.9. The powers of the Atiyah class define morphisms of exact

functors
AF( ) id— () @ S"Qp 1D, k=0,
on D, (R.) that commute with the shift functor. O

3.2. ATIYAH CLASSES OF COHERENT Oy-MODULES

Now we descend to X. Let 7 € D__;, (X) be a complex and (X, W, R.) a resolvent of
the morphism of complex spaces X — Y. Associating to these data the complex of
Oy,-modules F, with F, = F|X,, the powers of the Atiyah classes of F are defined
to be the images of At“(F,) under the isomorphism

Exty (F., F. ® QO iy ® Ox,) = Exth(F,F @ A*Lyy),
AtN(F,) > AN(F).
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THEOREM 3.10. The Ativah classes At"(F) € Exti(F, F @ A Ly/y) are well
defined for each F € D (X).

Proof. To compare the Atiyah classes formed with DG algebra resolutions R,
and R of Oy, over W,, note first that by 2.32 there is a free R, ®o,, R, algebra
that constitutes a resolvent of Oy . Thus we may suppose that R, is an R,-
algebra. In this case 3.6 gives the independence from the choice of DG algebra
resolution.

The construction is as well independent of the embedding X, C W,. With
similar arguments as above it suffices to compare two embeddings X, C W,
and X, C W, that are related by a smooth map p: W, — W,.. If R, is a
locally free Oy, -algebra forming a resolvent then we can take a free p*R.
algebra, say, R, as a resolvent on W,. Now a projective R.-approximation P,
of F. gives a projective R,-approximation P, =P, ®x, R, and 3.6 applies
again.

Finally, the independence from the choice of locally finite coverings by Stein
compact sets is easily seen considering refinements; we leave the simple details to
the reader. O

We now translate the earlier results on the naturality of Atiyah classes. The
following is an almost immediate consequence of 3.3.

PROPOSITION 3.11. For every morphism of complexes o.: F —> G of degree 0 in
D (X) the diagram

F z G
Atk (}")I JAI"(G]

}‘@/\k]..xn’ u;ei:'l- GQI\RI--X{Y

commutes.

Proof. Consider as in 2.34 a resolvent of X over Y and choose projective
approximations P, — F, and Q, — G,. There is a morphism a,: P, —> Q, lifting
the given morphism o and the assertion follows now easily from 3.3. O

For F € D, (X) as before, Ext}(F,F) := P, Extg((]-", F) carries a natural alge-
bra structure given by Yoneda product, and Ext}(F,F ® AkLX/y) is a bimodule
over Ext3.(F,F).

PROPOSITION 3.12. The power At“(F) of the Atiyah class of F is a (graded)
central element of degree k in the bimodule Ext3(F,F @ AkLX/Y), which means that
E-AR(F) = (1) A (F) - & for every element & € Exti(F, F).

Proof. By the preceding result and by 3.7 the diagram
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F 4 Fi)
AF(F) J l(—l) i ALk
F @A Ly/y 228 FlII@A Ly y
commutes. |

Using the isomorphisms S"(LX/Y[I]) = (AkLX/Y)[k], this compatibility with
morphisms can be summarized in analogy to 3.9 as follows.

COROLLARY 3.13. The powers of the Atiyah class define morphisms of exact
functors

A( ) id— () ® S*(Lyy[lD), k=0,
on D

coh

(X) that commute with the shift functor. ]
The Atiyah classes are as well compatible with mappings in the following sense.

PROPOSITION 3.14. Let
X' f X

b

Y/ ————Y

be a diagram of complex spaces and F € D_ (X ). Under the natural map
Exti(F, F ® ALy y) — Exti (Lf*(F), Lf*(F) ® ALy )y)
the Atiyah class At*(F) is mapped onto the Atiyah class At“(Lf*( F)).

Before giving the proof we have to choose compatible resolvents for X and X.
This is done as follows. Consider locally finite coverings {X}};c;, {X};c; of X resp.
X’ by Stein compact sets such that there is a map o: I — J with f{X"}) C X, for
allie I Let f: X, = (X)),eq = Xi = (Xjp)pcp be the associated morphism of simpli-
cial spaces. There is a natural functor f*: Coh(X,) — Coh(X)) which associates to
M., € Coh(X,) the module with f*(M.), := (f]X,)"(Ms). Obviously f* trans-
forms locally free modules into locally free modules.

Choose embeddings X;— L;, X;— V; into Stein compact sets in C% x Y resp.
C" x Y’ and take the diagonal embedding X C L, := L, xy V;. From the data
X; € Ljand X C L] we construct smoothings X, € W,, X, € W/ of X — Y and
X’ — Y’ respectively, as explained in 2.2. The projections induce a system of com-
patible maps ﬂ W, — W, restricting to fon X/,. As above there is a natural func-
tor f *: CohW, — Coh W/ transforming locally free modules into such. Therefore, if
R. — Oy, is a resolvent then f *(R,) is a locally free DG algebra over W',. The pro-
jectionf *(R+) — Oy, can be factored through a quasi-isomorphism R/, — Oy, such
that R/, is a free DGA); *(R)-algebra, and we take this as a resolvent for X’ over Y.
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We remark that one has a natural functor f —1 Ab( I/[/*) — Ab( I/[/;) on the category
of simplicial systems of Abelian groups on W, with f~1(A), := 1~ (Asx)-
After these preparation we can easily deduce 3.14.

Proof of 3.14. Let F, — F, bea quasi-isomorphism into a W,-acyclic module,
P, — F.a projective approximation, and let V: P, — P, ® Q72 Y be a connection.
Using the product rule, the composed map

ANy iy ®1p, [ Q) — P @ 1n, Qi

can be extended to a connection V' on P, := f -1p, ®-ix, R.. Hence, under the
natural map

Exty, (P., Pe ® Q. y) — Exty (P, P, @ Q /y)

the Atiyah class At“(P,) maps onto At* (P.). Since the module on the left is iso-
morphic to Extl)‘}(}' F® AkL)(/Y) and the module on the right is isomorphic to
Ext’,},(Lf*]—'7 LFF ® AkLX,/Y,), the result follows. O

COROLLARY 3.15. Let
x ' ,x
Y

YV —

be a diagram of complex spaces and o. Lf*F — F' a morphism of complexes of
sheaves, where F € D_,(X) and F' € D, (X'). Then the diagram

Lf*F . F
L/'*Atk(}‘)l lAtk(}")
LIFR LN Lxyy) “5F F@N Ly
commutes.
Proof. This is an immediate consequence of 3.11 and the fact that
LAY (F) = AL/ F). O

In the final result of this section we explain how to compute the Atiyah class using
the second fundamental form. Slightly more generally it is convenient to show the
following result.

PROPOSITION 3.16. Let X be smooth over Y and let 0 — F’ L> FL F 5 0 be

an exact sequence of coherent sheaves on X. Assume that there is a map
V: F — F" ®Qyy satisfying the product rule V(fa) = V(f)a+ p(f) ® da for local
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sections f in F and a in Ox. The linear map ¢ :=Voj F — F" ®Q§(/y~ is then
Ox-linear, and if

&' Hom(F', F" ® Qy /) — Ext'(F, F ® Q) ),
§": Hom(F', F" ® Q) y) > Ext'(F", 7' @ Q) y)

denote the boundary operator in the respective long exact Ext-sequences then
8'(0) = AUF) and §"(0) = —AUF").

If F itself admits a connection, say, Vi: F > F ® Q}(/ y» then this result applies to
V:=p®10Vj, and the map ¢ becomes the usual second fundamental form. This
shows thus in particular how to compute the Atiyah class using the second funda-
mental form.

Proof. Let (X, Wy, R,) be a resolvent of X as in 2.34. There are projective
approximations P,, P, =P, @ P., P, of F., F., F., respectively that fit into a
commutative diagram

0 P, — P2 PoP,—Lw P] 0
0 FL— F. L. 7] 0

Consider connections V', V" on P., P,, respectively, and equip P, with the connec-
tion V' @ V”. Using the isomorphisms

Hom(F', F' ® Q,y) = H(Hom(P,, F, @ Qp, ),
Ext'(F", 7" ® QY \y) = H'(Hom(P,, F, ® Qp ),

0"(0) can be computed as follows. The linear map ¢ o ©’ can be extended to a linear
map 6: P, > F' ® Q}z*/y, and G o 0 is zero on P, and so defines a map ¢”: P, —
Fi® Q;a*/y that represents —o"(s). Taking as extension the map G :=Von—
@ ®1)oV'opwegetdod=—(n"®1)oV'dop, and so (7" ® 1)o V'O represents
0"(0). By construction it also represents —At(F”), proving the second part of the
result. The equality ¢'(c) = At(F’) follows with a similar argument and is left to
the reader. O

Remarks 3.17. (1) If X is smooth over Y and if F is a coherent Oy-module then

the Atiyah class of At(JF) is the cohomology class that is represented by the
extension

0 — F ®0, Oy —> PF) = p}(F) ®o,.,, Oxxyx/T> —> F = 0, (%)

where J € Oyy,x is the ideal of the diagonal and where we consider PYF) as an
Oyx-module via the second projection p,. Using 3.16 a simple proof can be given
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as follows. The map V": pi(F) - F ®o, Q}{/Y given by V(f'® @) := f® da for local
sections f of F, a of Oy, is easily seen to factor through a map V: P'(F)—
F Qo Qﬁ{/y that satisfies the product rule required in 3.16. The map ¢ := V o is just
the identity on F ®0, Q) as Qi{/y is identified with J/J? via dar>1®a—a® 1.
Hence, 3.16 shows that At(F) is represented by —d”(¢), where §”: Hom(F®
Q}/Y,}' ® Q}(/Y) — Ext/(F,F® Q}/Y) is the boundary map. In view of [ALG,
X.126, Cor.1(b)] this proves the remark.

(2) In order to check that the sign of our Atiyah classes is correct, consider the case
that X = P" and M = Op:(1). It is well known that the extension class of the Euler
sequence

0— Qb (1) O =@ e0p —> Op(1) — 0

in Ext}w(Opn(l),Q}w(l)) =} HI(IP",QL”) >~ C represents the first Chern class
c1(Opn(1)). Explicitly, the maps j, p are given by j(x;dx; — x;dx;) = e;x; — ¢;x; and
ple;) = x;, respectively, with x,...,x, the homogeneous coordinates of P". The
module Oi’;’ ! admits a unique connection with V(e;) =0, and the corresponding
map o in 3.16 is easily seen to be -id on Q})ﬂ(l). Hence, it follows from 3.16 that

c1(Opr(1)) = —AUOp(1)). 0

Summing up we have a naturally defined class
exp(—Al(F)) = Y (—D'AN(F)/k! e [[ExtUF. F @ A'Ly)y),
& k

the Atiyah—Chern character, for every complex F in D_, (X).

4. The Semiregularity Map
4.1. A SEMIREGULARITY MAP FOR MODULES

Recall that a complex F over a complex space X is called perfect if it admits locally a
quasiisomorphism to a bounded complex of free coherent Oy-modules. For instance,
every Oy-module on a complex manifold when considered as a complex concentra-
ted in degree 0 is perfect. If G € D(X') is a complex then for every perfect complex F
there is a natural trace map

Tr: Ext(F, F ® §)— H'(X,G), k>0,

see [Ill]. These maps are compatible with taking cup products: if ¢ € Ext}(g, ),
where G is another complex in D(X), then the diagram

Exti(F F®G) — HX,0)

I k

Ext\Y (F.FQg) — H* (X,G)

commutes. For instance, applying the trace map to the Atiyah classes we obtain for
every perfect complex F well defined classes
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chi(F) = Tr((—1)*At"(F ) /k! € H (X, A" Ly, y),

that are the components of the Chern character ch(F) = Tr exp(—At(F)) of F. If X
is a manifold and F is a vector bundle then this gives the usual Chern character of X,
see [At, OTT], and in the general algebraic case it is Illusie’s [Ill] description.

DEFINITION 4.1. Let X — Y be a morphism of complex spaces and let F be a
perfect complex of Oy-modules. The map

0 := Tr(x - exp(—At( F))): Ext(F, F) — [ [ (X, A'Ly,y)
k

is called the semiregularity map for F.

Slightly more generally, for every coherent Oy-module N and every r = 0 there
are maps

o =0y :=Tr(x-exp(—At(F))): Exti(F,F @ V) — [ [HV (X, N @ ALy, y),
k

to which we will also refer as the semiregularity map.
To formulate the next proposition, set L :=ly/y and note that the group
A=, A" with
A= PExty(F, F @ NL) = P Exti(F, F @ S/(L[1])
J J
carries a natural algebra structure that is associative but in general not graded com-
mutative. Moreover, M := @, M’ with M':= P, Extiy(F,F @ N ® S/(L[1]) is a

graded A-bimodule. Every element & € TS(’/IY(N ) = Exty(IL[1], N') defines a deriva-
tion (&, *): A — M of degree r which is induced by the composition

AL Lo AL N @ AL,

where A is the indicated component of the comultiplication on A®L. Thus, for ele-
ments w; € A', w, € A we have

(€ o) = (&, 1) + (= 1) 01 (&, ).

In particular, for 7 = Oy, this gives a derivation (&, x) from the cohomology algebra
@ H™(X,NL)into @ H™(X,N ® NI.). Note that using resolvents one can check
all this very explicitly.

