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Abstract

Earlier research largely ignored the effects of climate change on the growth of agricultural total
factor productivity (TFP) in Africa. This study shows how climate inputs impact TFP growth
in addition to other productivity growth indicators and metrics, as well as how they can
impact overall input efficiency as productivity drivers. We use a panel of 42 African nations
from 1999 to 2019 and a nonparametric data envelopment analysis-Malmquist technique. The
non-parametric analysis revealed that the average growth rate of the non-climate-induced TFP
estimates was 1.9%, while the average growth rate of the climate-induced TFP estimates was
2.4%. Accounting for temperature and precipitation separately, TFP grew by 2.3% on average.
This growth rate (2.3%) is slightly less than the combined effect of temperature and
precipitation (2.4%) but higher than the typical TFP growth rate (1.9%) that ignores climate
variables, indicating that TFP growth in African agriculture risks being underestimated when
climate inputs are ignored. We also find the distribution of the climate effects to vary across
regions. In northern Africa, for example, the temperature-induced TFP growth rates were
negative due to rising temperature in the region. Evidence from the decomposed TFP esti-
mates indicates that climate variables also influence productivity determinants. However,
technology improvement is fundamental to mitigating the effects of extreme weather inputs
on TFP growth in Africa’s agriculture. As a result, a few policy suggestions are provided to
help policymakers deal with the effects of climate change on TFP growth in Africa’s
agriculture and ensure food security. The study advocated for a reevaluation of the
climate–agriculture effect in order to fully comprehend the role of climate factors and their
contributions to agricultural TFP growth in Africa.

Introduction

The theoretical literature on climate change is extensive and encompasses all sectors. However,
agriculture accounts for the majority of our knowledge of climate effects (Blanc, 2011; McCarl
and Hertel, 2018; Hertel and de Lima, 2020). The climate effects on crops, livestock, land,
labor productivity, factor productivity and environmental quality have all been studied
(Edame et al., 2011; Valipour, 2017; Mechiche-Alami and Abdi, 2020; Sridhara et al., 2022).
There is evidence regarding weather variables, such as precipitation and temperature, explain-
ing much of the output growth in agriculture (Liang et al., 2017). In general, productivity
occurs when the transformed inputs generate the maximum feasible output. A more preferred
measure of productivity growth in agriculture is total factor productivity (TFP) (Fuglie, K.
2012; Ding and Zhang, 2021). TFP is defined as a measure of total output expressed over a
measure of total input (O’Donnell, 2021). In the context of agricultural output such as
crops and livestock, farmers evaluate the overall growth of farms by considering the combin-
ation of different inputs, including land, labor, capital, materials and services that are under
their control, as well as other natural variable inputs that they do not directly control but
are important in the production process (Rahman and Salim, 2013; Food and Agriculture
Organization, 2018; O’Donnell, 2021).

Thus, agricultural economists are normally concerned with the potential impacts of nature
by studying how natural inputs may affect physical productivity outcomes. Normally, they use
either process-based simulation models (biophysical or agronomic) or econometric techniques
to estimate these effects. In general, the simulation approaches need less data, but they make a
lot of assumptions about how accurate the models are and how climate changes affect crop
yields. On the other hand, the econometric approaches consider the past effects of climate
over time and space and make inferences for the future by extrapolating information from
the past (Suresh et al., 2021). As a result, numerous approaches for mitigating the effects of
climate variability on agricultural production have been developed. Despite their benefits,
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most of these approaches have been applied to partial growth
indicators with restricted data and time dimensions. There have
been few attempts to investigate the impact of climate change
on aggregate growth indicators such as agricultural TFP (Liang
et al., 2017; Hertel and de Lima, 2020). However, most of these
studies employed different parametric methods to control for
the effects of climate variability on agricultural TFP. On average,
TFP has been found to be highly sensitive to both short-run and
long-term climate variability (Chambers and Pieralli, 2020;
Chancellor et al., 2021). Some researchers have combined climate
variables with either aggregate or farm-level inputs or outputs to
estimate production functions and stimulate the potential effects
of future climate factors on TFP growth (Qi et al., 2015; Njuki
et al., 2018; Chancellor et al., 2021). For example, Ogundari
and Onyeaghala (2021) studied climate change effects on agricul-
tural TFP growth in 35 African countries using the Ricardian
model on historical rainfall and temperature data drawn from
1981 to 2010. Their analysis revealed that rainfall has a significant
positive impact on TFP growth in sub-Saharan Africa, but tem-
perature did not show any substantial effect.

