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NON-METRIZABLE UNIFORMITIES AND 
PROXIMITIES ON METRIZABLE SPACES 

P. L. SHARMA 

In the l i terature there exist examples of metrizable spaces admit t ing non-
metrizable uniformities (e.g., see [3, Problem C, p . 204]). In this paper, this 
phenomenon is presented more coherently by showing tha t every non-compact 
metrizable space admits a t least one non-metrizable proximity and uncountably 
many non-metrizable uniformities. I t is also proved tha t the finest compatible 
uniformity (proximity) on a non-compact non-semidiscrete space is always 
non-metrizable. 

The closure of a set A in a topological space is denoted by Â, and by c we 
denote the cardinal number of the real line. We follow the terminology of [3] 
and [4] throughout . 

Let a completely regular space X be expressible as a disjoint topological 
sum of two of its subspaces X\ and X2 and let ôi and 82 be compatible proximi
ties on Xi and X2 respectively. Define a binary relation <5i 0 82 on the power-
set of X as follows: 

For any two subsets A, B of X, let (A, B) £ 5i © £2 if and only if 

{A r\XuBC\ X 0 £ ôi or {A C\ X2, B r\ X2) £ d2. 

I t is easy to verify tha t 8± 0 82 is a compatible proximity on X. The proximity 
à 1 0 Ô2 defined as above shall be called the disjoint proximity sum of the proxi
mities ôi and <52. I t is obvious t ha t the subspace proximity induced on Xt by 
the proximity <5i 0 82 is <5Z-, i = 1, 2. I t follows t ha t if ôi 0 ô2 is metrizable then 
so is each <5*. 

LEMMA A. Every countably infinite discrete space has exactly 2C compatible 
non-metrizable proximities and an equal number of compatible non-metrizable 
uniformities. 

Proof. Consider the discrete space N} the space of natura l numbers . I t is 
well-known (see [2]) t ha t /3N — N has 2C points and thus N has 2C distinct 
compatifications [5]. I t follows tha t (see Chapter I I I of [4]) N admits 2° 
distinct proximities. Also there cannot be more t h a t c dist inct pseudometrics 
on N and so the number of compatible metrizable proximities on N is a t most 
c. As 2C — c = 2C, it follows t h a t N has 2C compatible non-metrizable proximi
ties. Trivially each uniformity in the £-class of a non-metrizable proximity is 
non-metrizable and further there can be a t most 2° uniformities on a countable 
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set. It follows that there are exactly 2C compatible non-metrizable uniformities 
on TV, and the lemma is proved. 

A topological space X shall be called semi-discrete if and only if it is Tychonoff 
and has an infinite closed subset A such that for each a £ A, {a} is open in X. 

We remark that if a space X has an infinite closed subset A each of whose 
element is open in X then X also has a countably infinite closed subse ts with 
each element open in X. 

LEMMA B. Every semi-discrete space has at least 2C compatible non-metrizable 
proximities (uniformities). 

Proof. Let A be a countably infinite closed subset of a semi-discrete space X, 
such that each element of A is open in X. There exists a set {8\ : X £ A} of 2C 

compatible non-metrizable proximities on A. Let 8 be any compatible proximity 
on X — A. The proximities {8 © 8\ : X Ç A} are all distinct and non-metrizable 
and each is compatible with the topology of X. Thus the lemma is proved. 

We recall that every completely regular space admits a finest proximity and 
also a finest uniformity and, further, the finest compatible uniformity lies in 
the ^-class of the finest compatible proximity. For a normal Hausdorff space X 
the finest compatible proximity 8 is defined by (see [4]) 

(*) (A, B) 6 8 if and only if A C\ B ^ cf>. 

THEOREM 1. Let X be a completely regular Hausdorff space. If X is not semi-
discrete nor compact then the finest compatible proximity (uniformity) on X is 
non-metrizable. 

Proof. Let 8 be the finest compatible proximity on X. If possible, suppose 
8 is metrizable. Then X is metrizable, and there exists a metric d on X such 
that (by (*) above): 

(a) A C\ B = <f> if and only if d(A, B) ^ 0. 

The given conditions on X assure the existence of a countably infinite subset 
A = {an : n = 1, 2, . . .} of X such that (i) A has no limit point in X, and 
(ii) for no a 6 A, {a} is open in X. Let An = {at £ A : i ^ n). The closed 
sets {a\\ and A2 are disjoint and so there exists a number ei > 0 such that 
d({ai}, A2) = €i. Put <5i = €i/2 and let Si = { ^ I : d(au y) < di]. Having 
defined Sn, we define Sn+i inductively as follows: the sets 

Pn+i = 5i U . . . U Ï U An+2 and Qn+1 = {an+i} 

are disjoint, closed in X, and so there is a number en+i > 0 such that 
d(Pn+u Qn+i) — €n+i. Let 
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and define Sn+i = {y G X : d(y, an+1) < ôn+i}. By condition (ii) above, we 
can take a yn Ç Sn such that yn ^ an. Let B = {yn : n = 1, 2, . . .}. Now it is 
easy to check that A and B are disjoint closed sets and d(A, B) = 0, contrary 
to (a) above. Thus we conclude that 8 must be non-metrizable, and the 
theorem is proved. 

THEOREM 2. In a completely regular Hausdorff space, the statements (1) through 
(3) given below are equivalent. 

(1) Each compatible uniformity on X is metrizable. 
(2) Each compatible proximity on X is metrizable. 
(3) X is a compact metric space. 

Proof. Obviously (1) implies (2) and (3) implies (1). Also Theorem 1 and 
Lemma B together show that (2) implies (3). Thus the theorem is proved. 

The finest compatible uniformity on a metric space being always complete, 
it follows that the £-class of uniformities for the finest compatible proximity 
on a non-compact metrizable space must be non-trivial (a ^?-class having at 
least two members is called non-trivial). A very elegant result by Reed and 
Thron [7] states that any non-trivial £-class must have at least c members. 
Thus we get the following 

COROLLARY. Every non-compact metrizable space admits uncountably many 
non-metrizable uniformities. 
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