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Specializations of Jordan Superalgebras
Dedicated to R. V. Moody on his 60th birthday.

Consuelo Martinez and Efim Zelmanov

Abstract. In this paper we study specializations and one-sided bimodules of simple Jordan superalge-
bras.

Let F be a ground field of characteristic # 2. A (linear) Jordan algebra is a vector
space J with a binary bilinear operation (x, y) — xy satistying the following identi-
ties:

(J1) xy = yx;
(J2) (*y)x = x*(yx).

For an element x € ] let R(x) denote the right multiplication R(x): a — ax in
J. If x, y,z € ] then by {x, y, z} we denote their Jordan triple product {x, y,z} =
(xy)z + x(yz) — y(x2).

Examples of Jordan Algebras

(1) Let A be an associative algebra. The new operation a - b = %(ab + ba) defines a
structure of a Jordan algebra on A. We will denote this Jordan algebra as AWM,

(2) Letx: A — Abe an involution on the algebra A, that is, (a*)* = a, (ab)* = b*a*.
The subspace H(A, x) of symmetric elements is a subalgebra of A",

(3) Let V be a vector space over F with a nondegenerate symmetric bilinear form
(,): VXV — F. The direct sum F1 + V with the product (al +v)(81 +w) =
(af + (v,w))1 + (aw + Bv) is a Jordan algebra.

(4) The algebra H5(0) of Hermitian 3 x 3 matrices over octonions with the opera-
tiona-b= %(ab + ba) is a Jordan algebra.

P. Jordan, J. von Neumann, E. Wigner [JNW] and A. Albert [A] showed that every
simple finite dimensional Jordan algebra over an algebraically closed field is of one of
the types (1)—(4).

A Jordan algebra J is called special if it is embeddable into an algebra of type A,
where A is an associative algebra. Clearly the algebras of Examples (1)—(3) above are
special. The algebra H3(0) is exceptional. A homomorphism J — A™) is called a
specialization of a Jordan algebra J. N. Jacobson []J] introduced the notion of a uni-
versal associative enveloping algebra U = U(]) of a Jordan algebra J and showed that
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the category of specializations of ] is equivalent to the category of homomorphisms
of the associative algebra U(]).

Let V be a Jordan bimodule over the algebra J (see [J]). We call V a one-sided
bimodule if {J,V, J} = (0). In this case, the mapping a — 2Ry (a) € EndpV is
a specialization. The category of one-sided bimodules over ] is equivalent to the
category of right (left) U(J)-modules.

N. Jacobson [J] found universal associative enveloping algebras for all special sim-
ple finite dimensional Jordan algebras.

In this paper we study specializations and one-sided bimodules of Jordan super-
algebras. Let’s introduce the definitions.

By a superalgebra we mean a Z/27-graded algebra A = Aj+A;. We define |[a| = 0
ifa e Agand |a| = 1ifa € Aj.

For instance, if V' is a vector space of countable dimension, and G(V) = G(V )5 +
G(V); is the Grassmann algebra over V, that is, the quotient of the tensor algebra
over the ideal generated by the symmetric tensors, then G(V) is a superalgebra. Its
even part is the linear span of all products of even length and the odd part is the linear
span of all products of odd length.

If A is a superalgebra, its Grassmann enveloping algebra is the subalgebra of A ®
G(V) given by G(A) = A5 @ G(V)5 + A; @ G(V);.

Let V be a homogeneous variety of algebras, that is, a class of F-algebras satis-
fying a certain set of homogeneous identities and all their partial linearizations (see
[ZSSS])).

Definition A superalgebra A = Ay + Aj is called a V superalgebra if G(A) € V.

C.T. C. Wall [W] showed that every simple finite-dimensional associative superal-
gebra over an algebraically closed field F is isomorphic to the superalgebra M,, ,(F) =
{(45),AeMu(F),DeM,(F)} +{(25),B € Myuxn(F),C € Myy(F)} orto
the superalgebra Q(n) = { (4 9),A € My(F)} +{(%5),B e M,(F)}.

Jordan superalgebras were first studied by V. Kac [Ka2] and I. Kaplansky [Kp1],
[Kp2]. In [Ka2] V. Kac (see also I. L. Kantor [K1], [K2]) classified simple finite
dimensional Jordan superalgebras over an algebraically closed field of zero charac-
teristic. In [RZ] this classification was extended to simple finite dimensional Jordan
superalgebras, with semisimple even part, over characteristic p > 2; a few new excep-
tional superalgebras in characteristic 3 were added to the list. In [MZ] the remaining
case of Jordan superalgebras with nonsemisimple even part was tackled.

Let’s consider the examples that arise in these classifications.

If A = A + Aj is an associative superalgebra then the superalgebra A", with the
new producta - b = % (ab + (—1)lallel ba) is Jordan. This leads to two superalgebras

(1) M{(F),m>1,n>1;
2) Qm™W,n>2.

If A is an associative superalgebra and x: A — A is a superinvolution, that is,

(a*)* = a, (ab)* = (—1)1Plp*a*, then H(A, %) = H(Ag, %) + H(Aj, %) is a subsuper-
algebra of A™). The following two subalgebras of M, fn* ) are of this type.
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(3)

(4)
(5)
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(7)
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)

(10)

Osp,, ,(F) if n = 2k is even. The superalgebra consists of matrices (&5),
where A" = A € M,,(F),C = J7'B" € Myyw(F), D = J7'D'] € M,(F),
J= ( —Ofk IS ) ;

Pn)={(45),D=A"B =B,C" = —C € My(F)};

Let V = Vj + Vj be a Z/27Z-graded vector space with a superform (, ): V x
V' — F which is symmetric on V;, skewsymmetric in Vi and (V, Vi) = (0) =
<Vi7 V()>

The superalgebra ] = F1+V = (F1 + V) + Vj is Jordan.

The 3-dimensional Kaplansky superalgebra, K3 = Fe + (Fx + Fy), with the
multiplication € = ¢, ex = 1x,ey = 1y, [x,y] =e.

The 1-parametric family of 4-dimensional superalgebras D; is defined as D; =
(Fey + Fey) + (Fx+ Fy) with the products: e = e;, e1e; = 0, e;x = %x, ey = %y,
xy =e +tepi=1,2.