PROPOSITION 4.2. Let X — Y be a morphism of complex spaces. If F is a perfect
complex on X and N is an Oy-module, then the diagram

T — A Ext’x(F,F@N)

(*,Ch k1 (%\ /

H (X, N® AkLX/ ¥)
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commutes, where oy denotes the kth component of o .

Proof. We need to show for & € T} (N) that

k k+1
e ) < n ()

As the trace map is compatible with taking cup products, the diagram

Ext&t(F, F®AF1L) A ExtiH(F FoLeAL) = Extr (FFoN @ AL)

I I |

HR (X AR L) — 2 HR (X L AKL) —— HAT(X, N®AKL)

commutes, where as before I = [Ly/y. Therefore

AR\ A(F)
Tr<€’(k+l)!> = <5’Tr<(k+1)! . )
As (&%) is a derivation of degree r on Exty(F,F ® S*(IL[1])) and
At (F) e A° = ExtY(F, F ® S*(L[1])), we obtain that
(& AT F)) =Y AU(F)E A(F NALT(F),

For homogeneous endomorphisms f, g the trace satisfies Tr(fg) = (—1)‘f g1 Tr(gf),
whence taking traces yields

AT At(F)
T <f,m = Tr| (S, At(F)) - i .
Comparing with (1), the result follows. O

In case that X is smooth and Y is a reduced point the theorem above specializes to
the following corollary.

COROLLARY 4.3. For every complex manifold X and every coherent Ox-module F
there is a commutative diagram

HY(X,0y) 22D pxi2 (F, F)

(% Che (]‘-)>\‘ /

O
H2(X, Q%)

In case of compact algebraic manifolds the map (x,chy,(F)) on H'(X,®y) has
the following geometric interpretation; see [Blo, 4.2], or, for a more general state-
ment, 5.7, 5.8. Given an infinitesimal deformation of X represented by a class
¢ e H'(X,Oy), the unique horizontal lift of ch;;(F) relative to the Gauss—Manin
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connection stays of Hodge type (k + 1,k + 1) if and only if (£, chiy1(F)) = 0. In the
next result we will show that (£, —At(F)) gives the obstruction for deforming F in
the direction of £. Thus, the semiregularity map oy relates the obstruction to deform
F along & with the obstruction that its Chern class chy( F ) stays of pure Hodge
type along ¢&.

PROPOSITION 4.4. Let f: X — Y be a morphism of complex spaces and let X C X'
be a Y-extension of X by a coherent Oy-module N so that X' defines a class
[Xe T}(/Y(N ). If F is a coherent Ox-module then under the composed map

ob: T}, (M) EAP) Exty(F, F @ N) =5 Exty(F, F @ N)
one has ob([X']) = 0 if and only if there is an Oy.-module F' extending F to X', i.e.
there is an exact sequence of Oyr-modules 0 > F QN — F' — F — 0.

Proof. In the algebraic case this is shown in [Ill, IV.3.1.8]. In the analytic case we
can proceed as follows. Let (X, Wy, R,) be a free resolvent of X over Y as in 2.34
and let y: P, — F, be a projective approximation of F, as an R,-module. A
Y-extension [X '] of X gives rise to an extension [X,] of X, by NV... Since W, is smooth
over Y, the embedding X, — W, can be lifted to a Y-map X’ — W,, and the sur-
jection of algebras m: R, — Oy, to a map of Oy, -algebras n": R, — Oy,. With 0 the
differential on R, the map ¢ := —n'0: R, — N, is a Y-derivation of degree 1 that
represents the class of [X'] in

Ty, y(N) = H'(Dery(R., N.) 22 Exty, Qg /v, V).

If one equips the trivial extension R[N ,] with the differential (r, n) — (9(r), &(r)), the
map 7' +idy,: R.[N.] = Oy, becomes a quasi-isomorphism of DG algebras that
restricts to the identity on N,.

Let now V: P, - P, ® Q}z* /Y be a connection. Contracting with ¢ and projecting
onto F, gives a map Ve P, — F, @ N, of degree 1 satisfying the product rule
Ve(pr) = Ve(p)r + (—1)"ly(p) ® &(r) for local sections r in R, and p in P, . The class
ob( F) is represented by the map

—(W/®5)O [8,V] = [avvf] :cha: P*_>f* ®N*
of degree 2; note that by 2.28, 2.25(3) and 2.23
EXGU(F, F @ N) = H*(Homg, (Py, Fr @ N)). (*)

If the class ob(F) vanishes then [0,Ve]=][0,h] for some R,-linear map
hP,— F.QN, of degree 1. The differential (p,f® n)v—)(a(p), (Ve — h)(p))
defines then on P, & F, ® N, the structure of a DG module over R.[N,] and we
denote this DG module P,[F, ® N,]. Using the exact cohomology sequence associ-
ated to the exact sequence of DG modules 0 — F, @ Ny — Pi[F. QN,] —
P, — 0, it follows that the Oy, module H(P,[F. ® N,]) is an extension of F,
by F. ® N,. Gluing yields an Oy, modules F’ which is an extension of F by F ® N.
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Conversely assume that there exists such an extension F’' of F by F @ M. As P, is
projective the map y: P, — F, can be lifted to a map of R,-modules y: P, — F.. A
simple calculation shows that ¢ := —y'9: P, — F, ® N, satisfies the product rule
d(pr) = d(p)r + (—D)Ply(p) ® &(r) for sections r in R, and p in P,. Hence h =
Ve — 6 is R-linear and satisfies [0, h] = [0, V¢], whence the cohomology class of
[0,V¢] in H*(Hom(P,, F. ® N,)) vanishes. As this class represents ob(F) under
the isomorphism (), the result follows. O

Later on we will apply the semiregularity map to modules on the total space of a
deformation of a complex space. In order to verify that such a module has locally
finite projective dimension, the following standard criterion is useful.

PROPOSITION 4.5. Let f: X — S be a flat morphism of complex spaces and F a
complex in D_,(X). If the restriction F @ 0,0y, to every fibre X :=f ~I(s) is a
perfect complex on Xy, then F is a perfect complex on X.

This is an immediate consequence of the following simple lemma from commuta-
tive algebra.

LEMMA 4.6. Let A — B be a flat morphism of local Noetherian rings and let F* be a
complex of B-modules with finite cohomology that is bounded above. If F* @ 4A/my is
a perfect complex of B/miyB-modules then F* is a perfect complex of B-modules.
Proof. For the convenience of the reader we include the simple argument. We
may assume that F* is a complex of finite free B-modules with F' = 0 for i > 0. By
assumption F* ® 4/my is a perfect complex and so for k « 0 the complex

Fi ...—>Fk_1—a>Fk—>Fk/8Fk_l—>O
has the property that F&, ® 4/my is exact with (F¥/OFF"")® A/my a free
B/m, B-module. Using induction on n and the long exact cohomology sequences
associated to the exact sequences of complexes

0— Fiyou'y/mi!! — F @ A/mt — F& @ A/mi — 0
it follows that Fg,® A/my is exact and that (F¥/OF*')®@ A/m is a free
B/wy B-module. Hence, F{,, is exact and F k/O0F*=1 is free as a B-module, proving
the lemma. O

Remark 4.7. (1) We note that the construction of the semiregularity map is
compatible with morphisms. More precisely, given a diagram of complex spaces as in
3.14 and a perfect complex F on X, for any coherent Oy-module N the diagram

Ext’ (F,FQN) 2 [T, H" (X,N @A Lx;y)

| |

Extly (Lf*F, LI*FQL*N) = I, H* (X', LI*N @ A*L.x;v7)
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commutes. This follows from 3.14 and the fact that the trace map is compatible with
taking inverse images.

(2) If in 4.1 the support of F is contained in a closed subset, say, Z of X then the
semiregularity map admits a factorization

can

Exty(F,F @ N) 5 [[HE"(X. N ® ALyyy) = [[HY (XN @ A Lyy).
k k

This follows as the trace map factors by [Ill] through the local cohomology.

That the powers of the Atiyah classes are graded central elements by 3.12 allows
the following glimpse at the relevance of the semiregularity map for deformation
problems. Let

[, FEXCGUF, F) < BExC(F, F) —  Bxty/(F, ), (6, 0= & = (-1)'EE,

denote the graded Lie algebra structure underlying the Yoneda product on the
Ext-algebra. Centrality of the Atiyah classes together with the fact that the trace van-
ishes on commutators implies then the following result.

COROLLARY 4.8. The family of semiregularity maps

o Exty(F, F) — l_[HkH(X, ALyy), r=0,
k

vanishes on [Exty(F, F), Exty(F, F)] € Ext\(F, F). O

As is well known, and will be recalled in Section 6 below, the vector space
Ext}((}' , F) is the tangent space to a semi-universal deformation of F, if it is finite
dimensional. The obstructions to lift such tangent directions to second order lie in
[Ext}(}' ,F), Ext}((}' ,F) C Exti(]—' ,F), and these obstructions are thus annihilated
by the semiregularity map.

4.2. A SEMIREGULARITY MAP FOR SUBSPACES

Let X be a complex space, Z C X a closed complex subspace and N a coherent
Ox-module. In this part we will show how to define a semiregularity map on
TZZ/X(OZ ® o0,N') provided that O, has locally finite projective dimension as an
Oyx-module. In particular, this will give a generalization of Bloch’s semiregularity
map to arbitrary subspaces of manifolds. The idea is to define first a map from
T2 Oz ® N) into Ext}(Oz, 07 ® N) and then to compose this with the semi-
regularity map for F = Oy as defined in the previous part. The key technical lemma
is as follows.

LEMMA 4.9. Let Z C X be a closed embedding of complex spaces.
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(1) For each complex of Oz-modules M there are natural maps

®: TS (M) — Exth(Oz, M), ke Z.
In case M = Oy, the map €*: T, /X(Oz) — Ext} (O, Oy) is a morphism of
graded Lie algebras.

(2) Let X — Y be a morphism of complex spaces and let N be a coherent O y-module.
With T"/Y((’)z QN)— é/X(OZ ® N) the boundary map in the long tangent
cohomology sequence associated to the triple Z — X — Y, the composition

can

)
T3y N) = T30z @ N) = T3,(07 ® N) — Exty(Oz,02 @ N)

is given by &> (&, —(—=1DFAL (O)).

Proof. Let (X., Wi, R.) be a free resolvent for X over Y as in 2.34 and choose a
quasi-isomorphism M, — M, into a W,-acyclic complex of Oz -modules, where
M, and Oy denote the simplicial sheaves on W, associated to Oy and M,
respectively. We choose a free algebra resolution R, —> S, — Oz, of the compo-
sition R, — Oy, —> Oz,. As S, — é:* = S, ®g, Oy, i3 a quasi-isomorphism, the
triple (Z,, X, S,) provides a free resolvent of Z over X. Hence

T%, (M) = Hi(Homg (Qf . M.)) = H'(Homs, (Qf /., M.). (*)

S./X0

Composing the natural inclusions, see 2.37,
Homyg, ((2‘19*/73*7 /q*) — Derg, (Sx, /(AV*) — Homg, (S, /q*) (%)

with HomR*(S*,/\A/l/*) — HomR*(Q*,J\A/l/*), where Q, — S, is an R,-projective
approximation, gives the desired map in (1). If M = O,, then T’Z/X((’)Z) =
H*(Derg,(Sx, S4)) and Ext3(Oz, Oz) = Exty (Ss, S.), and the inclusion of deriva-
tions into endomorphisms is a morphism of DG Lie algebras that induces a mor-
phism of graded Lie algebras in cohomology.

To show (2), note first that Oz, ® N, is represented by S, ®r, N. Consider a
derivation ¢ € Dery(R.,N) of degree k — 1 that represents the cohomology class
¢ in Tk 1(./\/) Its image in T" Y((’)Z ® N) is then represented by 1 ® § € Dery
(R*,S ®N ). Under the 1somorph1sm in (), the image of the latter element in

T3 K (Oz ® N) is represented by a R.-derivation [0, 5], where 5: S, — S, ® N, is

a derivation restricting to 1 ® d on R,.. Letnow V: S, — 5, ® QR /y be a derivation
extending 1 ® d, where d is the universal derivation on R, see 2.33. Clearly V is a
connection on S,. If /1 is one of the maps (1 ® d) oV or $ from S, to S, ® N, then
the product rule A(sr) = h(s)r + ()¥*D s5(r) is satisfied for local sections s in
S, and r in R,. It follows that the difference o — (1®0)oV is R,-linear and so
[0, 5] and [0,(1 ® §)oV] represent the same cohomology class in H*(Homg,
(Si, S« ® Ny)). As

(181, At©O2)) = (1® ) 0 [9, V] = (=) "'[0,(1 ® §) o V],
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by definition, and as § is of degree k — 1, we have

Er>[0,0] = (=1 1([8], ALO2)) = (&, —(— ) AHO,)),

as required. O

DEFINITION 4.10. Let X — Y be a morphism of complex spaces and let Z C X be
a closed complex subspace of X such that Oz has locally finite projective dimension
over Oy. The composition of the canonical map Té / HOz) — Extgf((?z, Oyz) of 4.9
(1) with the semiregularity map o defined in 4.1 yields a map

©:T5,(O07) — ]‘[ H2(X, A Ly y),
k=0

which we call the semiregularity map for Z.