Climate variables have also been factored into production
frontier analyses such as data envelopment analysis (DEA) and
stochastic frontier analysis (SFA) to decompose productivity
into measures of technology and various components of efficiency
change (Hughes and Lawson 2011; Chancellor et al., 2021).
Hughes and Lawson (2011) used farm-level data to estimate a
nonparametric model linking farm-level TFP indices with a var-
iety of location-specific rainfall and temperature variables to con-
trol for climate effects on TFP. Their results showed productivity
increases that are linked to long-term climate effects. Recently,
Chambers and Pierall (2020) recognized the stochastic nature of
climate variables in a nonparametric framework and incorporated
them directly into the production function analysis (Chambers
and Pieralli, 2020; Chambers et al., 2020). The authors found
climate-related changes rather than technological innovation to
be the primary determinant of the slowdown in productivity
growth. Based on the evidence, the authors warned that excluding
the effects of weather in productivity estimation could result in a
potential bias in TFP estimates (Chambers et al., 2020). In the
same way, Plastina et al. (2021) used agricultural production
and weather data from 16 US states to demonstrate how ignoring
the effects of climate shocks can alter TFP growth and its decom-
posed components. The authors found evidence that productivity
growth in agriculture is sensitive to climate change.

These studies have primarily focused on the developed world,
specifically the USA and Australia, whereas the current study
focuses on Africa, which is particularly vulnerable to weather
adversity, and there is limited evidence on the analysis of climate
factors as drivers of productivity growth. To date, only a few stud-
ies have examined the impact of climate change on TFP increases
in African agriculture, with the vast majority employing the para-
metric SFA on old data that has nearly a decade gap. Accordingly,
this research argues that most TFP growth studies, particularly
those using a nonparametric methodology, have ignored the
effects of weather on the aggregate measure of agricultural prod-
uctivity growth in Africa. In fact, the empirical literature on the
climate–agriculture nexus in Africa has mostly relied on methods
involving parameter specification (i.e., SFA or Cobb–Douglas pro-
duction function). These methods can be problematic due to
restrictions imposed on the nature of the production technology.
Unlike previous studies, the current study is interested in using
weather inputs as factors of production to determine their effects

on productivity drivers and growth rather than their parameter
elasticities. Hence, the nonparametric DEA-Malmquist approach
is employed because it allows us to achieve this goal in a relatively
straightforward manner. This is the first study to incorporate
climate variables into the production technology of African agri-
culture using the Malmquist productivity index method. The
study is justified because crop growth is sensitive to changing
weather and Africa’s farming system is more dependent on the
natural environment. Consequently, climate variables become
natural inputs, and including them in the production technology
can help control for the effects of weather on TFP growth and its
drivers and reduce biases in productivity estimates (O’Donnell,
2012, 2021).

Except for the value-added measure of TFP, which does not
require the use of intermediate inputs in agricultural production
technology, the nonparametric framework involving gross output
value of production does not limit or restrict the types of inputs
used in the production technology in agriculture (Schreyer, 2001;
Gray et al., 2011; Bernard et al., 2022). However, due to the dif-
ferential nature of the climate–agriculture effects, as evident in
previous studies, the current study uses a single output, compris-
ing the aggregate production value of 162 crops in a panel of 42
countries, to estimate the nonparametric DEA-Malmquist index
and compare the results across the five geopolitical regions of
Africa. Our objective is similar to previous studies conducted in
the USA (Liang et al., 2017; Chambers et al., 2020; Plastina
et al., 2021). As far as we know, this study is one of the very
few that used the nonparametric DEA-Malmquist method to con-
trol for the direct effect of climate change factors on agricultural
TFP growth. In fact, aside from the OECD countries (Chambers
and Pieralli, 2020; Plastina et al., 2021), we do not know of any
such study for Africa’s agriculture.

The contribution of this study can be summarized as follows:
to begin with, the study shows how controlling for the effect of
nature in agricultural growth analysis is critical for identifying
biases in productivity outputs in Africa, where farming activities
are largely traditional due to the limited use of agricultural tech-
nology. Secondly, the nonparametric literature, applying the
DEA-Malmquist approach in Africa, is not only limited but has
also failed to account for climate effect on productivity growth.
A gap which the current study tries to address by testing the sen-
sitivities of agricultural TFP to climate variables in a nonparamet-
ric framework and demonstrating how ignoring climate factors
could lead to biases in TFP estimates in Africa’s agriculture.
Finally, given that the nonparametric technique is not subject to
parameter assumptions, this flexibility will provide a deeper
understanding of the actual stochastic nature of climate change
effects on TFP growth in Africa. The study makes suggestions
for policy changes that can help Africa’s agriculture deal with
the effects of climate change in a way that improves productivity
growth and ensure food security.

Materials and methods

Study design

Our study is designed in four phases. First, following Chambers
and Pieralli (2020) and Plastina et al. (2021), we apply a non-
parametric technique to estimate TFP using a combination of
climate variables and conventional input and output variables
from crop production values to estimate an output-oriented
DEA-Malmquist index (Fare et al., 1994). Secondly, we assess
the impact of climate variables on TFP change by directly
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controlling for climate variability in the production frontier tech-
nology. Thirdly, we compare the results of steps 1 and 2 to deter-
mine possible bias in TFP change as a result of the omission of
weather effects from the production technology. Finally, we
made two more sets of TFP estimates to test the individual effects
of the two climate variables (temperature and precipitation) on
TFP growth and its components (TECCH, TECH and SECH).
We drew an analogy to show how accounting for these variables
together or separately may change TFP estimates across African
countries and regions. The main goal of this exercise is to quantify
the effects of climate shocks and demonstrate why climate vari-
ables should not be disregarded in the measurement and decom-
position of agricultural TFP change in Africa.