The superalgebra D, is simple if t # 0. In the case t = —1, the superalgebra
D_, is isomorphic to M, ; (F).

The 10-dimensional Kac superalgebra (see [Ka2]) has been proved to be excep-
tional in [MeZ]. In characteristic 3 this superalgebra is not simple. It has a sub-
algebra of dimension 9 that is simple and exceptional (Shestakov and Vaughan
Lee). There are two more examples of simple Jordan superalgebrasin ch F = 3,
both of them exceptional (see [RZ]).

We will consider now Jordan superalgebras defined by a bracket.

If A = Ay + Aj is an associative commutative superalgebra with a bracket on A,
{, }: AXA — A, the Kantor double of (A, {, }) is the superalgebra ] = A+Ax
with the 7/27 gradation J; = A + Aix, J; = Aj + Apx and the multiplication
in J given by: a(bx) = (ab)x, (bx)a = (—1)!%l(ba)x, (ax)(bx) = (—1)I"{a, b},
and the product (in J) of two elements of A is just the product of them in A.

A bracket on A is called a Jordan bracket if the Kantor double J(A,{, })isa
Jordan superalgebra. Every Poisson bracket is a Jordan bracket (see K2]).

Let Z be a unital associative commutative algebra with a derivation D: Z — Z.
Consider the superalgebra CK(Z, D) = A+ M, whereA = J; =Z+ 21‘3:1 w;Z,
M=Ji=xZ+ Z?zl x;Z are free Z-modules of rank 4. The multiplication on
Ais Z-linear and w;w; = 0,1 # j, w; = w; = 1, w3 = —1.

Denote X;x; = 0, X1x2 = —Xax1 = X3, X1x3 = —X3x1 = X2, —X2x3 = X3x2 = XI.
The bimodule structure and the bracket on M are defined via the following tables:

g wig X8 Xi&
xf | x(fo) | x;j(fg) xf | fPg—fg" | —w;(fg)
xif | x(fg) | xixj(fg) xif wi(fg) 0

The superalgebra CK(Z, D) is simple if and only if Z does not contain proper
D-invariant ideals.

In [Ka2], [K1] it was shown that simple finite dimensional Jordan superalgebras
over an algebraically closed field F of zero characteristic are those of examples (1)—
(8) and the Kantor double (example (9)) of the Grassmann algebra with the bracket
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The examples (9), (10) are related to infinite dimensional superconformal Lie su-
peralgebras (see [KL], [KMZ]). In particular, the superalgebras CK(Z, D) correspond
to an important superconformal algebra discovered in [CK] and [GLS].

In [MZ] it was shown that the only simple finite dimensional Jordan superalgebras
over an algebraically closed field of characteristic p > 2 with nonsemisimple even
part are superalgebras (9), (10) built on truncated polynomials.

In Section 1 we discuss reflexive superalgebras (the generic case).

In Section 2 we show that the specialization o of the Cheng-Kac superalgebra
CK(Z, D) constructed in [MSZ] is universal, U(CK(Z, D)) o~ M, (W), where W is
the Weyl algebra of differential operators on Z. The restriction of ¢ to the superalge-
bra P(2) is the universal specialization of P(2), U (P(Z)) ~ M, ,(F[t]).

In Section 3 we show that, for a D-simple algebra Z, the McCrimmon specializa-
tion of the Kantor double of the bracket of vector type is universal.

In Section 4 we construct the universal specialization of the superalgebra M ; (F).

Finally, in Section 5, we describe all irreducible one-sided bimodules over a super-
algebra D(t), t # —1,0, 1.

In what follows the ground field F is assumed to be algebraically closed.

1 Reflexive Superalgebras

Let ] be a special Jordan superalgebra. A specialization u: ] — U into an associative
algebra U is said to be universal if U = (u(J)) and for an arbitrary specialization
@: J — A there exists a homomorphism of associative algebras x: U — A such that
¢ = x - u. The algebra U is called the universal associative enveloping algebra of J.

Exactly in the same way as for Jordan algebras (see [J]) one can show that an
arbitrary special Jordan superalgebra has a unique universal specialization u: ] — U
which is an embedding. Moreover, the algebra U is equipped with a superinvolution
* having all elements from u(J) fixed, i.e., u(J) C H(U, *).

Generally speaking, an identity in U is not assumed. However, if ] is a unital
(super)algebra then the identity of J is automatically an identity of U (see [J]).

We call a special Jordan superalgebra reflexive if u(J) = H(U, *).

Theorem 1.1 All superalgebras of examples (1)—(4) are reflexive except the following
ones: M{ | (F), Osp(1,2) ~ D(—2), P(2). Hence, U (M.})(F)) ~ My, u(F) ® My (F)
for (m,n) # (1,1); U(Q™(m) = Q(n) & Q(n), n > 2; U (Osp(m, n)) =~ My,,(F),
(m,n) # (1,2); U(P(n)) ~ M,,(F), n > 3.

If A is an associative enveloping superalgebra of a special superalgebra J and
ay, ay, as, a4 are homogeneous elements from J then by a tetrad {a;, a,,a3,a,} € A
we mean

lai] |a;]

{a1, a2, 03,0} = ayayazay + (—1)>< a,a3a,a; .

A homogeneous element a of ] is said to be a tetrad-eater if in any associative
enveloping superalgebra of J any tetrad with a as one of its entries is necessarily an
element of J. There exists an ideal T of the free Jordan algebra with the following
property: for an arbitrary special Jordan algebra J, an arbitrary element from T(]) is
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a tetrad eater (see [Z]). If ] is a simple special Jordan superalgebra and T(Jy) # (0),
then every element of ] is a tetrad-eater. By P. Cohn’s theorem (see [SSSZ], [C], [J])
in this case J is reflexive. If B is a Jordan algebra of capacity > 3 then T(B) # (0) (see
[Z]). Hence the superalgebras P(n), Q(n), n > 3 are reflexive.