Again we have such a semiregularity map more generally for any coherent
Ox-module A and any r > 0,

wi=oyoc 1Ty (0z @ N)— H HY (XN ® 0,A Ly,

k>0

Note that this gives in particular a semiregularity map for every closed subspace Z of
a complex manifold X. Combining 4.2 and 4.9 we obtain the following result.

PROPOSITION 4.11. With the notations and assumptions as in 4.10, the diagram

can

Tyy(N) T {0z ®N)

(% chk(O»‘ A)Vrk_l

Hk+r_l(X, N@AkilLX/Y) ,

commutes, where t_y is the (k — 1)* component of the semiregularity map <.

For instance, for Y a reduced point, X smooth, and Z a closed subscheme of
codimension k in X, we can rephrase 4.11 as follows.

COROLLARY 4.12. For a complex manifold X and a subspace Z of codimension k
the diagram

H71(X,0y) T ,x(2)

(*,[%\ %1)’71(71

Hk+r_1(X, Ql;(_l),

commutes, where [Z] denotes the fundamental class of Z in H*(X, Q'}).
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Proof. For a manifold, T;;/IY(O v) = H (X, ®y), and according to Grothendieck,
[Gro, 4(16)], see also [Mur, 2.18], the fundamental class of Z is given by

21=C0 0 = e
[ ]_(k— 1)!Ck( 7) = chi(Oz),
whence the result follows from 4.11. O

Let X — Y be a morphism of complex spaces and let Z C X be a closed complex
subspace of X. In the final result of this section we consider for a coherent
Oyx-module N the boundary map ¢ in the long exact tangent cohomology sequence

for the triple Z — X — Y. The exactness of this sequence gives immediately the
following interpretation of the composed map

can

J
7 TyyyWN)— Ty (02  N) — T3, (Oz @ N)

in terms of extensions.

LEMMA 4.13. Let X' be an extension of X by N. The image of the class
[X'] e T;( /Y(J\/ ) under y vanishes, y([X']) = 0, if and only if there is an extension Z' of
Z by Oz Q N that fits into a commutative diagram

00— N —0Oxr—0x — 0

O—>Oz®N—>Ozl—>Oz—>O, I:‘

Remark 4.14. (1) The construction of the canonical map ¢* in 4.9 (1) is com-
patible with morphisms of complex spaces. More precisely, assume given a diagram
of complex spaces as in 3.14 and a closed subspace Z of X. With Z' := f~1(Z) € X",
the diagram

()

T (M) Exti(Oz,M)

l l

(r)
T 10028 o, M) = Extiy(Oz,02® o, M)

commutes for every coherent O,-module M.

(2) In analogy with 4.7, the construction of the semiregularity map 7 is also com-
patible with morphisms of complex spaces. This follows from 4.7, using the preced-
ing remark. We leave the straightforward formulation and its proof to the reader.

(3) It follows from 4.7(2) that the semiregularity map t factors through local
cohomology,
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can

T (07 ® N) =5 [[HE (XN @ ALyy) = [[H (XN @ A Lyy).
k k

Finally, we wish to point out that 4.8 carries over as well to the family of semiregu-
larity maps for subspaces, the comparison map €*: T, WOz) = Exti(Oz,0y)
being a morphism of graded Lie algebras.

5. Applications to the Variational Hodge Conjecture

Let X be a compact complex algebraic manifold so that its cohomology admits a
Hodge decomposition HX(X, () = @quk H(X, Q). Recall that a cohomology
class

o€ HPP(X,0) = H'(X,%¥) N H'(X, Q)

is called algebraic if an appropriate multiple ko, k € I, is represented by an algebraic
cycle Z of codimension p in X, in the sense that ko = [Z], the cohomology class of
the cycle. The famous and so far unsolved Hodge conjecture asks wether every class
in HP?(X, Q) is algebraic.

In [Gro], Grothendieck proposed the following weaker version that is called the
variational Hodge conjecture. Let m: X — S be a deformation of a compact algebraic
manifold Xy = n~'(0) over a smooth germ (S,0). The local system R¥f,(C)® Og
carries then the natural Gauss—Manin connection. Assume that « is a horizontal sec-
tion of Rpﬁ(Q’;, / ) in the sense that o can be lifted locally to a horizontal section in
sz’ﬁ(Q;/g) C R¥”£,(C) ® Oy, see also 5.4.

The variational Hodge conjecture asks now: If the restriction of « to the special
fibre, a(0) € HP(Xo, ), is algebraic, is then a(s) € H’(X,,Q} ) algebraic for all
s € S near 0, where X; := n~!(s)?

In this section we will give an affirmative answer to this problem if the class «(0) is
the pth component ch,(&y) of the Chern character of some coherent sheaf & for
which the pth component of the semiregularity map, Extg(o(é’o, &y) —
H”“(XO,Q’)’(;I), is injective. We will then call &y in brief a p-semiregular sheaf.
Slightly more generally, with n the dimension of Xj it is convenient to introduce
for any subset I C {0, . .., n} the following notion: & is called I-semiregular if the part
of the semiregularity map

or Exty, (€0, €0) — [ [ H"' (X0, ")
pel

is injective. The main result of this section is the following theorem.
THEOREM 5.1. Let m: X — S be a deformation of a compact complex algebraic
manifold Xy over a smooth germ S = (S, 0) and set Xy := n~'(s) for s € S. Assume that

(%p)per is a horizontal section in Hpe R n*(Ql)’( / ). If there is an I-semiregular sheaf &,
on Xy with

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023999012081

A SEMIREGULARITY MAP FOR MODULES AND APPLICATIONS 175
OCP(O) - Chp(go) € HP(X07 Q§(0)> JZES Ia
then a,(s) € HP(Xj, Qg(s) is algebraic for all s € S near 0 and each p € I.

In analogy with the notion of a I-semiregular sheaf on X, a complex subspace
Zy € Xy will be called I — semiregular if the part of the semiregularity map

T TéU/XU(OZO) — anJrl(XO;QI;{;l)
pel

is injective. We will also derive the following variant of 5.1 that generalizes a result of
S. Bloch [Blo].

THEOREM 5.2. Let n: X — S and (0,p),¢; be as in 5.1. If there is an I-semiregular
subspace Zy € Xo with a,(0) = ch,(Ogz,) for p € I then o,(s) is algebraic for all s € S
near 0 and each p € I.

For the proof of these results we need a few preparations.

LEMMA 5.3. Let X C X' be an extension of a complex space X by a coherent
Ox-module M and assume that the morphism &: Ly;x — M of degree 1 in the derived
category D(X) represents the class [X'] € T}(/X,(./\/l) = Ext}((f[AX/X,, M) If Ly x AN
Ly ® Oy denotes the canonical map of degree 1, then the diagram

1
L’X/X’ ib I,;X’ @OX

+llf lcan

d
M—>lel®@)(

commutes in D(X).

Proof. Let (X, W], R,) be a free resolvent of X’ and choose a free graded DG
R -algebra R, that provides a DG algebra resolution p: R, — Oy, of the
composition R, LN Oy, — Oy,. By 2.25, the induced map R. ®z, Oy, — Oy, is a
quasiisomorphism and so (X, W, 1= X, R, ®r; Ox;) constitutes a free resolvent
for X over X’. Thus by 2.39

Ty /x/ (M) =2 Hl(Der@X,* (R ®g; Ox:, M,)) = H'(Derg: (R, M.)), (%)
and moreover

Ly/x & c'(Q;z*%OX,* /0y, ®Ox,) = C*(Qk.jz. ® Ox,),
where C* is the Cech functor as in 2.27. By construction, R, is a free R, -algebra and

so admits an augmentation, say, f: R, — R.. Clearly, the R’-linear map f will not
be a morphism of DG algebras in general, but the commutative diagram
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shows that the R-derivation —p'fd: R, — Oy factors through a derivation
& Ry — M, that in turn represen;ns [Xe T}(/X,(./\/l) under the isomorphism (),
see [Flel, (3 13)]. The map Ly xy — Ly ® Oy is induced by the map of complexes
[0,df]: Q R /R Q ® R., and composition with the canonical map
Ql QR — Ql ® (’)X* yields the map —dp’ odff o 3. As this map coincides with
the R, -derivation d o & R, — M, LN Q' ® Oy, under the identification

HomR*(QR*/R;a Ql; ® Oy,) = DerR;(R*, Q}\/; ® Oy,),

the result follows. O

5.4. Let n: X — S be a deformation of a Kédhler manifold X, over an artinian germ
S = (S,0). The canonical exact sequence

0— Ox ®o; Qg —> Qy — Q)5 — 0

induces a morphism Q}(/s iy Ox® QS of degree 1 in the derived category D(X) and
as well, by taking exterior powers, morphisms

+1
VX/S QI;//S_>QP S®OSQ ]7217

that we call the Gauss—Manin connections. These maps induce the classical Gauss—
Manin connections

Vst HU(X, @ o) — H' (X, Q0 0) ®0, Q.
Recall that the spectral sequence
EY = HI(X, QY o) = H'MI(X, QY )5) = H™(Xo, C) @c Os

degenerates and that, by Griffiths’ transversality theorem, the canonical connection
V on HPHI(X, Q5 ) satisfies
V(HI(X,Q75) € HP(X, Q08 ®o, Qf

and induces just the map Vs above (see [Gri2]). We will call a class o in H/(X, Q';(/S)
in brief horizontal if it can be lifted to a horizonal section in

HP(X, Q78 € H'(X), C) @c Os.

In particular, the following well known result holds.

LEMMA 5.5. A horizontal class o € HI(X, Qﬂ’(/s) satisfies Vys(o) = 0. O
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5.6. Let m: X — S be as in 5.4 and assume that S < S’ is an extension of the artinian
germ S by a coherent Og-module A such that there is a smooth morphism
n's X' — §' restricting to © over S. We will suppose henceforth that the map

d: N —Q\ 0, Os )
is injective. Let
V' i=lo, ®oy Vs Q(;](/s - QC)Z}? oy Qg

be the map induced by the Gauss—Manin connection for X’ — S" and denote by the
same symbol the induced map in cohomology,

V' H(X, Q% ) — H'T (X, Q%) @0, Q.

LEMMA 5.7 ([Blo]). With notation and assumptions as in 5.6, a horizontal class
o€ HI(X, Q’)’(/S) can be lifted to a horizontal section in H‘f(X’,QI;(,/S/) if and only if
V(@) = 0 in HI*\(X, Q0 0) ®o, Q.- O

Now return to the notation and assumption in 5.4. The extension X' of X
by Ny:=0x®o, N gives a class ¢ e Ty (Ny) or, equivalently, a morphism
¢:Ly—> Ny of degree 1 in the derived category D(X). Taking exterior powers
yields a map, denoted by the same symbol,

& APLXHAP_ILX@NXﬂQ;;@Nx

The next result describes how this map relates to the map V' introduced in 5.6.
LEMMA 5.8. The diagram

APLX can %/S
+115 +1lv’

—1 1®d —1
Qs ON == QY ®0, QF

in D(X') is commutative.
Proof. For suitable representatives of the cotangent complexes involved there is a
commutative diagram of exact sequences of complexes of Oy-modules

0— Ly/x[-] =Ly 80y — Lx — 0

o, L

0 Ny 2. 0l 0y — QL —0,

by 5.3 and our assumption that d is injective on N. In D(X) this gives rise to a
commutative diagram
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LX _’LX/X’

P 1)

Q} - Nx [1] .
As well, the commutative diagram of exact sequences of Oy-modules

0 Ne —24. QL g0y — QL —»0

o) I

0— Ox®py, Yy — Qf, ©0x — Q) /s — 0

yields in D(X') a commutative diagram

QL Nx(l

| =

Qs =Q, 5 ®0x — Ox ®0,, Q1]

Combining this square with the one in () gives the result for p = 1. The general case
follows from this by taking appropriate exterior powers. ]

The key observation in proving 5.1 is the following proposition. We keep the nota-
tion and assumptions as introduced in 5.4 and 5.6.

PROPOSITION 5.9. Assume & is a coherent S-flat sheaf on X such that £y := E| Xy is
I-semiregular, where Xo = n='(0). The following conditions are then equivalent.

(1) The sheaf € can be extended to a deformation & on X' over S'.
(2) The partial Chern character chy(€) := (ch,(£)),e; € [1,c; H(X, Q’)’(/S) can be lifted

pel
. . . /
to a horizontal section in [, ; H (X ,QI;,,/S,).

Proof. Let & € TN x) be the class corresponding to the extension X < X', given
by a morphism ¢ : Ly/y» — Ny in the derived category. The result 5.8 induces a
commutative diagram

THP(X, A"Ly) [1H (X, )= [ HP(X, Q1 /5) ®oy Os
pel pel pel
la lV’
HHPH(X,Q[;/_/EQ)@OSN &, HHPH(X, Qg(_/}g)@)oyg}g/ ,
pel pel

where V' is the Gauss—Manin connection.
The relative partial Chern character ch;(€) € Hp€ T HP (X, Q’)’( / ) is the image of the
absolute partial Chern character ch(€) := (Tr((—=At(€))’/pY)) e in [T, HP (X, AP Liy).
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Using 5.7 and the injectivity of I ® d in the diagram above, it follows that (2) is equiva-
lent to

(3) Contracting against ¢ sends the absolute partial Chern character to zero,
(&, chi(&)) = 0.