DEA-Malmquist index specification

The DEA-Malmquist index is a nonparametric analytical
technique that calculates the production frontier using a linear
programming system. It is common practice to utilize the
Malmquist index technique as a traditional TFP measure since
it enables the decomposition of TFP change into components
with respect to the frontier (i.e., a technical change index, an
index of technological change and a scale efficiency change)
(Nondo and Jaramillo, 2018; Ding and Zhang, 2021; Bernard
et al., 2022). The index takes both the border’s movement and
the separation between each production entity and the frontier
into account. The frontier may be defined as nations (DMUs)
that have embraced best-practice technology as a result of
advancements. The Malmquist index’s usage in growth studies
is fairly simple and convenient because it assesses productivity
increases over time without imposing prior assumptions
(Pathak, 2019).

Empirical specification

Consider agricultural inputs m as a function of both physical mar-
ket inputs represented by x and climate factors denoted by c, with
m = x + c, for each country j at time t. This method allows for the
calculation of the climate-inclusive TFP index (CTFP), which is
based on m inputs and y output, where y represents the country
j’s total crop production at time t. In other words, the two
climate variables (i.e., temperature and precipitation) are jointly
accounted for alongside the conventional inputs when the m vari-
able is used in the production technology. As stated in the study’s
design, we examine both the combined effects of these variables
and their individual effects (see Equations 1, 2 and 3). As a result,
we derived a typical TFP index (NTFP), a precipitation control
index (PTFP) and a temperature control index (HTFP). According
to the productivity accounting approach, productivity can be
measured in relation to two periods (t and t + 1). Thus, using
the method of Chambers and Pieralli (2020), the productivity
index for t + 1 is then calculated with regard to t, the base period:

CTFPt,t+1 =
y jt
m jt

( )
/

y jt+1

mjt+1

( )
(1)

The CTFP represents the combined effects of the climate-inclusive
measure of TFP growth. The other three measures of TFP, as
described above, can be shown mathematically as follows:

NTFPt,t+1 =
y jt+1

x jt+1

( )
/

y jt
x jt

( )
(2)

The NTFP is a measure of TFP change that does not take into
account climate input variables in production technology. yjt-
denotes total crop production output y for the country in year
t. While xjt represents the conventional market and material
inputs used by country j for crop production in time t, this is
the typical TFP estimate that is normally used to explain product-
ivity growth trends and patterns in Africa. In this study, however,
it is used as a reference base for our climate control productivity
estimates:

PTFPt,t+1 =
y jt+1

x jt+1 + p jt+1

( )
/

y jt
x jt + p jt

( )
(3)

PTFP is the TFP estimate that exclusively controlled for the effect
of precipitation in the production technology. The below expres-
sion captures the effect of temperature, HTFP:

HTFPt,t+1 =
y jt+1

x jt+1 + h jt+1

( )
/

y jt
x jt + h jt

( )
(4)

Our goal is to estimate the agricultural productivity of Africa
in a nonparametric framework while accounting for natural
inputs and to contrast the results with a conventional productivity
approximation that ignores climate considerations. Instead of cre-
ating a weather productivity index like Chambers et al. (2020), we
create climate-inclusive indices to demonstrate how the omission
of natural weather inputs may impact the measurement and
decomposing of agricultural TFP in Africa. Following Fare et al.
(1994), the Malmquist output-oriented distance function for the
production technology is estimated, based on the constant return
to scale (CRS) assumption (Bernard et al., 2022):

MPOcrs
t = {(y jt , mjt ):m(c jtx jt) that produces y} (5)

Equation (5) accounts for the stochastic nature of climate vari-
ability in agricultural production technology (Chambers and
Pieralli, 2020). The Malmquist output distance function at period
t is given in Equation (6) (Fare, et al., 1994; Henderson and
Russell, 2005):

D0
t (y jt , x jt , c jt) = min{u:(y jt , x jt , c jt) [ POcrs

t }

= [max{u:(y jt , x jt , c jt) [ POcrs
t }]−1 (6)

Under the framework of Equation (6), productivity growth at
time t is calculated by dividing the observed output yjt, by the
highest output that could be produced from the observed total
input, which includes climate, at time t:

D0
t (y jt , x jt , c jt) =

y jt
(y jt , x jt , c jt)

or

D0
t (y jt , mjt) =

y jt
(y jt m jt)

(7)

where mjt = xjt + cjt = climate-inclusive input bundle:

xjt = traditional inputs (land, labor, capital and materials)
cjt = climate variables (temperature and precitation)