The remaining cases of Theorem 1.1 except Q(2) follow from the following lemma
that was proved in [RZ]:

Lemma 1.1 ([RZ]) If ] is a finite-dimensional special simple Jordan superalgebra,
Jo = ](—; P ]é’ is semisimple and at least one of the summands is not F then ] is re-
flexive.

Lemma 1.2 The superalgebra Q(2) is reflexive.

Proof The even and the odd parts of Q(2) can be identified with the matrix algebra.
Let ¢;; € Q(2)5 and g € Q(2); denote the images of the unit matrix e;;, Q(2); =
> Feij, Q2); = ) Fejj.

Let U be the universal associative enveloping algebra of Q(2), let = denote the
equality in U modulo Q(2). We need to check that for arbitrary elements x; € Q(2),
1 < i < 4, the tetrad {x1,x, %3, %1} = x1%x3%4 + (—1)22<i Wil il %) Ties in
Q(2) (see [C]).

We have {...,x,y,...} = —(=DMPI{  yx .. }and {...,xp,2,...} =
{ . xyz,. 3+ (DRI xz ) (see [Z]).

Now suppose that x1, x5, X3, x4 € {ejj,&;,1 < i,j <2} and 0 # {x1, %2, X3, X4 }.

(i) Ifx; = ey or ey then Xy, x3,x4 € {e12, €21, €12, 61}

Indeed, {ey1, %2, %3, x4} = {e€l}, %2, %3, x4} = {en1,2e11%2, X3, X4 }, which implies that
X; = 2e11%;.
This takes care of the case when all four elements x1, x,, x3, x4 are even.

(ii) {em,en,...} =0. Indeed,

{em, e, ...} ={enen, en,... } ={en,enexn, ...} +{em,enexn, ...} =0.

(i) {en,€2,...} = 0. Indeed, &; = 2ep,e. Hence, {en,en,...} =
{612, 2612%, e } = {6%2,@, e } =0.

This takes care of the case when x1, x,, x3 are even and x4 is odd.
Indeed, if the elements x1, x;, X3 are e;1, €12, €21, then all four possibilities for x4 are
ruled out.

(iv) Fix elements xp,x3,x4 € J. Suppose that {Q(2)¢,x;,%3,%} = (0) and
{11, %2, x3,x4} = 0. Then {Q(2),x2,%3,%4} = (0). Indeed, the Q(2),-bimod-
ule Q(2)y is irreducible. Hence it is sufficient to prove that for arbitrary ele-
ments aj, . . ., ax € Q(2)o, we have {e11R(ay) - - - R(ay), x2, x3, %4} = 0.
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In [Z] it was shown that for arbitrary homogenous elements x;, x; we have

{x1x! %0, %3, %4} = x1{x], %2, %3, %4} + (—1) ] ‘xf|x{{x1,x2,x3,x4}.
This implies the assertion.

Similarly, {Q(2)o,%2,%3,%:} = (0) and {ex2,%,%3,x4a} = 0 imply {Q(2), x,,
x3,x4} = (0).

From (iv) it follows that if {x;, x,, x5, x4} # 0, then for an arbitrary i,1 < i < 4
we can assume that x; is even or our choice of the elements €7, €5,. In view of (ii) this
finishes the proof of the lemma.

In next section we will see that the superalgebra P(2) is not reflexive.

2 The Cheng-Kac Superalgebras and P(2)

Let Z be an associative commutative F-algebra with a derivation D: Z — Z. Let
CK(Z,D) = (Z+ Z?zl Zw;) + (Zx+ Z?zl Zx;) be the Cheng-Kac superalgebra. The
subsuperalgebra of CK(Z, D) spanned over F by the elements 1, wy, wy, ws, x, X1, X2,
X3 1s isomorphic to P(2).

Consider the associative Weyl algebra W = Y"._  Zt' where the variable t com-
mutes with a coefficient a € Z via ta = D(a) + at.

In [MSZ] we found the following embedding of CK(Z, D) into the associative
superalgebra Maa(W) — (07 00 Y ¢ (8, WD)’

a 0 0 0 10 0 0
0 a 00 0 1 0 0
c@W=1g 0 4 of €5 cWI=14 o 4 of
000 a 0 0 0 1
01 00 0 -1 0 0
100 0 1 0 0 0
o(w,y) = 00 o0 1] o(ws) = 0 0 0 1;
00 1 0 0 0 —1 0
0 0 0 2D 00 0 -1
0 0 —2D 0 00 —1 0
c@W=1y -1 o ol ™=l 0 0o o]
1 0 0 0 00 0 0
00 —1 0 00 1 0
00 0 1 000 1
o) =15 0 o of ™=y 0 0 o
00 0 0 000 0

Remark 2.1 The subsuperalgebra Z + Zx of CK(Z, D) is a Kantor double of vector
type (see [Mc]). The embedding o above extends the embedding of Kantor doubles
of vector type found by McCrimmon in [Mc].
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Theorem 2.1 The restriction of the embedding o (see above) to P(2) is a universal spe-
cialization; U (P(Z)) ~ M, ,(F[t]), where F[t] is a polynomial algebra in one variable.

Let K and H be the subspaces of skew-symmetric and symmetric 2 X 2 matrices
over F respectively. Let | = P(2), J; = M,(F), J; = K + H, where K and H are
isomorphic copies of K and H. The multiplication of J; by J; and the bracket on J;
are defined viaa-b = %(ab +bat) and [b,¢] = bc—cb € Jg;a € My(F), b,c € KUH.

Let u: ] — U be the universal specialization of J. We will identify J with u(J) and
assume that ] C U. The juxtaposition in the following lemma denotes multiplication
inU.

Lemma 2.1

Proof We have [H, H] = (0). In particular, [ei7, e1; + €21] = 0.

If e is an idempotent in an associative algebra R, a,b € R and [eae, eb(1 — e) +
(1 — e)be] = 0, then eaeb(1 — e) = (1 — e)beae = 0, which implies eae(eb(l —e)+
(1-— e)be) = (eb(l —e)+(1— e)be) eae = 0.

Since the elements &7 and ej; + e3; lie in the corresponding Peirce components of
U, we conclude that ej1(e;; + €21) = (e12 + ez1)e;; = 0.