Now, 4.2 yields a commutative diagram

TN y) —2=eAND | Bx(3(E, € @0, )

(# chz‘,‘\ /

pl;IIHpH(X ) @0 N

and o is injective by 5.10 below. It follows that ob(¢) = 0 if and only if (3) holds.
On the other hand, by 4.4, the condition ob(£) = 0 is equivalent to (1), so the result
follows. 0

LEMMA 5.10 With notation as above, if &, is I-semiregular then the map oy is
injective.

The proof follows by a simple induction on the length of A/. The initial step for
N == C is equivalent to the assumption as o, ¢ is the corresponding partial semiregu-
larity map for & in view of the isomorphisms

Ext3(€, € ®o, C) = Exty, (£,&0), as € is S—{lat,
H(X, Q’g;) ®o, C = H' (X, Q‘gl), by base change.

The induction step is left to the reader. O

Proof of Theorem 5.1. Let S, be the nth infinitesimal neighbourhood of 0 in S so
that S, = S,; is an extension of S, by N, = m"*! /m"*2, where m C Oy is the
maximal ideal. The map d: N, — Q}%“ ® Os, is injective, and applying 5.9
repeatedly we see that & can be lifted to a deformation &, on X,, for all n. Let £ be a
versal deformation of & which is a coherent module on X xg 7, where (7,0) is a
complex space germ over (S,0). Using versality there are (S,0)-morphisms
¢, (Sy,0)— (T,0) with (1 x ¢,)*(€) 2 &, and ¢,,|S, = ¢,. Hence (T,0) — (S, 0)
admits a formal section, namely ¢ :=1lim @,: (S’, 0) — (7,0). By Artin’s approxi-
mation theorem, we can find a cor(lvergent section ¢: (S,0)— (7,0). Now
F = (1 x ¢)*(€) is a coherent S-flat module on X that induces &£, on the special fibre.
The uniqueness of the horizontal lifting gives that o, =ch,(F) as sections in
RPf(CF /S) for each p € I. Hence o,(s) = ch,(F|Xj) is algebraic for all s € S near 0
and each p € I. O
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The proof of 5.2 is similar. The sole difference is that in order to derive the analo-
gue of 5.9, one has to use 4.11 and 4.13 instead of 4.2 and 4.4. We leave the technical
details to the reader. O

6. Deformation Theory

Before formulating the main results we review some basic notation and facts
about deformation theories. In contrast to [Sch] we will not use the language of
deformation functors but instead employ deformation groupoids as in [Rim, Fle2,
BFI]. Most deformations will take place over Any, Arts, or Any, the categories of
germs of complex spaces, Artinian complex spaces, or formal complex spaces res-
pectively, over a fixed germ X = (%, 0).

6.1. Let p: E— B be a functor between categories. We will denote objects of B
by capital letters whereas the objects of E will be written in lower case. To indicate
that « is an object of E over S € B we write simply a+> S, although this is not a
morphism!

Recall that a morphism ¢ —> a over f: 8" —> S is Cartesian if every morphism
b —> a over f factors uniquely into b £, & — a with p@=idg. If d —aisa
cartesian morphism over - S' —> S, one sets, slightly abusively, a xg S := d'.

Following [Rim], a fibration in categories is a functor p. E —> B with the following
properties:

(FC1) For every morphism f: & — S in B and every object a over S there is a
morphism ¢ —> a over f that is cartesian.
(FC2) Compositions of Cartesian morphisms are Cartesian.

The category B is often called the basis of the fibration. For S € B the fibre E(S) is
the subcategory of E whose objects are those « € E with p(a) = S, and whose mor-
phisms ¢ are the ones over idg, that is p(¢) = ids.

Recall that a groupoid is a category in which all morphisms are isomorphisms.
A fibration in categories p: E— B is called a fibration in groupoids if each fiber
E(S) is a groupoid.

These notions provide a natural framework for deformation theory. As an

example let us consider deformations of complex spaces.

EXAMPLE 6.2. Let E be the category whose objects are the germs of flat holo-
morphic maps f: (X, Xo) — (S, 0), where X = f~!(0). The morphisms into a second
object given by g: (Y, Yy) — (T,0) are all cartesian squares

(X, Xo) L+ (5,0)

Lo

(¥,Y)) = (T,0).
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The functor p: E — Ang assigns to f its basis (.S, 0).
In a similar way one treats (flat) deformations of singularities, coherent sheaves, or
embedded deformations.

6.3. Let B be one of the categories Ang, Arts or Any. Abusing notation again, we
write @ — @ when the underlying morphism in B is an embedding. A fibration in
groupoids p: E — B is a deformation theory if the following homogeneity property
is satisfied.

(H) For every diagram in E,

4 Cee— o' Serl ¥
l over x
b T

with iz S < S an extension by a coherent Ogo-module M and oz S — T a finite map
of germs, the fibred sum " = &[], b exists in E.

We remark that 5’ lies necessarily over S" [ [ 7, which in turn exists as an analytic
germ by [Schu].

The condition of homogeneity can be weakened to so-called semihomogeneity, see
[Rim]. We remark that the main applications of this section remain true under this
weaker condition in view of the results of [Fle2]. Note, however, that in all reason-
able geometric situations condition (H) above is satisfied.

If ap € E(0) is a specific object over the reduced point, then a deformation of ay
over a germ S = (S,0) is an object a € E(S) together with a morphism ¢y — «a that
lies necessarily over 0 < (S, 0).

Let B again be one of the categories Arty, Any or Any and let p: E — B be a fibred
groupoid, S = (S, 0) a germ of a complex space and ¢ € E(S) an object over S. For a
coherent Og-module M an extension of a by M is a morphism a — b such that the
underlying morphism S< T := p(b) is an extension of S by M. Two extensions
a— b and a— b’ are said to be isomorphic if there is a morphism » — &’ that is
compatible with a<> b, a<— b’ and induces the identity on M. We denote by
Ex(a, M) the set of such isomorphism classes.

In contrast, consider extensions a <> b with p(b) = S[M], the trivial extension.
Two such extensions 8 = (a< b) and ' = (a — b') will be called S[M]-isomorphic
if there is a morphism of extensions b — b’ over ids[r. The corresponding set of iso-
morphism classes will be denoted Ex(a/S, M). This vector space is commonly called
the space of infinitesimal deformations (of first order).

We recall the following facts, see, e.g., [Flel, Fle2].

PROPOSITION 6.4. (1) The vector spaces Ex(a, M), Ex(a/S, M) define (covariant)
Sfunctors with respect to M € Coh(S). They are compatible with direct products: for
coherent Og-modules M,N and for F one of these functors, one has naturally

FIM x N)=>F(M) x FN).
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(2) The functors in (1) are Og-linear, i.e. they carry natural Og-module structures.
Moreover, they are half-exact.
(3) There is a functorial exact sequence

T%,5(M) 25 Ex(a/S, M) — Ex(a, M) = Ts(M). O

Note that a functor G: Coh(S) — Sets compatible with finite direct products and
satisfying G(0) # ¢ always carries a natural Og-module structure, whence the first
part of (2) is a consequence of (1). Moreover, if G": Coh(S) — Sets is a second such
functor, and if G — G’ is a morphism of functors, then the maps G(M) — G'(M)
are necessarily Og-linear.

We will refer to the sequence in (3) as the Kodaira—Spencer sequence. Moreover,
Oks 1s the so called Kodaira—Spencer map.

6.5. Let p: E — Arty be a deformation theory and consider its completion
P E — Any, as described (dually) in [Rim]. Recall that a deformation a € E(S ) is
called formally versal if it satisfies the following lifting property: for every morphism
b—b inEk lying over a closed embedding 7' T, and for every map /- b — a, there
is a morphism f”: " — a lifting f. Moreover, a is said to be formally semiuniversal if
the induced map of tangent spaces T o — Ty is independent of the lifting.

By the theorem of Schlessinger (see [Rim]), if Ex(ay, C) is a vector space of finite
dimension then a formally versal deformation of @, exists. Moreover, we have the
following criterion for formal versality.

PROPOSITION 6.6 ([Fle2]). Let a be a deformation of ay over the base S € Any. The
following statements are equivalent.

(1) The deformation a is formally versal.
(2) Ex(a, M) = 0 for every finite Os-module M.
(3) Ex(a,05/ms) = 0.

In case S/Z is smooth, Tg/z(/\/l) vanishes for every M and so, in view of the
Kodaira—Spencer sequence, «a is formally versal if and only if the Kodaira—Spencer
map Jxs: Tg/z(OS/ms) — Ex(a/S, Os/my) is surjective.

Next, we give a simple proof of a result by Z. Ran [Ranl]. We state more generally
a relative version over an arbitrary base X. To formulate the last part of it, recall that
an artinian germ 7 € Ang is curvilinear if Or = C[X]/(X™) as local C-algebras.

THEOREM 6.7. If ay € E(0) admits a formally semi-universal deformation a € E(S)
over some formal germ S, then the following conditions are equivalent.

(1) The germ (S,0) is smooth over a closed subspace of the completion (ﬁl, 0).
(2) The functor M — Ex(a/S, M) is right exact on Coh(S).

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023999012081

A SEMIREGULARITY MAP FOR MODULES AND APPLICATIONS 183

(3) For every b € E(T) over an artinian germ T € Ang, the map of infinitesimal defor-
mations Ex(b/T,Or) — Ex(b/T,Or/myr) is surjective. Moreover, if ¥ is a
reduced point, then these are equivalent to the following condition.

(4) The map in (3) is surjective for every b € E(T) over an Artinian curvilinear germ
T e Anz.

Proof. For (1) = (2) observe that the map Tg/z(/\/l) — Ex(a/S, M) is sur-
jective due to the versality of «. In turn, by 6.8 below, the functor M+
Tg /Z(M) =~ Ders(Os, M) is right exact as S is smooth over a subspace of 3. Thus,
Ex(a/S, M) is right exact in M as well. To show (2) = (3), let b, T be as in (3). By
versality, there is a morphism b — a that lies over some X-morphism 7" — S. If now
b— b is an extension of b over T'— T[M], then the homogeneity condition yields
an extension ¢ — @ = a[], & over S — S[M] that satisfies &' = &' x5 T. Thus, there
is a natural isomorphism

Ex(a/S, M) =~ Ex(b/T, M)

for every Artinian Or-module M, whence (2) implies (3). In order to show (3)=(1)
consider the nth infinitesimal neighborhood S, of 0 in S and set a, ;= a x5 S,.
Repeating the argument just given, we have Ex(a/S, M) = Ex(a,/S,, M) for any
M € Coh(S,). Hence there is a commutative diagram

T55(Os,) Brsy Ex(a/S,0s,)=Ex(a,/Sy,0s,)

Xn ﬁn ﬁn l
79,5Osy) L% Ex(/S,08,)2Ex(a/ S, O5,)-

Since a is formally semiuniversal, the map (dxs), is bijective and (dks),, is surjective.
By assumption f3, is surjective and so a, is surjective too. Now the result follows
from the Jacobian criterion 6.8 below.

It is obvious that (3) implies (4). Finally, (4)=(1) follows with the same reasoning
as above from the smoothness criterion given in 6.8 (5). O

In the proof above we have referred to the following smoothness criteria that are
essentially reformulations of the Jacobian criterion.

LEMMA 6.8. For a morphism A — B of complete analytic C-algebras the following
conditions are equivalent.

(1) There is an ideal a C A and an isomorphism of A-algebras
B~ (A/a)T),...,T;] for some k > 0;

(2) The B-module Qy, is free;
(3) The functor M+ Der4(B, M) is right exact on finite B-modules;,

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023999012081

184 RAGNAR-OLAF BUCHWEITZ AND HUBERT FLENNER

(4) With B, = B/m'é“, the natural map Der 4(B, B,) — Der 4(B, C) is surjective for
all n.
If A = C, then these conditions are also equivalent to.

(5) The natural map Derc(B,C) — Derc(B, C) is surjective for any artinian curvi-
linear B-algebra C = C[X]/(X™).

Proof. The implications (1)=(2)=(3)=-(4)=(5) are obvious. To show (4)=(1),
note first that

Der4(B, B) = lim Der 4(B, B;)

as B is complete. Hence (4) implies that Der (B, B) — Der 4(B, C) is surjective. This
means that there are derivations d;,...,0,: B — Band elements xi, ..., x, € nig such
that det(d;(x;)) € mp, where r:= dim¢ Der4(B, C). By the criterion of Lipman and
Zariski, see [Mat, 30.1], there is then an isomorphism B = C[X},...,X,], where C
is an A-subalgebra of B. By construction, Der4(C,C) = 0, and so C must be a quo-
tient of A, which gives (1).

Finally, assume that 4 = C and that (5) is satisfied. Writing B = R/I with
R:=C[X;,...,X,Jand I C m%e, we need to show that 7 = 0. If not, choose a power
series f# 0 of minimal order in /. After a linear change of coordinates we may
assume that f= X" +g with g € (X2,..., X5 !. Now consider the curvilinear
B-algebra C = B/(X», ..., X;) = C[X1]/(X7). The derivation 9/0X; on R induces a
derivation B — C that by assumption can be lifted to a derivation B — C. Compos-
ing with R — B yields a derivation, say, 0: R — C with 6(/) = 0. Using the product
rule and the fact that 6(X;) = 0 mod m¢ for i > 2, it follows that d(g) = 0. On the
other hand, 6(X|) = Ilmod m¢, whence

3(f) =nX"15(X) =nX1"" - 1c #0 in C,

and this is a contradiction. O

Remark 6.9. In case A # C, the condition (5) above is no longer equivalent to the
other ones as the following example shows. Consider a C-algebra 4 = R/I, with
R = C[Xy,..., X], and assume that there is an element a € R that is integral over 1
but not in /. If a denotes the residue class of @ in A4, then the reader may verify that
the A-algebra B := A[T]/(aT) satisfies (5) although it is not smooth over a quotient
of A.