Renewable Agriculture and Food Systems 3

https://doi.org/10.1017/S1742170522000424 Published online by Cambridge University Press

https://doi.org/10.1017/S1742170522000424


We can now decompose a climate-inclusive productivity index
for a given country from period t to period t + 1 using Equation
(7), as described by Fare et al. (1994):

D0
t (yt+1, mt+1, yt, mt) = dt(mt+1, yt+1)

dt(mt , yt)
dt+1(mt+1, yt+1)
dt+1(mt , yt)

[ ]1/2

(8)

The function d0t (yt+1, mt+1, yt, mt) indicates the distance
between periods t and t + 1technology. The expressions (mt+1, yt+1)
and (mt, yt) are aggregate input and output vectors of two periods,
t and t + 1, respectively. The period t technology is denoted by the
first component in the bracket dt(mt+1, yt+1)/dt (mt, yt), while the
period t + 1 technology is represented by the second component
dt+1(mt+1, yt+1)/dt+1(mt, yt) (Bernard et al., 2022). Each numerator
and denominator D0

t (mt , yt), D0
t+1(mt , yt),D0

t (mt+1, yt+1), and
D0
t+1(mt+1, yt+1) represents a distance function that, when

compared, measures the effectiveness of a country’s productive
technology throughout two different periods, t and t + 1. To esti-
mate the Malmquist index, these functions must first be linearly
estimated through the DEA technique. D0 is the geometric
mean of the distance function. D0 > 1 signifies TFP growth during
the specified time frame (t and t + 1). D0 < 1 denotes a drop in
productivity, whereas D0 = 1 denotes stagnation (Caves et al.,
1982). For simplicity, mt is used to represent the aggregate
value of the climate-inclusive input bundle (ct + xt), where ct is
a measure of two climatic variables (temperature and precipita-
tion), and xt measures the conventional input (labor, capital,
material). Equation (8) can be further decomposed into two sep-
arate efficiency components (efficiency change, denoted by
EFCH, and technical efficiency change, denoted by TECH):

EFCH = dt(mt+1, yt+1)
dt(mt , yt)

(9)

TECH = dt(mt+1, yt+1)
dt+1(mt+1, yt+1)

dt(mt+1, yt+1)
dt+1(mt+1, yt+1)

[ ]1/2
(10)

The climate-inclusive TFP index (CTFP) can be expressed as
below using Equations (10) and (11) (Fare et al., 1994):

CTFP = dt+1(mt+1, yt+1)
dt(mt , yt)

dt(mt+1, yt+1)
dt+1(mt+1, yt+1)

dt(mt+1, yt+1)
dt+1(mt , yt)

[ ]1/2

(11)

The component outside the bracket in (11) is the technology
used between periods t and t + 1. It represents a measure of effi-
ciency change (EFCH). This happens when adjustments to the
ratio of actual outputs allow a nation to advance toward a higher
productivity frontier. It is frequently referred to as ‘technology
catch-up’ because it indicates a nation’s effective utilization of
productive technology, such as land, labor and capital, under
advantageous agro-climatic circumstances. The second element
measures technological advancement (TECCH). It embodies the
potential movement of a productive technology toward the fron-
tier (Nondo and Jaramillo, 2018; Ding and Zhang, 2021). Changes
in technological know-how, adjustments to the total amount of
input used, and adjustments to the observable patterns of the
climate may all be responsible for the potential shift in the
technological frontier (Chambers and Pieralli, 2020). In Africa,

where agriculture is reliant on nature for the production of
crops and livestock, the effect of the non-market input (e.g.,
climate variability) on agricultural productivity is even more
profound.

Variable selection and data sources

The gross value of 162 crop commodities, $1000 at a constant
2015 global average, is our single output variable (crop_output).
Our input matrix includes land (crop_land), labor (Agr_labor),
capital (Agr_capital), agricultural machines (Agr_machine), fer-
tilizer (Fert_Agr) and irrigation land (tot_IrriArea). Climate con-
trols include the annual mean of precipitation (Prcip_Amean)
and temperature (Temp_Amean). All factors were selected
based on earlier research (Kumar and Raj Gautam, 2014; Liang
et al., 2017; Njuki et al., 2018; Sridhara et al., 2022). The number
of economically active adults (males and females) who work
mostly in agriculture is used to calculate the labor force.
Cropland refers to the area used for crops per 1000 ha. The capital
variable represents the value of net capital stocks at constant 2015
prices of $1.000. The service flows of capital equipment and farm
stocks of farm machinery, which are measured in millions of met-
ric tons, serve as representations of agricultural machinery. The
fertilizer variable is measured by total N, P2O5 and K2O nutrients
from inorganic fertilizers and N from organic substances.
Irrigation is the total area currently equipped for irrigation, at
1000 ha. Data for all of the above variables were obtained from
the US Department of Agriculture (USDA) Economic Research
Service database, updated as of October 2021. We used this data-
base because it was designed to measure global agricultural TFP
(Baráth and Fertő, 2020; Plastina et al., 2021). Its primary source
is the FAOSTAT database (Food and Agriculture Organization
Statistics). The temperature and precipitation variables are the
annual means of historical time series data recorded under the
Coupled Model Intercomparison Projects (CMIP6_SSP119).
The Shared Socio-economics Pathways (SSP1-1.9) is a climate
scenario driven by different socio-economic assumptions selected
to promote climate models for CMIP6. The CMIP6 is an expan-
sion over CMIP5 which aims to keep warming below 1.5°C above
pre-industrial levels by 2100. It was initiated following the Paris
Agreement, during which nations committed to continuing
their attempts to keep global warming to 1.5°C. Table 1 provides
a statistical summary of these variables. A detailed explanation of
these variables and their sources is provided in the Appendix
(Table A1).