To finish the proof we will need the following remark:

Remark 2.2 Let Jbe an arbitrary Jordan superalgebra and let A, B be two associative
enveloping algebras of J. If x is an odd element of J; and the square of x in A lies in
the center of A, then the square of x in B also lies in the center of B. Indeed, for an
arbitrary element a € J we have aR;(x)R;(x) = 3[a,x*], where R;(x) denotes the
operator of right Jordan multiplication in J.

The superalgebra ] = P(2) has an associative enveloping algebra M, ,(F), where
the square of &1y is 0.

Hence the square ef; in U lies in the center of U.

The element €2, lies in the 1-Peirce component e;; Ue;; of U; the element e, + €3
lies in the %—Peirce component e;;U(—e;;) + (1 — e;1)Uey;. Hence €2, (e1x + €21) =
(e12 + ex1)e?, implies €2, (e1, + €1) = 0. But 1 = (e15 + €21)*. We proved that €2, = 0.

Since, obviously, e1e;; = 0, we conclude that g;;H = (0).

The Jordan J;-bimodule H is generated by the element ej;.

This implies that HC <]0>E<IO>, HH C <IO>E<IO>H - <]()>aH<]()> =(0).

We proved the assertion (1).

Letx =e;; — ey. Ifa € J; = My(F) and tr(a) = 0, then a - x = 0. In particular,
ifa € H and tr(a) = 0 then ax + xa = 0. Now choose an arbitrary element h € H
and consider (a - h)x. Clearly, [a - l_z, x] € J;-

Furthermore, (ah+ha)x+x(ah+ha) — h(ax+xa) — (ax+xa)h = alh,x] —[h,x]a €
(J5). Hence (a - h)x € (J5).
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Denote H = {a € H | tr(a) = 0}. We proved that (H°- H)x C (J;). Now, notice
thath = h-1forh € Hand 1 = (e;; — ex) - €11 — ex. Hence H = H° - H. This
finishes the proof of (2).

Clearly H<]()> = a<]()> + E<]()> + gm)<h> But g; = ieii since I =
€11 + e, is the Peirce decomposition of 1 with respect to the idempotents e;;, ex,.
Hence e11(Js), @2(Jo) € 1(Jo)-

Denote s = e1; + e31. Then § = 2(ey7 - s) = seq; + eqgs.

Since s*> = 1 it follows that sej; = sej1ss = €x35.

Now we have § = se; + 115 = €55 + €115 = 1s. Lemma is proved.

Corollary 2.1 U = Y, (J)x' +1(J;).

Proof In an arbitrary product involving elements from J, H, x we can use J;H C
HJ; + H,xH C Hx + J; to move all factors from H to the left end.

Ifa € Jj,tr(a) = 0, then ax+xa’ = 0. Hence in a product involving only elements
from Jj and x we can move all x’s together. Now the result follows from Lemma 2.1.

Lemma 2.2 Hx{J;) < (J;)-

Proof We need to show that Hx(J;) is a left ideal in (J5). Choose arbitrary elements
a € Jy, h € H. Then ahx = (ah + ha)x — h(ax + xa) + hxa € Hx{J;). Lemma is
proved.

Lemma 2.3 The subalgebra of M, ,(W) generated by o(]) is M, »(F[t]).

Proof

Step 1 <U(W1),O'(W2 o(ws)) = {( ) a,b € MZ(F)}. Indeed, M,(F) is gener-

atedby( ) ( ) Hence (o(w), (wz)>:{(f‘,2),a€M2(F)}.
It imphes that

0 -1 0 0 00 0 0
1 0 0 0 00 0 0
o(ws) + 0 0 o 11710 0o o 2 € (a(w1),a(wy), o(w3)).
0 0 -1 0 00 -2 0
Now
00 0 0
a 0 00 0 0 0 0
{(o a)’”GMZ(F)} 00 0 2 {(0 b)’beMZ(F)}
00 -2 0

C (o(w1),0(wp), o(w3)),

which implies the result.
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Step2 (o(w1),0(w),0(w3),0(x1),0(x2),0(x3)) = { ()3, b,c € My(F)}.
It suffices to notice that (3 9) o(x;) = (J8).

Step3 (0(])) D My, (F).

We have
1 0 0 O 0 0 0 0
o(x) 01 0 O _ 0 0 0 0
0 0 0 O 0 -1 0 O
0 0 0O 1 0 0 O
and
0 0 0 0 a;y  apn 0 0 0 0 0 0
0 0 0 0 ay apn O (U 0 0 0 0
0 -1 0 O 0 0 ayy  ap o —dj] —dy) 0 0]’
1 0 0 0 0 0 ayy ap ag apn 0 0

which implies that { (9);d € My(F)} C (o())).

Step4 Wehave Seyo(x)en = en(t) € (o(])). Hence M, 5(F[t]) = (M (F), e (1))
= (o(])). Lemma is proved.

By the universal property of u: J — U, there exists a unique homomorphism
x: U = M,,(F[t]) of associative superalgebras such that o = x - u.

Lemma 2.4 The restriction of x to 1{J;) is an embedding.

Proof We have already proved that Hx(J;) is an ideal of ( J5). Furthermore, this ideal
is proper. Indeed, it is nonzero, since o(H)o(x) # (0) in My(F[¢t]),

-1
#0.

o(x))o(x) =

S O O

S O = O
S O OO
S O O O

Let’s assume that the ideal Hx(J;) = (J5). Then H-H = (0) implies H(Hx(J5)) =
(0) and therefore H = (0), the contradiction.

The dimension of the subalgebra (J;) of U is < 8. By Step 1 of the proof of
Lemma 2.3 we have (J;) = M,(F) & M,(F). Hence Hx(J;) is a direct summand of
(Jo) of dimension 4. Let (J5) = Hx(J;) & L, where L = M,(F).