DEFINITION 6.10. An obstruction theory for a € E(S ) over a formal germ S € Any
consists in a functor

Ob(a, —): Cohy((S) —> Coh,y(S),

satisfying the following condition:

(Obl) There is a morphism of functors
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ob: T.IS/Z(M) — Ob(a, M)y Me COhart(S)7
so that the sequence

Ex(a, M) —> Tk 5 (M) > Ob(a, M)
1s exact for each M.

In other words, if a X-extension S § of S by M € Coh,(S) is given, then
ob([S']) = 0 in Ob(a, M) if and only if we can find an extension a < @ of a by M
over S— §’. As an immediate consequence of the Kodaira—Spencer sequence we
obtain the following standard estimate.

COROLLARY 6.11. Leta € I:I(S) be a formally semiuniversal deformation of ay and
assume that there is an obstruction theory for a. With

k:= dim¢ Ex(ag, C) and t:= dimc Ob(a, C),

the basis S of a can be realized as a subspace of the formal germ (L x C*, 0¥ cut out by
at most t equations. In particular, dim S > dimX + k — 1.

Proof. As was already observed in the proof of 6.7, we have Ex(ay,C)=
Ex(a/S,C), and, as a is formally semi-universal, the map T g /Z(C) — Ex(a/S,C) is
bijective. Hence, we can write Oso = A[X1, ..., Xi]/I with A := Os - By definition,
TIS/Z(C) =~ Hom(//m/, C), and so the dimension of T IS/Z(C) is just the minimal
number of generators of 1. In the extended Kodaira—Spencer sequence

- — Ex(a, 0) — T5(C) — Ob(a, C)

the module Ex(a,C) vanishes by the versality of a. Hence, T}g /Z(C) injects into
Ob(a, C) and the minimal number of generators of 7 is bounded by r. O

Let S be a formal germ over (Z,0) and let A := Os, 4 := Og denote the asso-
ciated local rings. It is well known that for a coherent Og-module M the group
T1S /E(M) is canonically isomorphic to T 11 / A(M), the group of A-algebra extensions
of A by M := M. This group always contains Ext!, (QL/A, M) that can be identified
as the subgroup of those extensions whose associated Jacobi map is injective, see 9.2.
In case M = C, it contains in turn a further distinguished subspace, Ex¢ / A(C), the
space of curvilinear extensions, see 9.1 and 9.2. With these notations, the following
improvement of 6.7, due to Kawamata, can also easily be deduced.

COROLLARY 6.12. Leta € E(S) be a formally semiuniversal deformation of ay that
admits an obstruction theory Ob(a,—). If V= ob(Ex"A/A(kC)) C Ob(a, C) is the sub-
space of curvilinear obstructions, then

dim S > dim X 4 dim¢ Ex(ag, C) — dim¢ V.
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Proof. Note that V = EXZ/A(‘C) as TIS/Z(C) injects into Ob(a, C). By 9.2, the
vector space Exil/A('C) is dual to I/(J+ml), where [ is as in the proof of 6.11 and
J is the integral closure of m/ in 1. Now the result follows from 9.3. O

In the proofs of the preceding two corollaries we only used the module Ob(a, C) so
that it would have been sufficient to have just this module of obstructions at our dis-
posal. However, the next result requires the full strength of the notion of obstruction
theory.

PROPOSITION 6.13. Let p: E — Ang be a deformation theory and a € E(S) an
object over a germ S € Any that admits an obstruction theory M Ob(a, M). If there
exists a transformation . Ob(a, M) — G(M) into a left exact functor G on Coh,(S)
then the following hold.

(1) The restriction of o ob to ExtS(QS/Z, M) — Tls/z(./\/t) is the zero map. In other
words, if S— S’ is an extension of S by M € Cohy(S) such that the Jacobi map
M — Qg s ® Os is injective, then y(ob[S']) = 0.

) If a is formally versal, then dimS > dimc Ex(ay,C) —dimc K with K :=
ker(Ob(a, C) — G(C)).

Proof. The injective hull J of M can be obtained as a limit lim .7, with
M C J, € J and each J, finite Artinian. As -

ExtS(Qs/z,M) — llm ExtS(QS/Z,ja) = Eth(Qs/za J)=0

is the zero map, there is an index o so that ExtS(QS/Z,M) — Exts(Qg/E,]“) is
already zero. Restricting the map ob to EX‘LS(QS/27 —) yields a commutative
diagram

Exty(Qys, M) Ob(a, M) -Lr G(M)

P | |

EXt{(Q})5.75) 2> Ob(a,7,) Lo (7,

and (1) follows.

In order to derive (2), note that the map ob embeds T° /Z(( ') into Ob(a, C), as a is
formally versal, and under this map ExtS(QS/E, C) becomes thus isomorphic to a
subspace of K by (1). As Homs(Qg/z7 () is isomorphic to Ex(ag, C), the space of infi-
nitesimal deformations, the claim follows from 9.4. O

In practice, it is cumbersome to construct obstruction theories for objects over an
arbitrary formal germ S. The following considerations show that it is essentially suf-
ficient to check the existence of obstruction theories over an Artinian base.
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DEFINITION 6.14. Let p: E — Ang be a deformation theory. An obstruction the-
ory for E consists in a collection of obstruction theories Ob(a, —) for every a € E(S)
over an Artinian germ S € Arty satisfying the following condition.

(Ob2) For every inclusion T— S'in Arty and every a € E(S) there are functorial iso-
morphisms

Ob(a x5 T, M) —> Ob(a, M), M € Coh(T),
such that the diagram
T} /5 (M) =% Ob(a x5 T,M)

commutes.

If E admits an obstruction theory and if a € E(S) over S € Any is a formally versal
deformation, then for every module M € Coh,(S) the sequence of groups
Ob(a,, M),so, Where a, := alS, is the restriction to the nth infinitesimal neighbour-
hood S, of 0 € S, is essentially constant. Accordingly,

Ob(a, M) := Ob(a,, M), n>0,
constitutes an obstruction theory for a as the sequences
Ex(ay, M) — Tg”/z(./\/l) — Ob(a,, M)
are exact for n > 0, and taking the direct limit results in the exact sequence

Ex(a, M) 2 lim Ex(a,, M) —> T§5(M) 2 lim T§ 5 (M) — Ob(a, M).

Assume now that E admits an obstruction theory and that for every a € E(S') over
an Artinian germ S there is a transformation Ob(a, —) — G(a,—) into a left exact
functor G(a,—) on Cohy(S). Furthermore, suppose that for every inclusion
T S in Arty there is an isomorphism G(a x5 T, M) — G(a, M), M € Coh T such
that the diagram

Ob(a x5 T,M) — G(a x s T,M)

= |

Ob(a!M) G(a’M)

commutes. Under these assumptions we get the following corollary.

COROLLARY 6.15. If a e Eisa formally versal deformation of ay, then

dim S > dim¢ Ex(ay, C) — dim¢ ker(Ob(ay, C) — G(ag, C)).
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Proof. Indeed, the functor G(a, M) := G(a,, M),n > 0, is left exact on Coh,(S)
and satisfies the assumptions of 6.13. O

7. Applications
7.1. DEFORMATIONS OF MODULES

Let f: X — X be a flat holomorphic map and 0 € Z a fixed point. In the following we
will consider deformations of coherent modules on X. These deformations constitute
a deformation theory p: E — Ang, where the objects over a germ S = (S,0) € Ang
are coherent S-flat modules F on X5 := X xy S. A morphism into another module
& € E(T) is given by a morphism of X-germs g: S — T together with an isomorphism
(idy x g)*(F)—E.

For a germ S € Ang let fs: Xs — S denote the projection. There is a canonical
map /Z(N) — T4 (f%N) that assigns to an extension S’ of S by N € CohS the
extension Xg of Xg by fiN. If F € E(S) is a deformation over S then by 4.4
([(Xs], At(F)) = 0 if and only if there is a module ' on Xy that forms an extension
of F by F ®o, N := F ®ra05fs IN; observe that F ® Ox SN = F ®o, 5N as
F is flat over S. By a standard result in commutative algebra see [Mat, 7.7], the

S’-module F’ is then automatically flat. Hence, we obtain the following result.

LEMMA 7.1. The composed maps

can

ob: T /s(N) — T (f3N) B2 Bx (F, F @0, N)

for N' € Coh S define an obstruction theory for the deformation theory of coherent
modules on X in the sense of 6.10,6.14.

It is well known that the space of infinitesimal deformations of F over S[N]1is just
Ext}(s(]-" ,F ®os N). Applying the results of the previous sections we obtain the
following theorem.

THEOREM 7.2. Assume that X is proper and smooth over ¥ and that X, := f~'(0) is
bimeromorphically equivalent to a Kdhler manifold. Let Fy be a coherent module on X
and let S =(S,0) € Ang be the basis of a semiuniversal deformation of Fy. If
. Extg(o(fo,]-"o) — Il.>0 H"2(X,, Q’;(O) denotes the semiregularity map as in 4.1,
then the following hold.

(1) dim S > dim¢ Extxo(fo,]—'o) — dimc kerg.
(2) If o is injective then S is smooth at 0 over a closed subspace on

Proof. Let F be a deformation of F over an Artinian germ 7 € Arty, whence F
is an Oy,-module that is flat over T and restricts to Fo on Xy. By 4.1, for every
coherent module A on T there is a semiregularity map
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on: Ext} (F,F ®0, N)— [ H"(X1, N ®0, Qy, /1),
n=0
and by 4.7(1), this map is compatible with base change. According to [Dell], the
functor

N+— H(X1,N ®0, Q‘;(T/T)7 N € CohT,

is exact; note that using the results of [Fuj], Deligne’s original result extends to the
case of compact manifolds that are bimeromorphically equivalent to Kdhler mani-
folds with the same proofs as in (loc. cit.). Applying 6.13, claim (1) follows.
Finally assume that ¢ = o is injective. Using induction on the length of N it fol-
lows easily that o, is injective for all N' € Coh T. In particular, the functor N '+
Extg(r(]:,]-' ®o, N) is exact on the left and therefore A+ Ext;T(}',]—'@oT N) is
exact on the right. Now 6.7 shows that S is smooth over a closed subspace of X,
as claimed. ]

In case of deformations of modules on a fixed complex space X = X, that is, when
% is a reduced point, the result above holds without assuming that X is smooth.

THEOREM 7.3. Let Fy be a coherent module on X with a finite-dimensional space of
infinitesimal deformations Ext}(}" 0, Fo), and let S € Anix be the basis of a formally
semiuniversal deformation of Fo. If Fo has locally finite projective dimension as an
Ox-module, then the semiregularity map

o: Exty(Fo, Fo) — ]‘[ H"™ (X, A"Ly)
n=0
is defined and dim S > dim Ext}(]—" 0, Fo) — dim¢ kera. In particular, if ¢ is injective
then S is smooth.
Proof. Let F be a deformation of F( over an Artinian germ 7 € Any, whence F
is an Oy, r-module that is flat over T and induces F( on X. The functor

Ni— H'(X x TN @0, AMLyy7r) 2N @c H(X,ALy), N €CohT,

is exact. As the semiregularity map is compatible with base change T — S, see 4.7,
the result follows as before from 6.13. O

As a special case this contains the result of Artamkin and Mukai, [Art, Muk], that
the injectivity of the Trace map Ext3(Fo, Fo) — H>(X, Ox) implies smoothness of
the basis of the semi-universal deformation of F.

The proof of the following variant is similar and left to the reader.

PROPOSITION 7.4. Let X be a complex space embedded into a complex manifold M.
Let Fy be a coherent Oy-module with dim¢ Ext}(}'o, Fo) < 0o. The dimension of the
basis (S,0) of a formally semiuniversal deformation of F satisfies then dim S >
dime Ext}(}' 0, Fo) — kerdimc o', where
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o' Exty(Fo, Fo) — Exty,(Fo, Fo) — [ [ H"™(M,Q})).
n=0
is the composition of the semiregularity map for Fy as coherent Oy-module with the
canonical map between Ext-functors. If ' is injective then S is smooth. O

Remarks 7.5. (1) If in 7.3 the module F is supported on a closed subspace Z of X
then the map o factors through a map

02 Ext(Fo, Fo) — [ [ HEP(X, A" L),

n=0

see 4.7 (2). It is clear from the proof that the conclusion of 7.3 also holds with o
instead of o.

(2) Ideally, the map t in 7.4 should factor through a map Extf((}"o,]:g)—>
[1,>¢ ZH™", where IH denotes intersection cohomology.

7.2. THE HILBERT SCHEME

If /- X — X is a holomorphic map, let Hy/s be the relative Douady space of X that
represents the Hilbert functor Hilb: Any — Sets, where Hilb(S) is the set of all
closed subspaces of Xg:= X xx S that are proper and flat over S. In this section
we will give several smoothness criteria for the Douady space that generalize results
of [Blo, Kawl, Ran2].