According to the data in Table 1, the average annual mean
temperature (2000–2019) was 24.55°C, with a standard deviation
of 2.95 and a minimum and highest mean of 17.6 and 29.38,
respectively. Precipitation has an annual average mean of
997.17 mm and a standard deviation of 635.69 mm, with the min-
imum and maximum annual precipitation being 22.5 and
2785.33 mm, respectively. To better understand the trend and dis-
tribution of these variables across Africa, we created five regional
diagrams, as shown in Figures 1–5.

These regional graphs illustrate the annual variations of coun-
tries’ temperatures and precipitation in each region, as well as how
the distribution changes over time. Most nations in Eastern,
Southern and Central Africa, for example, are now seeing
increases in temperature and precipitation (see Figs. 1–3). In
Northern Africa, many countries saw an irregular pattern of
increases in temperature for most of the last two decades
(Fig. 4). In Western Africa, on the other hand, the annual average
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temperature is decreasing while precipitation is increasing (Fig. 5).
Differences in the distribution of these climate variables are
important in explaining the vulnerability of Africa’s agricultural
industry to climate change.

Results

Table 2 displays variations in TFP change components as a result
of ignoring and/or considering climate effects. According to the
analysis, temperature and precipitation are critical natural inputs
that are sensitive to TFP growth in Africa’s agriculture. The
climate-induced total factor productivity (C_TFP) increased by
2.4% on average (1.024), which was higher than the 1.9% increase
in non-climate-induced TFP (N_TFP = 1.019). However, when
temperature ‘H_TFP’ and precipitation ‘P_TFP’ are accounted
for separately, the growth rate (2.3%) is slightly lower than the
climate-induced TFP outputs (C_TFP = 2.4%) but higher than
the typical TFP (N_TFP = 1.9%).

The determinants of TFP growth are also impacted by climate
change. When climate variables are not taken into account, scale
efficiency (SECH) decreases (N_TFP = 0.999). Accounting for pre-
cipitation (P_TFP) and temperature (H_TFP) helps recover scale
efficiency losses by 0.7 and 0.4%, respectively. Similarly, technical

efficiency change (TECH) decreases under the combined effect of
temperature and precipitation—climate-induced TFP (C_TFP =
1.002), but technical efficiency is boosted when these climate inputs
are factored in separate production models (P_TFP = 1.004 and
H_TFP = 1.006). This result is in line with previous findings, and
it shows that farmers are more technically efficient when the wea-
ther is ‘normal’. Changes in temperature and precipitation have an
impact on technological advancement in African agriculture as
well. In fact, in contrast to the components of productivity determi-
nants attributable to efficiency changes, such as scale efficiency
change (SECH) and technical efficiency change (TECH), we find
evidence that the effect of climate change on technological progress
(TECCH) is consistent under either climate variable (P_TFP =
1.017 and H_TFP = 1.017). It is the only productivity factor that
gets better proportionally to the number of weather controls.
This means that productivity can be enhanced in areas with limited
technology use but with an ideal agro-ecological system, and con-
versely, advancements in technology will lessen the impact of
unfavorable weather variability on productivity growth in Africa.
We created Figure 6 to conceptualize the differences between con-
ventional agricultural TFP and climate-induced TFP; it illustrates
the variation in productivity estimates between those with and
without climate effects over the study period.