Since 1(J) = 1Hx(Jy) + 1L and 1H = (0) by Lemma 2.1 (1), it follows that
dimp 1(J5) < 4. Now it remains to notice that x(1(J5)) = o(1){c(J5)) = {(§8);
ac MZ(F)} has dimension 4. Lemma is proved.
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We have
0 0 0 2 k0 0 0
o o -2t 0 % |0 & 0 0
c@W=10 1 o of TWT=200 o & ol

1 0 0 o0 0 0 0 ¢

0 0 0 2¢k+1

kil _ k|0 0 =20

oI =2 0

k0 0 0

Now we are ready to finish the proof of Theorem 2.1. Leta = > WX +ev+enw €
! 0 / ’
ker x; ui, v, w € (Jg). Let x(u;) = (% u{,,), x) = (8 9), xwm) = (5 9),

!/

wherea/,a!’, b',b",c', " € My(F).

Then
0 0 0 211
cfal. 0\ - (al. 0 0 0 =21 0
X < 21 >tl + X ( 2i+1 ) .
Ei: 0 aif Z 0 aj,) |0 -~ 0 0
0 0 0

0 €11 b/ 0 0 €22 C/ 0 _
+(o 0) (0 ') *lo o )\o )=
which implies that a); = a}! = a5,,, = a5/, = 0.

Hence a = e5v+enpw € H(Jy) = 1(J;).
By Lemma 2.4, a = 0. Hence x is an isomorphism. Theorem 2.1 is proved.

Theorem 2.2  The embedding o is universal, that is, U (CK(Z, D)) = My, (W).

As above we will identify the Jordan superalgebra ] = CK(Z, D) with u(]), i.e., we
assume that ] = CK(Z,D) C U(J) = U. The superalgebra J is generated by Z and
by the superalgebra (w;, x,x;51 < i, j < 3) = P(2). The multiplication in U will be
denoted by juxtaposition.

By the universal property of u there exists a homomorphism x: U — M;,(W)
of associative superalgebras such that ¢ = x - u. By Theorem 2.2 the subalgebra
generated by P(2) in U is the universal associative enveloping algebra of P(2) and
x: (P(2)) = M;,(F[t]) is an isomorphism.

We have (wy, wy, ws, H) = X_l{ ( o f,);a, b,ce MZ(F)} and

~ . -1(0 0 (I 0 —
<W1’W2’W3’H’X 1(0 1) & 1(0 0)>:X H(Maa(F)).

Lemma 2.5 Z commutes with x ™! (Mzﬁz(F)) inU.
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Proof We only need to show that Z commutes with all generators of ™! (M272(F )) .
Choose an arbitrary element & € Z. Then

o, wi] = [(aw;) - wj, w;] = [wj,aw; - w;] + [awj, w; - w;] =0 fori # j;

*lo, x;] = [aw; - wi, x;] = [w;, aw; - x;] + [aw;, w; - x;] = 0.

Finally, denote E; = x ' ((39)), Er = x~'((}3)) . By what we proved above, a
commutes with E;, E;. We have [, E;xE;] = Ex[a, x]E; and [«, x] = [aw;-w;, x] =
[wy, aw; - x] + [aw;, w - x], where w; - x = 0, aw; - x = x;D(a).

Since x(w;) = ( &0 ) , from Theorem 2.1, it follows that w; commutes with Ej, E,.
Hence E,[wy,x; - D(@)]E; = [Wl,Ez(xl . D(a)) El] . The element D(«) lies in Z,
hence commutes with E;, E,. Therefore E, (x1 . D(a)) E, = E;x1E; - D(«).

We have x(x;) = ( S 3) . Hence, by Theorem 2.1, E;x; = 0, and the lemma is
proved.

Lemma 2.6 Arbitrary elements from Z commute in U.

Proof Let o, € Z,1 < i < 3. Let us show that [« - w;, 8] = 0. Indeed, for j # i
we have +[aw;, 8] = [aw;, (Bwj)w;] = [(aw;) - (Bw)), w;] + [aw; - wj, Bw;] = 0.

Now a = +(aw;) - w;. If B commutes with aw; and with w; then it commutes
with «, and the lemma is proved.

Proof of Theorem 2.2 The algebra U is generated by P(2) and Z. By Theorem 2.2,
the subalgebra (P(2)) of U is generated by X_l(Mz,z(F)) and by x>. We have
[Z,x " (M22(F))] = (0), [Z,x*] C Zand [x'(M;2(F)),x*] = (0). Hence
U= -0X " (M2(F)) Z(x*), which easily implies that Ker x = (0). Theorem is
proved.

3 Specializations of Kantor Doubles

LetI' = I'y 4+ I'; be an arbitrary associative commutative superalgebra with a Jordan
bracket { , }. Then D(a) = {a, 1} is a derivation of I". The bracket is said to be of
vector type if {a, b} = D(a)b — aD(D).

In [Mc] it was proved that the Kantor double of a bracket of vector type is a special
superalgebra. Furthermore, in [Mc], [K-Mc2] two important examples of classical
and Grassmann Poisson brackets were analysed and it was shown that in both cases
the Kantor doubles are exceptional.

The following proposition from [MSZ] completely determines which “supercon-
formal” Kantor doubles (see [KMZ]) and which simple finite dimensional Kantor
doubles (see [MZ]) are special.

Proposition 3.1 (see [MSZ]) LetT" = I'y+1I'; be a finitely generated associative com-
mutative superalgebra with a Jordan bracket { , } such that the superalgebra | =
J(T,{, }) does not contain nonzero nilpotent ideals.

https://doi.org/10.4153/CMB-2002-059-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2002-059-8

664 Consuelo Martinez and Efim Zelmanov

(1) IfT';T; # (0), then the superalgebra ] is exceptional.

(2) Suppose that either I'y = (0) or I'; contains an element £ such that I'y = I'g€ and
{T,&} = (0), {&,&} = —1. Then the superalgebra J(I',{ , }) is special if and
only if the restriction of { , } on L'y is of vector type.

Let 1 € Z be an associative commutative algebra with a derivation D: Z — Z and
the bracket of vector type {a,b} = D(a)b — aD(b). The Kantor double J(Z,{, })
is simple if and only if Z does not contain proper D-invariant ideals (see [K-Mc],
[MZ]). Let W = Y% Zt', ta = D(a) + at, a € Z be the Weyl algebra. We recall the
McCrimmon specialization m: J(Z,{, }) = My(W),

m(a) = (g 2) , ac€Z m(x) = (_01 20t> .