For this, it is convenient to consider the deformation theory associated to the Hil-
bert functor. More generally, we will study the deformation theory p: E — Ang,
where an object of E over a germ S € Any is a subspace Z C Xy that is flat over
S. Note that Z is not required to be proper over S. A morphism of Z into another
object, say, Z' C X consists in a morphism g: §' — S such that (idy x g)~"1(2) = Z..
It is well known and easy to see that this constitutes a deformation theory as
explained in Section 6. Let Ex(Z/S,N'), N' € Coh(S), be the space of infinitesimal
deformations of Z C Xg. The following lemma is well known.

LEMMA 7.6. If Z C Xy is an S-flat subspace with ideal sheaf J C Oy, then there is
an  isomorphism  EX(Z/S,N) = Homy(J,Oz Qos N), where Oz @0, N =
OZ ®f§105f§1'/\/" |:|

Note that Homy (7, Oz @0, N) is just T}(/Z(OZ ®og N). In case that Z is locally
a complete intersection in X this is just the space of sections of the normal bundle
NZ/X of Zin X.

In order to describe an obstruction theory for Z we will assume for simplicity that
[ is flat; see Remark 7.11 (3) for the general case. In the flat case, there is for any
coherent Og-module A a canonical map Tg/E(N ) — T }(S /5(Oxs ®o N) that
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assigns to an extension [S'] of S by A the extension [Xg] of X by Ny, := Oy, ®o, N.
Composing this with the map y considered in 4.13, we get a map

ob :Tg)s(N) —> T75(Oz ®0; N).

Applying 4.13, gives the following lemma.

LEMMA 7.7. If f- X — X is flat, then the map ob constitutes an obstruction theory
for Z. O

Let /- X — X be a flat map, (S,0) a germ over X = (Z,0), and let Z C X be an
S-flat subspace with special fibre Z, over 0 € S. If O, has locally finite projective
dimension as a module on Xy := f~'(0) then by 4.5 the sheaf O has finite projective
dimension over X. Hence, applying 4.10 yields a semiregularity map

i TNz — ] H"(Xs, N®y,A"Lxys), N € CohsS.

n=0

In case of smooth maps f we get the following result.

THEOREM 7.8. Assume that X is proper and smooth over T and that X, := f~(0) is
bimeromorphically equivalent to a Kdhler manifold. Let Zy C Xy be a closed subspace.

If
1% 5 (0z)— [] H"™ (X, Q).

n=0

denotes the semiregularity map for Zy C Xy, then the following hold.

(1) If © is injective then the Douady space Hys is smooth over a closed subspace of X
in a neighborhood of its point [Z)].
(2) The dimension of Hys at [Zo] satisfies

dimyz,) Hy/s > dimc TIZ[)/X(] (Ogz,) — dimc ker .

The proof follows again from 6.13 along the same line of arguments asin 7.2. []

We note that in general the injectivity of  does not imply that Hy/s is smooth over
Z. For instance, let X — X be a smooth family of surfaces over a germ (X,0) and
consider a curve C € X,. The semiregularity map H'(C,N¢)y,) — H*(X,, Ox,) is
dual to the restriction map H°(Xy, wy,) — H(C,wy, ®oy, Oc) as we will show in
Section 8. If X — X is a versal family of K3-surfaces and C is a connected reduced
curve on X, then this restriction map is bijective. Hence Hy s is smooth over a
closed subspace of X at [C]. However, this subspace cannot be all of X since there
are no curves on the general K3-surface.

In the absolute case, when X is a reduced point, the following stronger result holds.
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THEOREM 7.9. Let Z be a closed subspace of a complex space X with a finite-
dimensional space of infinitesimal embedded deformations T 1Z / WO2) and let S € Ay
be the basis of a formally semiuniversal deformation of Z. Assume that Oy has locally
finite projective dimension as Oy-module. With
©:T5,(07) — [[H"™(X, A"Ly)
n=0

the semiregularity map, the following hold.

(1) The dimension of S satisfies
dim § > dime Ty ,(Oz) — dimc kert.

In particular, if © is injective then S is smooth.
(2) If Z is compact then dimz) Hy> dimc T}(/Z(OZ) — dimc kert. In particular, if ©
is injective then Hy is smooth at [Z]. O

In the smooth case this specializes further to the following corollary.

COROLLARY 7.10. Let Z C X be a compact subspace of a complex manifold X.
With

T30 — [[H™ (X, Q)
n=0
the semiregularity map, we have dimyz; Hy > dimc TIZ /X(OZ) — dim¢ kert. In parti-
cular, if © is injective then Hy is smooth at [Z]. O

As well, the result 7.4 can be formulated in the case of deformations of subspaces.
We leave the straightforward formulation and its proof to the reader.

Remarks 7.11. (1) Note that for a locally complete intersection Z C X with
normal bundle Ny there is a canonical isomorphism T 5 / K M) = HF!
(Z,N z/x ® M) for every Oz-module M and k > 0. Hence, in this case the state-
ments 7.8-7.10 above hold with TZZ/X(OZ) replaced by H'(Z, Nz/x).

(2) In analogy with 7.5(1), the map 7 in 7.10 factors through a map
Tz T%/X(Oz) — HnZOH”Z“(X7 QY), see 4.14 (3). It is clear from the proof that
the conclusion of 7.10 remains true for 7, instead of 7. A similar remark applies
to 7.9.

(3) We note that there is also an obstruction theory for embedded deformations if
f: X — Z is not flat. To show this, let S be a space over £ and Z C Xg an S-flat sub-
space. Consider Xg and Z as subspaces of X x S via the diagonal embedding. For a
coherent Og-module A there are natural maps

B
Tg/z(N) — T}(xs/zxz(OXxS Qo5 N) - T&(xS/sz(OZ ®0s ./\f),
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In terms of extensions, if S is an extension of S by N then «([S']) = [X x S'] and
B([X x S is the induced extension of X x S by Oz ®p, N. The embedded deforma-
tion Z C Xy can be extended to an embedded deformation Z C Xy if and only if
a([X x §']) is in the image of the natural map

v TIZ/Z(OZ X0y N) - T;XS/ZXZ(OZ X0y N)

This map embeds into a long exact cohomology sequence: namely, if C* denotes the
mapping cone of Ly, s/Exs®p,, Oz = Lzys, then the cokernel of y embeds into
Ext2(C*, N ®0, O). Thus the composition

Poa .
T}S/Z(N) — T}(XS/ZXZ(OZ ®OS N) - EXtZZ(C 702 ®0$ N)

gives an obstruction theory.
Note that in case of a flat map f: X — X, the complexes

Lxsis ® 0, Oz and Liyssysas ® ¢, O

are quasi-isomorphic. Hence, C* becomes quasi-isomorphic to the mapping cone of
Lxgs ® OXSOZ — lLz/s and so is quasi-isomorphic to L.z y,. This is the same
obstruction theory we described before.

In the general case, the reader may easily verify that there is a natural map
Lz/xg — C* that induces a map

Ext3(C*, 07 ®@p, N') —> T2Z/XS(OZ ®0, N).

Taking the composition with the map 7 as defined in 4.10, we arrive at a semiregu-
larity map also in this case.

7.3. THE QUOT-FUNCTOR

Let f: X — X be a holomorphic map and £ a coherent sheaf on X. Generalizing
partly the results of the previous part we will study the Quot-space Q¢ /s that was
constructed as a complex space by Douady in the absolute case and by Pourcin in
the relative case, see [Dou, Pou]. We remind the reader that it represents the functor
Quotg/s: Ang — Sets, where Quote 5 (S) is the set of all quotients of &g := p3(€) that
are proper and flat over S; here ps: Xgs:= X x5 S — X denotes the projection.

Again it is convenient to consider the associated deformation theory, say,
p:E — Angs. An object of E over a germ S € Ang is a quotient Q of g that is flat
over S. A morphism of Q into another object, say, Q" defined over the germ S is
given by a morphism g: 8" — S such that (idy x g)*(Q) = Q' as quotients of Eg. It
is well known and easy to see that this constitutes a deformation theory as in Section
6. The space of infinitesimal deformations Ex(Q/S, ), N' € Coh(S), is described in
the following well known lemma.
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LEMMA 7.12. If £ — Q is an S-flat quotient with kernel F := ker(Eg — Q) then
there is a natural isomorphism Ex(Q/S,N') = Homy(F, Q ®v, N). O

In case € is flat over X, there is, furthermore, a well-known obstruction theory for
Q. Since there seems to be no explicit reference for this in the relative case, we
describe in brief the construction. First note the following simple lemma whose proof
is left to the reader.

LEMMA 7.13. Let X be a complex space and X C X’ an extension of X by a coherent
Ox-module I. For coherent Oy-modules G, H consider the map

1 Ext} (G, H) — Homo, (G ® Z,H)

that assigns to an X'-extension [G] € Ext}(,(g7 H) the homomorphism w(G') obtained
from the multiplication map G ® T — G through the natural factorization

deoT ™ o1 YHno g

The map p is functorial in G and 'H and thus is T(X', Ox.)-linear. Moreover, Ker y is
canonically isomorphic to Extﬁ((g, H). O

We note that u can also be described as a boundary map in the spectral sequence
B = Ext’)’((Toer’(g, Oyx), H) = Extit(G, H). However, the more explicit descrip-
tion given above is better suited for our needs.

Let us return to the situation as described before 7.13, and consider the composi-
tion of the canonical maps

TS s (V) = Extl (Es,E5 @0, N) —> Extl(Es,Q @0, N),

where o maps an extension [S'] of S by A/ onto the class of £g. Furthermore, there is
an exact Ext-sequence

Extl_(Q, Q ®o, N) > Extl_(Es, Q ®0, N) > Extl (F,Q @0, N).

For G = &5, H = Es ®o, N, the map p described in 7.13 associates to Eg just the
identity on £s ®o, N. Using again 7.13, the diagram

Exty (Es, &5 @0, N)—L~ Extl (F,Q @0, N)
d 2
Homy, (£5s®@0, N, Es®0; N) = Homy (F@p, N,Q @0, N)
commutes, whence the extension d o f([Eg]) maps to 0 under p and so can be iden-

tified with an element of Ext}(s(}" ,Q®0, N). In other words, do oo factors
through a map
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ob: T5(N) — Exty (F, Q ®o, N).

If ob([S']) vanishes then S([Eg]) is in the image of y, and the corresponding extension
Q' gives a lifting of Q to §'. This establishes the following result.

PROPOSITION 7.14. If £ is flat over X then the map ob just defined provides an
obstruction theory for E. O

It is now immediate how to define a semiregularity map on Ext}(s(]-' ,Q®0, N).

DEFINITION 7.15. Let X — X and £ be as above and let Q be an S-flat quotient of
Es over some germ S = (S,0) over £. Assume that Q has locally finite projective
dimension on X. The composition of the boundary map Ext}(s(]-' ,Q®0,N) —
ExtﬁS(Q, Q ®p, N') with the semiregularity map ¢ defined in 4.1 yields a map

T. EX‘[;S(]:, Q ®OS N) —> 1_[ Hn+2(XS,N ®OS AHLXS/S)

n=0

that we call the semiregularity map for Q.

Now it is possible to deduce results analogous to 7.8-7.10 and 7.4. As a sample we
restrict to the following application; the proof is similar to that of 7.8 and left to the
reader.

THEOREM 7.16. Assume that X is proper and smooth over ¥ and that Xy = f~'(0)
is bimeromorphically equivalent to a Kdhler manifold. Let £ be a Z-flat coherent sheaf
on X and £y — Qg be a quotient of &y := E|Xy. With F the kernel of Eg — Qy and

w Exty, (Fo, Q) — [ H"™ (X0, Q%)

n=0

the semiregularity map for Qy, the following hold.

(1) If < is injective then the Quot-space Qg /s is smooth over a closed subspace of X in a
neighborhood of [Q].
(2) The dimension of the Quot-space Q¢/s at the point [Qy] satisfies

dimyg,) Q¢/s = dimc Homy, (Fo, Qo) — dimc ker 7. ]

Considering a subspace of X as a quotient of Oy, the Douady space becomes a
special case of the Quot-space. However, note that 7.16 does not imply the corre-
sponding result for the Douady space. The reason is that the obstruction theory
for the Quot-functor does not specialize to the obstruction theory for the Hilb-
functor. For instance, if Z C X is a complete intersection of dimension 0 then
T ZZ / Oz ®py N) vanishes while Ext}((j ,Oz) is isomorphic to the space of sections
of the second exterior power of the normal bundle of Z in X. In general, T2 provides
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a much smaller obstruction theory than the Ext'-functor. Hence it is worthwhile to
treat these cases separately.