Table 1. Variable statistics

Variable Number of observations Mean Standard deviation Minimum Maximum

crop_output 840 4,737,480 7,402,201 26,499 5.27 × 107

crop_land 840 5456.422 7871.947 37.813 60,978.72

Agr_labor 840 4381.928 5778.45 11.332 34,604.76

Agr_capital 840 7074.648 18,831.98 18.48099 188,491.2

Agr_machine 840 585.0611 1127.269 0.76 5562.778

Fert_Agr 840 142,100.9 271,231 71.91682 1,703,655

tot_IrriArea 840 305.0485 651.9632 1 3823

Temp_Amean 840 24.55212 2.945231 17.6 29.38

Prcip_Amean 840 997.1672 635.694 22.5 2786.33

Fig. 1. Distribution of temperature and precipita-
tion in Africa: Eastern Africa, SSA (2000–2019).
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Between 2000 and 2005, the upward growth of climate-
induced TFP was noticeably different from that of typical TFP.
Growth was consistent from 2005 through at least 2007, with little
difference between the climate-induced and the traditional TFP
estimates. However, growth was erratic from 2008 to 2015, and
the climate effect played a significant role in this growth
dynamic. From 2017 to 2019, growth stabilized once more. The
mitigating effect of the climate controls, which became apparent
starting in 2010 and continued upward, can be attributed to
enhanced agricultural inputs such as better irrigation systems,
improved crop varieties and increased use of agricultural tech-
nologies. In general, a 3-yr growth pattern connected to weather
effects was seen.

Regional analysis of climate-induced TFP

Africa is divided into five geopolitical zones known as regions and
eight primary geographical features (the Sahara, the Sahel, the
Ethiopian Highlands, the savanna, the Swahili Coast, the rainforest
and the African Great Lakes). The Sahara and Sahel areas encom-
pass a huge chunk of the continent and are home to more than
95% of Africa’s countries. Despite their differences in animal and
plant species, physical geography, environment and resources and
human geography, the continent’s ecology is dominated by tropical
and subtropical ecosystems and semi-arid plains. This makes Africa
particularly vulnerable to climate change because it is home to the
world’s largest desert, and desertification persists in most fertile

Fig. 2. Distribution of temperature and precipitation in Africa: Southern Africa, SSA (2000–2019). Source: Authors’ calculation.

Fig. 3. Distribution of temperature and precipitation in Africa: Central Africa, SSA (2000–2019).
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places as a result of global warming, drought, deforestation and
intensive farming. We analyze the outcomes of the study across
Africa’s five geopolitical subdivisions to better understand how
these characteristics influence Africa’s agricultural productivity

development. Table 3 provides a summary of the regional findings.
On average, the normal TFP growth rates (N_TFP) are lower than
those of the climate-induced TFP (C_TFP) as well as the decom-
posed climate-induced indices (P_TFP and H_TFP) in all regions.
However, the growth rates differ by region, and the effect of climate
variables on productivity determinants varies considerably across
regions as well, confirming Africa’s geo-ecological diversity.
Comparatively, Northern Africa (see region 4 in Table 3) experi-
enced the highest growth rates in both climate-induced TFP change
(C_TFP = 1.041) and non-climate control TFP change (N_TFP =
1.036), respectively. A 5% increase in TFP growth is realized by
the combined effects of temperature and precipitation (C_TFP).
For the decomposed component of TFP, the climate variables
improve technology change (TECCH) by up to 12%, which was

Fig. 4. Distribution of temperature and precipi-
tation in Africa: Northern Africa, SSA (2000–
2019).

Fig. 5. Distribution of temperature and precipitation in Africa: Western Africa, SSA (2000–2019).

Table 2. Climate-inclusive TFP

TFP outputs C_TFP N_TFP P_TFP H_TFP

TFPCH 1.024 1.019 1.023 1.023

TECCH 1.021 1.015 1.017 1.017

TECH 1.002 1.006 1.004 1.006

SECH 1.004 0.999 1.007 1.004
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the major determinant of climate-induced TFP growth (C_TFP =
1.034) in the region. However, when compared with temperature,
precipitation played a substantial role in driving productivity
growth in the region.

In comparison with North Africa, Western and Southern
Africa are the second and third most productive regions. Both col-
lectively and separately, temperature and precipitation signifi-
cantly drive agricultural productivity in these regions as well.
For example, in Western Africa (region 5), the C_TFP grew at
an annual rate of 2.8% while the N_TFP grew at 2.1%.
Technology progress largely stimulated TFP growth, and the effect
of both climate variables was positive on all productivity determi-
nants. For Southern Africa (region 1), the climate-induced TFP
grew at 2.2% (C_TFPP = 1.022), while the non-climate control
TFP grew at 1.8% (N_TFP = 1.018). The separate estimates of
P_TFP and H_TFP also showed an increasing trend with equal
magnitudes of growth rates (P_TFP = 1.021, H_TFP = 1.021).
Similar positive effects of climate variables on TFP and its deter-
minants (TECCH, TECH and SECH) were observed for Central
Africa and Eastern Africa (regions 2 and 3). However, productiv-
ity growth rates in these regions were relatively low for both
C_TFP and N_TFP estimates. Accounting for the individual
effects of temperature and precipitation shows a recovery of prod-
uctivity and efficiency losses in regions where their combined
effects are negative. However, the frequency and intensity of
extreme climate variables can offset the positive effects of agro-
normal weather inputs and cause low productivity growth in
the regions where they are most prevalent. For instance, technical
efficiency will decline if the average effect of temperature and pre-
cipitation is negative (anomalies). Thus, if temperatures continue
to rise above the agronomic range suitable for crops growth, the
prospects for Africa’s food security will be highly threatened
because agricultural output will be significantly affected (Nther
Fischer et al., 2005; Asfawa et al., 2016; Mundia et al., 2019;
Beltran-Pena and D’Odorico, 2022). Evidence from previous stud-
ies showed that TFP growth rates have been inconsistent and have,
on average, remained low in comparison with other regions of the
world (Alene, 2010; Ogundari and Onyeaghala, 2021; Bernard

Fig. 6. Difference between climate-induced and normal TFP:
Africa, 2000–2019 TFP estimates. Source: Authors’ calculation.
DEA-Malmquist index estimates of crop productivity.