Theorem 3.1 Suppose that the algebra Z does not contain proper D-invariant ideals.
Then the McCrimmon specialization is universal, that is, U ( JZ,{, })) = M (W).

Remark 3.1 The assumption that Z does not contain proper D-invariant ideals is
essential. Indeed, let Z = F[t;,t,] be the algebra of polynomials in two variables,
D = 0. Let u: Z — U be the universal specialization of the Jordan algebra yAS2)
The algebra U is not commutative (see [Jac]). Let J be the Kantor double of Z cor-
responding to the zero bracket, ] = Z + Zx. Then the mapping f: ] — M, ,(U),
fla) = (@ uw )@ € Z, f(x) = (), is a specialization such that the images of
t1, t; do not commute.

In what follows J = J(Z,{, }), U = U(J), juxtaposition denotes the multiplica-
tion in U. We will identify elements from ] with their images in U.

Lemma 3.1 Z is generated by D(Z).

Proof Suppose that D* # 0. The ideal Z(D?(Z)) is D-invariant, hence Z =
Z(D*(2)) € D(ZD(2)) +D(Z)D(Z) C D(Z) + D(Z)D(Z).

Now suppose that D?> = 0. Then for arbitrary elements a, b € Z we have D?(ab) =
D*(a)b+aD?(b)+2D(a)D(b) which implies that D(Z)D(Z) = (0). Now, Z = ZD(Z),
the contradiction.

Lemma 3.2  For arbitrary elements a,b € Z the commutator [a, b] lies in the center
of U.

Proof For an arbitrary element ¢ € J we have [c, [a, b]] = 4¢D(a,b) = 0. Hence
the commutator [a, b] commutes with an arbitrary element from J. Now it suffices
to note that the algebra U is generated by J.

Lemma 3.3 [Z,Z] = (0).
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Proof Let S denote the linear span of all elements [[xz,a], b]; a,b € Z. By
Lemma 3.2 [[x*,a],b] = [[x?,b],a]. Hence S is spanned by elements | [x*,a], a],
ac’Z.

Let us show that for an arbitrary element ¢ € Z, Sc C S. Indeed, S C [Z,
By Lemma 3.2 S lies in the center of U. Hence [[x al, a] c = [[x2 a], a] c
[[x* al,a-c] —[[x* al,c] -a. Now [[x?*,al,c| -a = [[x*,c],a] -a =L [[x* c],a?] €
S.

Z].

Now let us show that SD(Z) = (0). For an arbitrary element ¢ € Z we have
D(c) = {Ca 1} = {C'x7x} = %[Cvxz]'

If s € Sthen s[c,x?] = [sc,x*] — [s5,x*]c = 0, since the elements s and sc both lie
in the center of U.

By Lemma 3.1 the identity 1 of the algebra U can be expressed as a linear combi-
nation of products of elements from D(Z). Hence S - 1 = (0) and S = (0).

We proved that Z commutes with [x?, Z] = D(Z). By Lemma 3.1, [Z, Z] = (0),
and the lemma is proved.

Lemma 3.4 [Z,x][Z,x] = (0).

Proof Choose an arbitrary element a € Z. We have [[xz, al, a} = 2[[x, al, a] -x+
2[a, x]? = 0, which implies that [a,x]?> = 0. Hence for arbitrary elements a,b € Z,
[aa x] : [b7 x] = 0.

Let us show that for arbitrary elements a, b € Z, [ [ (b, x], x] , a} =0.

Indeed, [[b,xLx} =4b-x> —(b-x)-x. Now, [(b-x) -x,a] = [b-x,a-x] +
[x,a-(b-x)] = {b,a} + [x,(ab) - x] = D(b)a — bD(a) — D(ab) = —2D(a)b; and
[b-x2,a] =b-[x*,a] +x* - [b,a] = —2D(a)b.

Finally,0 = [ [[a,b],2] %] = [ [[a,x],] ,b] +2[(a,x], [b,x]] + a, [[b,x],]

which implies [[a, x], [b, x]} = (0). This finishes the proof of the lemma.
Lemma 3.5 Ifa,b e ZandaD(b) = 0 then a[b,x] = 0.

Proof Denote s = a[b,x]. We have sx = a[b,x]x = a([b,x*] — x[b,x]) =
—ax|b,x] = —xalb,x] — [a,x][b,x] = —xs.

Hence, [s,x*] = 0.

For an arbitrary ¢ € Z the element sc = (ac)[b, x] is of the same type as s, hence
[sc,x*] = 0.

Now, s[c, x?] = [sc,x*] — [s,x*]c = 0. We proved that sD(Z) = (0). In the same
way as in the proof of Lemma 3.3 this implies that s = 0, and the lemma is proved.

By the universal property of the associative superalgebra U there exists a homo-
morphism x: U — My(W) such that m = x - u. Recall that we identify ] with
u(J) C U and therefore assume that u(a) = a,a € J.

By Lemmas 3.3 and 3.4 an arbitrary element w € Uj can be represented as

w= E ax® + g lebjx[cj,x],
i j
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where a;, bj, c; € Z. We have
ifai 0\ [t 0
X(@) =3 (=2) (0 a,-> (0 t,-)

(t5 0\ (b; 0) (0 0
2w (5 D D) )

(>(=2) et 0
- 0 S (=2)a;it + > (=2)"b;D(cj) )

If x(w) = 0, then a; = b;D(c;) = 0 for all i, j. By Lemma 3.5 this implies that
w=0.
An arbitrary element w € U; can be represented as

w= E g, + E xszj[cj,x].
i j

We have

B 0 S (=1)2 i g, 1+ 3 (—2) b, D(c;)
X(w) = (Z(—I)H—lzitiai 0 ! ! ) ’

Again if x(w) = 0 then a; = b;D(c;) = 0 which implies w = 0.

It is easy to check that the image of m generates the whole algebra M,(W). Hence
X is an isomorphism. Theorem 3.1 is proved.