Remark 7.17. In analogy with 7.11(3), we note that £ need not be flat over X in
order to obtain an obstruction theory for the Quot-functor. Indeed, with S, A/, Q as
in 7.12 and S’ an extension of S by A, consider the composition

* * * B *
Ts(N) = Extl, g (T4(E), T5(E) ®0y N) — Extl, o (15(€), Q @0, N),

where ng: X x S — S denotes the projection. Here o maps an extension [S'] of S by
N onto the class of 7%, (€). Now

Exty, ¢(T5(€), Q ®0o; N) 22 Exty_ (€ ®,, Os, Q ®0o; N),

with S@Oz Os :=7%(€) RBo,., Oy,. For Q to be extendable to &', the element
f o a([S']) must be in the image of the map 7 in the following exact sequence:

) 1)
Ext} (Q,Q ®0, V) — Exth (£ ®p, 05, Q ®o, N) — Exty (F*, Q®0, N),

where F* is the mapping cone of £®, Os[—1] — Q[—1]. As before, one can verify
that J o f§ o o factors through a map

ob: T /s (N) — Exty (F*, Q ®o, N),

and this map constitutes an obstruction theory. The reader may easily check that this
gives rise to a semiregularity map on Ext}(b_(}" *, QR0 SN).

7.4. DEFORMATIONS OF MAPPINGS

In this part we will generalize the semiregularity map for embedded deformations,
see 4.10, to deformations of holomorphic maps Xy — Y,. For the special case that
Xy is a stable curve over an algebraic manifold Y, such a semiregularity map was
independently constructed by K. Behrend and B. Fantechi in order to define refined
Gromov—Witten invariants in certain situations. We consider the following setup.

718. Let m: Y - X =(%,0) be a fixed germ of a flat holomorphic mapping,
set Yy :=n"!(0) and let fy: Xy — Y, be a morphism of complex spaces with X
compact. By a deformation of X;/Y, over a germ (S,0) € Any we mean a com-
mutative diagram

Y— T L ysi=vxsS

DA (1)

S
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such that ¢ is flat and proper and f induces f; on the special fibre Xy = ¢~!(0). This
deformation is, abusively, denoted by X/Ys. Such deformations form in a natural
way a deformation theory over Any.

It is well known, and follows easily from the existence of the (relative) Douady
space, that there are always convergent versal deformations of Xy/Yy, see [Fle2,
BKo].

The infinitesimal deformations of X,/ Y, can be described as follows. Let X/ Y be
a deformation of Xo/Yy over S as in (1) and let AV be a coherent Og-module. An
S’ := S[Nl-extension of f2X — Ys by N consists in a deformation X’'/Yg of
Xo/Yo over S as in the diagram

s Ys
NN (2)

S" =SV

that induces on S the given deformation X/ Yy as in (1). Let Ex(X/ Y5, A') denote the
group of these extensions. An S[N]-extension X'/ Yy of X/ Y corresponds to an
extension of X by Ny := N ®p, Oy that is a space over Ys. Hence we obtain the
following lemma.

X/

LEMMA 7.19. There is a canonical isomorphism Ex(X/Ys, N') = T}/ yNx). O

Next we will describe obstructions for extending deformations. Let X/ Yy be as in
(1) and let S— S be an extension of S by N. The extension Yy of Yg by
Ny := N ®0 sOy; gives an element [Yg] of T} (Ny). The composition of the
two canonical maps

V: les(/\/ys) — EXt}((Lf*(LYS/SLNX) — T%{/YS(NX)
admits the following interpretation in terms of extensions.

LEMMA 7.20. The class of the extension Ys is mapped to 0 under y if and only if
there is an extension X' of X by Ny together with amap f': X' — Y that induces f on
Y and the identity on N'y. In particular, the composite map

can

ob: 7% s (V) =5 Th (Ny) — Ty (N )

provides an obstruction theory in the sense of 6.10.

Proof. To prove this statement, we use the existence of tangent functors T}(—) for
holomorphic mappings as constructed in [Flel], see also [Ill]. These functors fit into
an exact sequence

s TN ) = T (W) = T (V) — -, *)
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see [Flel, 3.4]. The group T, }(N vs) i1s canonically isomorphic to the set of all iso-
morphism classes of extensions of f by Ay,. Such extension is a holomorphic map
S X' — Y’', where X', Y’ are extensions of X, Ys by Ny, Ny, respectively, with
/" inducing the map f'on X and the identity on A y; see [Flel, 3.16] for details. More-
over, the map f in (x) assigns to [f”] the extension [Y’]. In view of the exactness of the
sequence (*) this proves the lemma. O

In a next step, we generalize 4.9(1) to arbitrary mappings.

PROPOSITION 7.21. For every morphism of complex spaces f-X — Y and every
complex of Ox-modules M bounded below there are canonical maps

T} /(M) — Exty(Rfi(Ox), Rf.(M)), k€ Z.

In case M = Oy, this specializes to a map of graded Lie algebras

x/v(Ox) = Exty(Rfu(Ox), Rf(Ox))-

Proof. Let (X, W,,R,) be a free resolvent foLX over Y and let M, — M* be a
quasi-isomorphism into a W,-acyclic complex M, of Oy, -modules as in 2.15. We
need to construct a map

T}, (M) = H*(Homg, (@, 7, M.)) —> Exty(Rf(Ox), RE(M)).

Let f~!(Oy) be the topological preimage of the sheaf Oy and let f-'(Oy) be the asso-
ciated simplicial sheaf of rings on X,. As the topological restriction R,|X, is a sheaf
of Abelian groups on X,, we can form its associated Cech complex and so we can
consider the composed map

Hompg, (Qf /y, M.) <> Dery(R., M) )
— Homf;l(oy)(R*a M) — Homf*‘(Oy)(C.(R*lX*% C*(M,)),

where the first two maps are the natural inclusions and the last one is given by the
Cech functor. There is always a natural morphism Hom(—, —) - RHom(—, —), thus
taking cohomology we obtain a natural map

TE (M) — Exti, o, (C'(R.|X,), C(M.)) = Exthi o, (Ox, M), (%)

where the final isomorphism results from the fact that the complexes C*(R.|X,) and
C*(M,) are quasi-isomorphic to Oy, resp. M, see 2.28. Composing (**) with

R Extf i, (Ox, M) — Extly (Rf.(Ox), Rf(M))

gives the desired map. If M = Oy, then replacing M by R, and C‘(/q*) by
C*(R.|X,), the first inclusion in (*) becomes bijective, and so the argument shows
the compatibility with the Lie algebra structure. ]

In the next lemma we provide a criterion as to when Rf,(Oy) is a perfect complex
on Ys. We keep the notation introduced in 7.18.
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LEMMA 7.22. If'Y is smooth over Z, then Rf,(Oy) is a perfect complex on Y.
Proof. For every coherent Og-module N the natural map

Rf:(Ox) ® N — Rf*(NX)

is a quasi-isomorphism. Applying this to A = Og/mg the claim follows from
4.5. L]

We are now able to apply the constructions of the previous section to define a
semiregularity map for deformations of mappings. Let Y — X and /i X — Yg be as
in 7.18 and assume moreover that ¥ — X is smooth. We define a semiregularity map

i Ty, Ny = [[HP(Ys N ® Qe
p=0
as the composition of the two maps

can

T3y W) = ExG (RO, RO O N) = [[HP(Ys, N @ o),
p=0
where the first map is as in 7.21 and ¢ is the semiregularity map defined in 4.1.
In analogy with 7.9 we are now able to deduce the following result.

THEOREM 7.23. Assume that m: Y — X is proper and smooth and that Yy = f~1(0)
is bimeromorphically equivalent to a Kdihler manifold. Let fy: Xo — Yo := n~'(0) be a
proper holomorphic map and denote S = (S,0) the basis of the semi-universal defor-
mation of Xo/Y. If

T0- T%f()/Y(>(OX0) — l_[ Hp+2(YOa QI;O)
p=0

is the semiregularity map as above, then the following hold.

(1) dim S > dimc T}(O/YO((’)XO) — dimc ker 1.
(2) If 7y is injective, then S is smooth at 0 over a closed subspace of Z.

Remarks 7.24. (1) In the special case that X is a reduced point, Y = Yj is a
compact complex manifold of dimension d, and f: X — Y is a map from a rational
curve X into Y, the group T2(X/Y,Oy) is isomorphic to the group H'(X,*(®y)),
where @y is the tangent bundle of Y. Thus the top component of the semiregularity
map provides a map H'(X,/*(®y)) — HUY, Q‘)],_z), and we recover the map
constructed by Behrend and Fantechi.

(2) The results 7.3 and 7.4 also admit generalizations to the case of deformations
of mappings. We leave the straightforward formulation and proof to the reader.

8. Comparison with Bloch’s Semiregularity Map

8.1. Assume that X is a compact complex manifold and Z C X is a locally complete
intersection of (constant) codimension ¢ with ideal sheaf J C Oy. In this section we
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will compare our semiregularity map from 4.10 with the semiregularity map defined
in [Blo]. Observe that for a locally complete intersection T§ / (Oz) = H Y Z,N 7/x)
for all k, where N 7y = (T T?Y == Home,(J/T?* O) is the normal bundle of Z
in X. Bloch’s semiregularity map is constructed as follows. With m := dim Z, there is
a natural pairing

_ v/ q-13 1 A
QP AN P O x0T @ 07 — 0x® Oy,

where d: Né/x ~J/J* = Q,®0, is the map induced by the differential
d:J — Q}. Equivalently, this amounts to a map

Q?‘H—)AQ*I./\/'Z/X®(UX%N}/X®COZ7 (1)

where we have used the adjunction formula w; = det A/ z/x ® wy and the isomor-
phism Aq_lNZ/X o N}/X ® det N'z/y. Dualizing the induced map in cohomology
H" (X, Q%™ — H"K(Z, N7/x ® wz) gives a map

5 HN(Z,N 2)5) — HOH(X,Q47, &)

and Bloch’s semiregularity map is just this map for k = 1. We will compare it with
the component

© HNZ, N 7px) = T4 (02) — HIH (X, Q4

of our semiregularity map defined in 4.10.

PROPOSITION 8.2. The maps tg and t coincide.

For the proof, we need a more explicit description of the semiregularity map. First
observe that

(6 ry@h) = P erh . p>o

as H[Z(Q‘gfl) = 0 for i # ¢; for the algebraic case, see [Blo], whereas in the analytic
case this follows from [Sche]. To proceed further we describe the local cohomology
sheaves HZ(Q% ") in terms of a Cousin-type complex.

8.3. Let & be a vector bundle on X and let Z be as above. Assume U C X is an open
subset such that the ideal 7 C Oy of ZNUC U is generated by sections
i, . fg € T(U,Oy). For an index o = (ay,...,a,) with 1 <oy <--- <a, < g set
le| = p and U, := {x € U|f,(x) # 0}, where f, =[], f,,. Consider basis elements
0fy = 6fy; A -+ A Ofy, and the Cousin complex

CLEI): 0= E|U=: E\UNfy — [ ] €8 > -+ > ] €8s > 0,

Jo]=1 lorl=¢
where &£, := j,.(€|Uy) with j, the inclusion U, — U. The differential on C5(€|V) is
given by 9(df,) := — Y., 8f; A 6f,. The minus sign occurs in order to have an exact

sequence of complexes
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0—C°({Uin UYL E[-1] = CLEIU) — EIU — 0,

where C* := C*({U; N U}, ) is the sheafified Cech complex; observe that the differen-
tial on C*[—1] is the negative of the differential on C*! It is well known that
H(EIU) = HP(CH(E|U)). Note that C5(Oyp) carries a graded algebra structure via
0f+0fp := 0fy A dfp and that C5(£|U) is a graded module over C5(Oy).

In [Blo, p.61], Bloch defines a natural map
N 70— HH(X, Q)
that is locally given as follows. Multiplying the element
of 0
= [ﬁ A A ﬁ
f 1 f q
with dfi A--- Adf, gives a form o ®dfi A--- Adf; in HO(U7 HL(X, Qg()) that is
independent of the choice of the equations fi, ..., f,. The map p is then given by con-

traction against o ® df; A --- A df,, which yields for a linear map ¢: 7 — Oz the
explicit expression

w@) = (=)o o(H@dfi A Adfi A Adf,. 3)

} € T(U, HL(O)

Now 73 in 8.1 (2) is the composition

can

HNZ N 7yx) = HY (X HLG Q) = H orag ) <5 B alh,

see (loc. cit.) for a proof. To compare this map with our semiregularity map, observe
first that 7 also admits a factorization

HYZ,N 70 = TS (07 — B (.0 ) — HIY (X, Q47),

see 4.7. As taking traces is compatible with localization, to deduce 8.2 it is sufficient
to show the following lemma.

LEMMA 8.4. The diagram of Oz-modules

*-(— =1 - g—
é'xti( ©2,02) gNZ/X (= Al Oz /(g— 1)1 EXtBI((OZ,Oz(@Q)]( [)

HLX, Q)

commutes.