Table 3. Regional analysis of TFP estimates

TFP outputs C_TFP N_TFP P_TFP T_TFP

Region 1 = Southern Africa, SSA

TFPCH 1.022 1.018 1.021 1.021

TECCH 1.018 1.014 1.016 1.016

TECH 1.004 1.008 1.007 1.010

SECH 1.013 1.000 1.021 1.021

Region 2 = Central Africa, SSA

TFPCH 1.014 1.010 1.013 1.013

TECCH 1.014 1.012 1.015 1.015

TECH 0.998 0.999 0.997 1.000

SECH 1.001 1.000 1.001 0.999

Region 3 = Eastern Africa, SSA

TFPCH 1.015 1.008 1.014 1.015

TECCH 1.013 1.011 1.010 1.011

TECH 1.001 1.005 1.004 1.005

SECH 1.001 0.994 0.999 1.000

Region 4 = Northern Africa

TFPCH 1.041 1.036 1.037 1.036

TECCH 1.034 1.022 1.026 1.024

TECH 1.003 1.012 1.006 1.009

SECH 1.006 1.002 1.011 1.003

Region 5 = Western Africa, SSA

TFPCH 1.028 1.021 1.027 1.027

TECCH 1.024 1.015 1.019 1.019

TECH 1.002 1.007 1.004 1.007

SECH 1.002 0.999 1.004 1.000
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et al., 2022). The impact of regional levels of climate variability in
Africa and their implications on agriculture have also been reported
(Marti and Puertas, 2020; Ogundari and Onyeaghala, 2021; Sridhara
et al., 2022). It is hardly surprising, then, that nonparametric ana-
lysis can confirm what other methods have already shown.

Discussion

The major goal of this study was to show how weather impacts
should be taken into account when analyzing production in
African agriculture using nonparametric methods. Studies on
productivity and efficiency typically use DEA, a nonparametric
methodology. This method has a significant advantage over
other productivity measurement techniques such as the SFA
method because it can estimate the productivity growth and effi-
ciency levels of a firm (DMU) without specifying a particular func-
tional relationship between inputs and outputs. Despite this, the
majority of academics have not considered weather-related aspects
under the nonparametric framework. Therefore, we show how the
use of natural inputs may change estimates of agricultural product-
ivity in Africa. To achieve this, we decomposed TFP growth into
increases in efficiency and technological advancement, using the
Malmquist productivity index. Understanding how climate vari-
ables interact with production technologies is crucial for mitigating
the extreme effects of future weather and sustain productivity
increases in agriculture. It also helps us understand how the exclu-
sion of climate factors could lead to a bias in productivity estimates.

The findings of the study highlight Africa’s enormous and
diverse geography and discuss how this diversity is important in
the analysis of the climate–agriculture nexus in Africa. We dir-
ectly compared the estimated results across the five regions of
Africa to understand the influence of climate variables on TFP
growth and their regional distributions. The evidence shows
that climate factors play a significant role in determining agricul-
tural productivity growth in Africa. By simultaneously accounting
for temperature and precipitation and incorporating them into the
production technology, productivity increased in comparison with
the traditional TFP estimates. This indicates that the average impact
of these weather-related inputs—rainfall and temperature—has
generally been within the range of agronomic normal and that
this has helped boost Africa’s TFP outputs. Compared to changes

in temperature, precipitation has had a bigger and better effect.
The literature has documented farmers’ reliance on environmental
factors in African agriculture, and this result is consistent with that
documentation (Edame et al., 2011; Mundia et al., 2019).

The regional analysis sheds more light on how natural inputs
affect productivity growth and how this impact varies over time
across regions in Africa. For instance, in Western, Central and
Southern Africa, accounting for temperature and precipitation
revealed that where rainfall is agronomically ideal, climate-
induced TFP increased. However, in most of the northern part,
where temperatures are higher than national averages for agricul-
tural use, climate-induced productivity is slowing. This warming
climate, driven on by rising temperatures, which would limit agri-
cultural output and drastically affect food availability, threatens
the possibility of food-secure Africa. Figure 7 illustrates the distri-
butional effect of temperature and precipitation on regional agri-
cultural productivity.