Now let us examine the case when I'y = Z is an associative commutative algebra
with a derivation D: Z — Z; T'; = Z¢, {a,b} = D(a)b — aD(b) for a,b € Z,
{Z,&} = (0), {&,&} = —1. Then the Kantor double J = J(T',{, }) can be identified
with the subsuperalgebra of CK(Z, D) generated by Z, wy, x. If the algebra Z does not
contain proper D-invariant ideals, then this subsuperalgebrais | = Z+Zw,+Zx; +Zx.

Theorem 3.2 Suppose that the algebra Z does not contain proper D-invariant ideals.
Then, the restriction of the embedding o: CK(Z,D) — M, ,(W) to the superalgebra
J = Z+Zw, +Zx, + Zx is a universal specialization of J; U(J) >~ M, ;(W)® M, ;(W).

As always we identify the superalgebra J with its image in the universal associative
enveloping superalgebra U.
Let (Z, x) denote the subsuperalgebra of U generated by Z, x.

Lemma3.6 U = (Z,x)+ (Z,x)w,.
Proof For an arbitrary element a € Z we have x(wa) = x;D(a). Since 1 € D(Z)Z it
follows that x; lies in the subalgebra generated by Z, wy, x. The element w; commutes

with Z in U and anticommutes with x. This implies the lemma.
Let (0(Z), o(x)) be the subalgebra of M4(W) generated by o(Z), o (x).
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Lemma 3.7 IfA,B € (0(Z),0(x)) and A+ Bo(w;) =0, then A = B = 0.

Proof We have o(w;) = ( ,'%), where I is the identity matrix in M,(W). It is easy
to see that (0(Z),0(x)) € {( 4, %);a,b € My(W)}. Now

a

ab+cd—10_a—cb+d_0
—b a —d ¢ 0 I) \-b+d a+c)
implies thata = b = ¢ = d = 0. Lemma is proved.
Now we can finish the proof of Theorem 3.2. Indeed, the homomorphism o:

(Z,x) — (0(Z),0(x)) is an isomorphism, because (Z,x) ~ M,(W) is a simple
algebra. This implies that o: U — M4(W) is an embedding.

B 0 0 fs
oot =3 o B0 | Bewy, olw) = (‘01 ‘})
B+ O 0 5
So
Bi 0 0 fs
(0(2),0(x),0(w)) = 8 gj gﬁ 8 ’ BieW,1<i<8
Bs 0 0 f4

This superalgebra is isomorphic to M, (W) @ M,(W), and the theorem is proved.

4 Specializations of M, ;(F)

Denote ] = M 1(F), v = ex —en € Jj, X = €12, ¥ = ey € Ji. The universal
associative enveloping superalgebra U of ] can be presented by generators v, x, y and
relators 2 — 1 = 0, xv +vx = 0, yv+vy = 0, yx —xy —v = 0. Letv < x < y
and consider the lexicographic order on the set of words in v, x, y. Then the system
of relators above is closed with respect to compositions (see [Be], [Bo]). Hence the
system of irreducible words x’ y/, vx'y/; i, j > 0 is a Groebner-Shirshov basis of U.

By Remark 2.2, the squares x?, y* lie in the center of U. The algebra U is a free
module over the central subalgebra F [x2, y*] with free generators 1, x, y, xy, v, vx,
vy, vXy.

Consider the ring of polynomials and the field of rational functions in two vari-
ables, F[z;, 2] C F(z1,2,). Let K be the quadratic extension of F(z;, z,) generated by
aroot of the equation a*+a—z,z, = 0. Consider the subring A = F[z;,2]+F[z;,z:]a
and the subspaces M|, = F(z1,2,] + Flz1,z,]a 'z, My = Flz1,2]z1 + F[z1,z3]a of
K. Then ( 1\/?21 N/I{Z) is a subring of M, (K).

Let’s consider the mapping u: My (F) — (47 "3*)

>

-1
u app Qg o aqg ap taa 2
Q1 Qo Q22 + 14 Q)

https://doi.org/10.4153/CMB-2002-059-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2002-059-8

668 Consuelo Martinez and Efim Zelmanov

A straightforward verification shows that u is a specialization of the Jordan super-
algebra ] = M (F). Hence, it extends to a homomorphism x: U — ( 1\?21 M2,
Clearly, x(x*) = (% Zol ) x(?) = (% ZOZ ). Again the straightforward computation
shows that the elements 1, x(x), x(¥), x(xy), x(v), x(vx), x(vy), x(vxy) are free

generators of the F[z;, z;]-module ( A?z . Nf‘” ) , which implies the following:

Theorem 4.1 U (M (F)) ~ (., 4*). The mapping

—1
Qg ap ag) ap t+oga 2
u: —
Q1 O a2 +aga Q)

is a universal specialization.

Remark 4.1 One sided finite dimensional Jordan bimodules over M, ,(F) are
not necessarily completely reducible. Indeed, if I is an ideal of F[z1,z,] then
( Ii}*ﬁ‘a ”ﬁ;{;“) is an ideal of ( Nﬁl Mo ). If the quotient F[zy, z,]/I is finite-dimen-

. .« . . . —1
sional and not semisimple, then so is the quotient ( 1\/?21 M) /( e )

5 Specializations of Superalgebras D(¢)

Lett € F. Consider the 4-dimensional superalgebra D(t), D(t)5 = Fe; + Fe,, D(t); =
Fx+Fy, el =e, & =ey,e1e=0,ex = 3%, 6y = 3,1 <i < 2, [x,y] = e +1ey.

Clearly, D(—1) = M, ,(F), D(0) = K3 & F1, D(1) is a Jordan superalgebra of a
superform.

We will start with the superalgebra K;. Let osp(1,2) denote the Lie subsuper-
algebra of M, ,(F) which consists of skewsymmetric elements with respect to the
orthosympletic superinvolution. Let x, y be the standard basis of the odd part of
osp(1,2).

As always U (osp(1,2)) denotes the universal associative enveloping algebra of
the Lie superalgebra osp(1,2). Let U* (osp(l, 2)) be the ideal (of codimension one)
of U ( osp(1, 2)) generated by osp(1, 2).

Theorem 5.1 (1. Shestakov [S1]) The universal enveloping algebra of K5 is isomor-
phic to U* (osp(l, 2)) /id([x, y]* — [x, y]), where id([x, y]* — [x, y]) is the ideal of
U(osp(1,2)) generated by [x, y1* — [, y].