Proof. This is a local calculation, so we may suppose X Stein and Z defined by
equations f, ..., f, so that the Koszul complex K,(f; Ox) is an Oy- resolution of the
sheaf Oz. More explicitly, set

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023999012081

202 RAGNAR-OLAF BUCHWEITZ AND HUBERT FLENNER
K7 :=K,(,0x)= € Oxifi A+ A%,
1y <-~-<iﬂ

with the Koszul differential given by 9(yf;) = f;. Note that K* is the free graded alge-
bra over Oy with generators yf; € K~!, 1 <i < ¢, in (cohomological) degree —1 and
that 0 is a derivation of degree 1. In particular,

Ext{(0z,078, M) = H*(Homx(K*,K* ®0, M)), k=0,
for every coherent Oy-module M. Consider on K* the connection
VK — K ®Q) with V(fy A---Apf;) =0

The Atiyah class of Oz is now the element of Ext}(((’)z, 0Oz ® Q}() represented by
[0,V]: K* — K* ® QL. an Oy-linear map of degree 1. Note that V as well as [9, V]
are derivations on the ring K* and that [0, V](yf;) = —1 ® df;. Thus, the map

O,V J(g— DK — K Q%

which is only nonzero on K~¢*! and K9, is given there by

Yfl /\"'/\“)Tfi/\"'/\yfq — (_1)((2’)]®(df1 /\/\a?z/\/\dfq)
WA Ay — Z(_l)("E')Jriyﬁ@dﬁ A Adfi A Adf,.
Consider now ¢ € Homy(7,0z) = Ext}((C’)Z, Oz) and write @(f;)) = ¢@; with
sections ¢; of Oy. Under the isomorphism Ext}((OZ, 0y) = H'(Homy(K*, K*)), the
element ¢ corresponds to the derivation ¢: K* — K* with ¢(yf;) = ¢;. The composi-

tion ¢ o [8,V]”" ' /(g — 1)! is a map of degree ¢ and is therefore determined by the
component

oA VI (g—1): K1 — K @ Q%!
WA AP Z(—l)(q;])ﬂ/’z@dfl A Adfi A AdS,.

Note that ¢ o [0, V]?"! represents ([p], At~ (Oy)).

Now we wish to take traces to produce an element in H%(X, Q‘)l(_l). Let C, = C%(Oyx)
be the Cousin complex, see 8.3. Let 9f; be the basis of Homy(K~!, Oy) dual to yf;
and set

W= o Ao Aoy = (DO A AT

With this convention, (—1)(§)§{f; is the basis element dual to pfy = pfy, A--- A Sy,
and the differential on Homy(K*, Oy) is given by multiplying from the left with
—>"fi-9fi. The computation above gives that

Qoo VI g =D =i A A D (=D @dfi A Adf A A,

Using 8.5 below, this is mapped under the trace map to
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19 A0 , —
(=1 ! MZ(—I)H% @dfi A---Adfin - Adfy.
fi-fy
Comparing with (3) above, the result follows. OJ

It remains to verify the following lemma.

LEMMA 8.5. The trace map Exti(Oz,Oz) — HL(Ox) maps the class of
i A Ay € Homy(K9, Oy) € Homy(K®, K*) onto the class of

5/‘1/\/\5}((/

fl o '.fq

Proof. As C5 is a sheaf of flat Oy-modules, the complex K*® C is quasi-
isomorphic to Oz ® C5, =2 Oz. Therefore, the canonical projection C, — C%:
Oy induces a quasi-isomorphism K* ® C5, — K°. In a first step, we construct a
section of this projection,

Yt el

k Aof
K'

as follows. The map Jf, > 0f,/fs, Where Jf, =9y, A--- AJf;, is as above, realizes
Homx (K*, Ox) as a subcomplex of C5,. We define i to be the composition

K* — Homx(K*, K*) 2 K* ® Homx(K*, Ox) — K* ® C5,

where the first map is given by k+— k - id. As the identity corresponds to the element
Z(—l)(‘g‘)yfa ® 7f» in K* ® Homy(K*, Oy), the map y is given explicitly by

ki k- (=Dt @ ofs /i
o
Now we can define the local trace map Homx(K*,K*) — C; as the composition of
18y . Tl

Homx(K*, K*®) 2 Homx(K*,Ox) ® K* — Homx(K*,Ox)@K*®@C, — C5.
The image of )fi A --- A }f; under these maps is just given by

~ ~p 1®Y L ~ Jo|

Wi A A A @Y (DG, ® 3/,

Trol O0f1 A -+ A dfy
—_ 4
ity
as desired. O

8.6. Another application of the above construction concerns the infinitesimal Abel—

Jacobi map. Let X be an n-dimensional compact algebraic manifold and Z C X a
closed submanifold of codimension ¢g. The infinitesimal Abel-Jacobi map is the

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023999012081

204 RAGNAR-OLAF BUCHWEITZ AND HUBERT FLENNER

differential at [Z] of the Abel-Jacobi map Hilby — J9(X) into the intermediate
Jacobian JY(X); see, for example, [Gre, Gri2], or [Voi] in the analytic case. This
differential can be considered as a map f: H%(Z, N z/x) —> HI(X, Q;’(_]) that has the
same homological description in terms of Serre duality as Bloch’s semiregularity map
and is just the map 7 in 8.1 (2) for £ = 0, see (loc. cit.).

Applying 8.2, we obtain the following description of the infinitesimal Abel-Jacobi
map.

PROPOSITION 8.7. The infinitesimal Abel-Jacobi map fits into the commutative
diagram

H(Z, NZ/X)i» EX’[}X(OZ,Oz)

ﬁl l(*?(— At(oz))qfl/(‘lfl)w
HI(X, Q5 < Exth 07,0,0047). ]

This statement should generalize. There should be an Abel-Jacobi map for defor-
mations of arbitrary coherent sheaves on a compact algebraic manifold such that its
differential is essentially given by multiplication with powers of the Atiyah class as
above. More precisely, let us pose the following problem.

PROBLEM 8.8. For a coherent sheaf Fj on a compact algebraic manifold X the
Chern character chy(Fy) is a well defined class in the Chow group CHf(x ) Assume
that the sheaf F on X x S is a semi-universal deformation of F, over a germ
S = (S,0). If F; denotes the restriction of F to the fibre X = X x {s}, then the fol-
lowing should hold:

(1) The map s+ chy(F) provides a family of k-dimensional cycles on X.

(2) Integrating over a (topological) (2k + 1)-chain in X with boundary
chi(F) — chi(Fy) gives a holomorphic map S LA JE(X).

(3) The derivative of ¢, is given by

o

e A
TOS — EXt;(FO, f()) Tr(%,(=At(Fo))" /k!) H/c+l ()(7 Q/}()

9. Appendix: Infinitesimal Deformations and Integral Dependence

We recall first the definition of integral dependence, see [ZSal]. Let R be a ring and
I C R an ideal. An element x € R is integral over I if there is an equation

X tax" ' 4a,=0

with a, € I'".
For instance, every element of I is integral over I. The set 7/ C R of all elements
from R that are integral over I is an ideal, the integral closure of I in R.
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We remind the reader of the following criterion for integral dependence that we
formulate for our purposes as follows. Let k& be an algebraically closed field and
let A =(A4,m) be a local Noetherian complete k-algebra with residue field k. If
I € m is an ideal, then f'is in the integral closure of [ if and only if for every ‘arc’
o: A — K[T] the element o( f) is contained in oa(I)K[T].

9.1. For the main result of this section we consider the following setup. Let A — A4
be a morphism of complete Noetherian k-algebras with residue field k£ and assume
that 4 = R/Iwith R := A[X,..., X,Jand I CmaR + (X1,... . X,)*. Tt is well known
that for every finite 4-module M there is a canonical isomorphism

TL/A(M) = coker(HomA(Qz/A,M)—>HomA(1,M)>, (%)

where TL/A(M) is the first tangent cohomology. The elements of TL/A(M) corre-
spond to isomorphism classes of algebra extensions [4] of 4 by M. On the level
of such algebra extensions the isomorphism above is given as follows. If
[4 € TL/A is an algebra extension of A4 by M, let p’: R — A’ be a morphism of A-
algebras lifting the given map p: R — A. Restricting p’ to [ gives a map
¢4 :=p'|I: 1 - M, and the correspondence () assigns to [A] the residue class of this
homomorphism. As I € myR + (X, ..., X,)*, we get in particular that

Ty /A (k) = Hom (1, k). (%)

There is always a canonical inclusion of ExtL(QL M ) into T'A /A(M ). In case
M = k, another important subspace of Tll / A(k) is Ex§ / A(k), the space of curvilinear
extensions. This is, by definition, the subspace generated by all curvilinear extensions
[4'], which are those extensions that fit into a commutative diagram of A-algebras

0 >k > A > A >0
*| l | (D)
0 k K[/ (@YY — k[d/(")y — 0.

We will give the following characterizations of these subspaces.

THEOREM 9.2. (1) If k is algebraically closed then under the isomorphism (xx) the

subspace EX¢ / Alk) of TL / A(k) corresponds to the subspace Hom,(I/J, k) of

Hom 4(1, k), where J is the integral closure of ml in I.

(2) The elements of Exti1 (Qi1 M )— TL / A(M) correspond to those extensions [A'] of
[4] by M for which the associated Jacobi map j: M — QL//A Q4 A is injective.

(3) If Char k =0 and A = M = k, then there are inclusions

Ex¢ (k) < Ext! Q) k) € T (k).

Proof. For (1), let A’ be a curvilinear extension of 4 by k and let p’: R — A’ be a
morphism of A-algebras lifting the given map p: R — A4, so that ¢, =p'|l. ] — k

https://doi.org/10.1023/A:1023999012081 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023999012081

206 RAGNAR-OLAF BUCHWEITZ AND HUBERT FLENNER

corresponds under (*x) to the extension [4']. By the valuative criterion of integral
dependence mentioned above, J is in the kernel of p’, whence ¢, € Hom4(I/J, k).
Thus Ex¢ / A(k) € Homy(I/J, k). To show equality, assume that o is a k-linear form
on Homy(/, k) that vanishes on Ex /A(k). We need to show that o vanishes on
Hom(Z/J, k). Such a linear form can be written as Hom 4(Z, k) > '+ a(f) = f(x) for
some x € . By assumption, for every curvilinear extension A’ of 4 by k, the element
a(¢ ) = @ 4(x) vanishes. Applying the valuative criterion of integral dependence it
follows that x € J and so o vanishes on HomA(I/J k), as desired.

In order to deduce (2) note that the map ExtA(QA/N M) — TA/A(M) assigns to an
extension 0 — M — E > QA/A — 0 the algebra extension [4'] of 4 by M that is the
quotient of the trivial extension A[E] by the ideal ker((d, —¢): A[E] Yo} A A)> Where d
is the differential. The reader may easily verify that then E =~ Q!, /a @4 A and that
the Jacobi map j becomes the inclusion of M into E, whence j is injective. Conversely,
if for an extension [A’] the map j is injective, then it is easily seen that the construc-
tion just described recovers [A4'] from the extension E := QL,/A ®q A of QL/A by M.

Finally for (3), if [4’ ] is a curvilinear extension as in the diagram (D) in 9.1, then
the composed map k A Q /A ®a A — k[e]/(#") - dt is the map 1+>d(¢") and so is
1nJect1ve Hence, j is also injective, proving the inclusion Ex¢ /k(k) C Ext! y
(@)1 K. O

The following result shows how to bound the dimension of 4 in terms of its curvi-
linear extensions, as

Ex{ A(k) = Hom (7/J, k) = Hom(I/(J +mlI), k)

by the preceding result. Kawamata [Kaw?2] attributes the corresponding geometric
argument to Mori.

PROPOSITION 9.3. Let A = R/I be a quotient of a local ring (R,m, k) modulo an
ideal I Cwm. If J C I is integral over ml, then dim 4 > dim R — dimy(I/(J + ml)).

Proof. Replacing J by J+m/ we may assume that J D m/. Choose elements
X1,...,%s € I that form a basis of the k-vector space I/J and consider the natural
ring homomorphism

KIX1, ... X — é([" JmI")T" = R[IT]/mR[IT]

given by X;— x;T € (I/mI)T. In a first step we prove that this map is finite. In fact,
the elements f T,f€J, generate the ring R[IT]/mR[IT] as an algebra over
k[X1,...,X), and if /" + a1 /"' + - -- 4+ a, = 0 is an equation of integral dependence
for such an f'e J over ml, the coefficients satisfy a, € (m/)", whence (fT )" =0 and
finiteness follows. This implies

dim R[IT]/mR[IT] < s. ()
As R[IT]/mR[IT] appears as the special fibre of
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[ee]

R/I — G((R) = @1”/1"“,
v=0

we obtain
dim R[IT]/mR[IT] > dim G;(R) —dim R/I =dim R —dim R/I,

see [Mat, Thms.15.1, 15.7]. Together with (1) the result follows. O

For the next result we have to assume that the ground field k£ has characteristic
Zero.

PROPOSITION 9.4. If A — A is a morphism of local Noetherian complete k-algebras
with residue fields k, then
dim 4 > dimgHom «(Q) , k) — dimg Ext)y(Q, 4, k).
Proof. In the absolute case, where A = k, this is a result due to Scheja and Storch,
see [SSt, 3.5]. Alternatively, it follows from the chain of inequalities
dim 4 > dim R — dim(1/J +mI) = dimyHom4(Q; ., k) — Ex§ (k)
> dimgHom «(Q), ., k) — Ext}(Q ., %),

where we have applied 9.3 and 9.2.
To deduce the general case, set A := A/mp A. The spectral sequence

EY! = Ext’(Tor)(Ql 4, 4), k) = Ext;(Q}; , k)
yields

Hom 4(Q) 4, k) = Hom ;(Q}; k) and Ext)y(Q)} 5, k) 2 Ext}(Q] o).

Hence the result follows from the chain of inequalities

dim 4 > dim 4 > dim¢Hom 3(Q} ., k) — dimgExt;(Q} . k)

> dimgHom 4(Q) ), k) — dimy Ext)y(Q, 4, k). O
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