The findings of this study not only supported previous studies
but also corroborated current developments in many African
countries. For instance, in this year’s human development reports,
the United Nations Secretary-General, Antonio Gutierrez, cau-
tioned of a lengthy global food crisis caused by the convergence
of war, the COVID-19 pandemic and rising temperatures
(Human Development Report, 2022). In addition to causing glo-
bal warming, the increase in temperature has caused a significant
disruption in global food production and supply, with wider
socio-economic implications for developing countries. The devas-
tating weather effects on Africa’s agriculture are already visible, as
food shortages have begun to impact the most vulnerable rural
populations, causing starvation and hunger. To avoid a potential
food emergency crisis in Africa, urgent steps must be taken to
ensure that the necessary adaptation and mitigation measures
are in place, making Africa’s agriculture more resilient to climate
change. This will help African countries enhance productivity
growth for food availability and sustain socio-economic stability
while protecting the continent’s ecosystem.

To conclude, it is important that we emphasize a few key
points that can be quite helpful, particularly for policymakers:
first, ignoring weather inputs can significantly impact the
accuracy of productivity estimates and present unsubstantiated
assessments of TFP growth and productivity drivers in Africa’s

Fig. 7. Regional distribution of TFP growth rate: Africa,
2000–2019 TFP. Source: Authors’ calculation.
DEA-Malmquist index estimates of crop productivity.
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agriculture. This could have serious consequences for national
agricultural policies across Africa. Secondly, agricultural TFP
growth rates can be boosted when weather factors are considered
in estimating the production technology of many African coun-
tries. While regular climate variability helps enhance productivity
growth and makes up for the technology deficit in Africa’s
agriculture, it should be noted that technological advancement
is critical in mitigating the effects of negative weather variables
on TFP growth on the continent. Therefore, African governments
and policymakers should put a high priority on getting more
farmers to use sustainable technology to reduce and smooth out
temperature and rainfall extremes now and in the future.
Thirdly, the evidence regarding the little use of agricultural tech-
nology in Africa and the heavy reliance on traditional farming
systems makes it look very likely that some of what has been
said about the role of technological progress in African agriculture
could be explained by climate factors rather than actual technol-
ogy use (Reynolds et al., 2015; Bertelli, 2020). Therefore, more
research is required to reevaluate national productivity estimates
in Africa’s agriculture sector.

Finally, some restrictions apply to this study. Although the
DEA-Malmquist approach has the benefit of being able to decom-
pose productivity growth without imposing any parameter
restraints, the statistical significance of our results could not be
verified because the nonparametric approach does not account
for the errors that result from other undetectable factors of pro-
duction (Lee et al., 2011). Moreover, TFP is a measure of the
unknown (i.e., growth that cannot be explained solely by the
inputs used); as such, it is difficult to identify or capture all
facts that explain its growth using the nonparametric approach
advocated by this study.

Data

All the generated data are available in the manuscript.
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Appendix

Table A1. Variable description

Variable Description Source

Output (crop) Gross value of 162 crop commodities, $1000 at constant 2015
global average farm gate-price

FAO FAOSTAT

Cropland Total cropland (including arable land and land in permanent
crops), 1000 ha

FAO Cropland except for sub-Saharan Africa, where cropland = FAO
Area Harvested. Adjustments to FAO historical cropland estimates
made for China, Indonesia, and Colombia.

Irrig Total area equipped for irrigation, 1000 ha FAO FAOSTAT Area Equipped for Irrigation.

Labor Number of economically active adults (male and female)
primarily employed in agriculture, 1000 persons

ILO ILOSTAT labor force survey estimates (if available) or modeled
estimates (1991+), supplemented with GDCC estimates and
previously published FAO estimates (pre-1991).

Capital Value of net capital stock, $1000 at constant 2015 prices FAO FAOSTAT Net Capital Stock (1995+), which is derived from the
sum of past capital investments depreciated for wear and tear
estimated using perpetual inventory method (PIM). Pre-1995
estimates derived from inventories of livestock and machinery
capital.

Machinery Farm inventories of farm machinery, measured in thousands of
metric horsepower (1000 CV) in tractors, combine-threshers and
milking machines

Compiled from multiple sources: Pre-2010 data from FAOSTAT,
post-2010 data from National Agricultural Censuses, Private sector
data on sales of new tractors and combines, and modeled
estimates.

Fertilizer Total N, P2O5, K2O nutrients from inorganic fertilizers and N from
organic fertilizers applied to soils, in 1000 metric tons

International Fertilizer Association (IFA), except for 15 small
countries which is from FAO FAOSTAT; FAO FAOSTAT Manure
Applied to Soils.

Temp_Amean Annual mean temperature The Global Meteorological Forcing Dataset (GMFD) for land surface
modeling developed by the Terrestrial Hydrology Research Group
at Princeton University.

Prcip_Amean Annual mean precipitation The Global Meteorological Forcing Dataset (GMFD) for land surface
modeling developed by the Terrestrial Hydrology Research Group
at Princeton University.
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