Remark 5.1 The ideal U* above appeared because we do not assume an identity in
the enveloping algebra U(K3) of the Jordan superalgebra. The unital hull of U(K3)
is, of course, isomorphic to U (osp(1,2)) /id([x, y]* — [x, ¥]).

Clearly, if ch F = 0 then K3 does not have nonzero specializations that are finite

dimensional algebras. If ch F = p > 0 then Kj has such specializations. For example,
Ks; C CK(Fla | a? = 0],d/da).
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Theorem 5.2 (1. Shestakov [S1]) Lett # —1, 1. Then the universal enveloping alge-
bra of D(t) is isomorphic to

U(osp(l,Z)) /id( [x, y]* — (L +1)[x, y] + t) .

Corollary 5.1 If ch F = 0 then all finite dimensional one-sided bimodules over D(t),
t # —1, 1, are completely reducible.

Indeed, it is known (see [Kal]) that finite dimensional representations of the Lie
superalgebra osp(1, 2) are completely reducible.

From now on in this section we will assume that t # —1,0, 1 and ch F = 0.

We will classify irreducible finite-dimensional one-sided bimodules over D(¢).

Let V = V + V7 be a finite dimensional irreducible right module over the asso-
ciative superalgebra U (D(t)) . We will identify elements from D(¢) with their right
multiplications on V, i.e., D(t) C Endp V.

Let us notice that Vi # (0). Otherwise, Vx = Vy = (0), which implies that
VD(t) = (0), the contradiction.

LetE= {-x?, F = —7-y%, H = — - (xy + yx).

It is easy to check that [E, F] = H, [E,H] = —2E, [F, H] = 2F, i.e., the elements
E, F, H span the Lie algebra sl,. The subspace Vje; is invariant under the sl,.

Suppose that Ve, # (0). In the sl,-module Ve, choose a highest weight element
v #£0,ie,vH = Av, vF = 0.

Now we will consider an infinite dimensional Verma type module V = #U ( D(t)) ,
whose homomorphic image is V. The module V is defined by one generator # and
the relations: ¥H = \#, #ie; = #, #y* = 0.

From vH = A¥ it follows that #(xy + yx) = —(t + 1)A#. Taking into account
that xy = yx + e + te; we get 7yx = a?, wherea = —1(1+ (1 +1)A). Now
0= (yx—ab)y — vy(xy — yx —e; —te;) = (t — a)vy. Henceaw =t or ¥y = 0.

Suppose that @ = t or equivalently, A = _11;2’. Then the system of relators of
V: e, — 7 = 0, #y? = 0, #yx — t# = 0 together with the system of relators of D(¢):
e%—el =0,xe; +eix—x=0,ye1+e1y —y =0, xy — yx—t — (1 —t)e; = 0and the
lexicographic order e; < y < x < v is closed with respect to compositions (see [Be],
[Bo]). Hence the irreducible elements 7, 7y, 7xt,i > 1 form a basis of the module V.
We will denote this module as V().

If 7y = 0 then #yx = a? implies that & = 0, i.e., \ = —7-. In this case the
system of relators of V is: #e; — # = 0, #y = 0. As above, this system, together with
the system of relators of D(¢) (see above) and the lexicographic order, is closed with
respect to compositions. Hence, the irreducible elements #, #x’, i > 1 form a basis of
V. We will refer to this module as V5 (t).

Changing parity we get two new bimodules V;(¢)°P and V,(¢)°P.

Each of these bimodules has a unique irreducible homomorphic image V' (¢) or
Vz(t) or V] (t)Op or Vz(t)op.

Coming back to the irreducible finite dimensional module V, if V5 = Ve, and
for a highest weight element v we have vy # 0 then V. = V(). If vy = 0, then
V 2 V,(t). In case that Vj = Ve, and for a highest weight element v we have
vy # 0,then V =2 V,(#)P. If vy = 0, then V = V().
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From the representation theory of sl; it follows that dimg V(t) < oo if and only if
A = m, a nonnegative integer. Thent = ’21;”"1, dimp Vi(t)g = m+ 1, dimg V()] =
m + 2. Similarly, dimp V,(t) < oo if and only if A = m a positive integer. Then
== n:m) dimg VZ(t)() =m+ 1,dimg VZ(l’)j = m.

For other values of ¢ the module V;(¢) is irreducible and the superalgebra D(t)
does not have nonzero finite dimensional specializations.

Theorem 5.3 Ift = — ", m > 1, then D(t) has two irreducible finite dimensional
one sided bimodules V' (t) and V(¢)°P.

Ift = —’”7”, m > 1, then D(t) has two irreducible finite dimensional one sided
bimodules V,(t) and V,(t)°P.

Ift can not be represented as — - or — ™1 where m is a positive integer, then D(t)

m+1 m >
does not have nonzero finite dimensional specializations.

Remark 5.2 If ch F = p > 2 then for an arbitrary ¢ the superalgebra D(¢) can be
embedded into a finite dimensional associative superalgebra. It suffices to notice that
D(t) C CK(Fla | a? = 0], d/da).

6 The Jordan Superalgebra of a Superform

Let V = Vj + Vi be a Z/27-graded vector space, dimVy = m, dim Vi = 2n; let
(, ): VXV — Fbe a supersymmetric bilinear form on V. The universal associative
enveloping algebra of the Jordan algebra F1 + Vj is the Clifford algebra Cl(m) =
(1,er,...,en | eiej +eje; = 0,i # j,ef = 1) (see [J]). Assuming the generators
el,...,ey, tobeodd, we get a Z/27-gradation on Cl(m).

In Vi we can find a basis v, wy, ..., v,, w, such that (v;,w;) = &j, (vi,vj) =
(wi,w;) = 0. Consider the Weyl algebra W,, = (1,x;,y;,1 < i < n | [x;,y;] =
dij, [xi,x;] = [yi, yj] = 0). Assuming x;, y;, 1 < i < nto be odd, we make W), a
superalgebra. The universal associative enveloping algebra of F1 + V is isomorphic
to the (super)tensor product Cl(m) @ W,,.
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