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Abstract

Machine-learning (ML) methods have shown great potential for weather downscaling. These data-driven approaches
provide a more efficient alternative for producing high-resolution weather datasets and forecasts compared to physics-
based numerical simulations. Neural operators, which learn solution operators for a family of partial differential
equations, have shown great success in scientific ML applications involving physics-driven datasets. Neural operators
are grid-resolution-invariant and are often evaluated on higher grid resolutions than they are trained on, i.e., zero-shot
super-resolution. Given their promising zero-shot super-resolution performance on dynamical systems emulation, we
present a critical investigation of their zero-shotweather downscaling capabilities,which iswhenmodels are taskedwith
producing high-resolution outputs using higher upsampling factors than are seen during training. To this end, we create
two realistic downscaling experimentswith challenging upsampling factors (e.g., 8x and 15x) across data from different
simulations: the European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) and the Wind
IntegrationNationalDataset Toolkit.While neural operator-based downscalingmodels performbetter than interpolation
and a simple convolutional baseline, we show the surprising performance of an approach that combines a powerful
transformer-based model with parameter-free interpolation at zero-shot weather downscaling. We find that this Swin-
Transformer-based approach mostly outperforms models with neural operator layers in terms of average error metrics,
whereas an Enhanced Super-Resolution Generative Adversarial Network-based approach is better than most models in
terms of capturing the physics of the ground truth data. We suggest their use in future work as strong baselines.

Impact Statement

By downscaling coarse weather variables, we can produce high-resolution datasets that capture the finer
dynamics of the weather. As training with high-resolution datasets is compute and time-intensive, zero-shot
downscaling can accelerate atmospheric science workflows as it avoids the need to collect training data at the
highest resolution. This work investigates neural operator-based zero-shot weather downscaling methods, as
neural operators have shown promising zero-shot super-resolution results on dynamical systems emulation. Our
results highlight the importance of high-quality spatial domain features over resolution-invariant spectral
features for zero-shot weather downscaling; however, all models show potential for improvement.

1. Introduction

Downscaling techniques are used to obtain high-resolution (HR) data from their coarse low-resolution
(LR) counterparts. The HR data often include finer details of physical phenomena than the LR data in
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complex earth systems such asweather. Downscaling provides insights into climate change and its effects,
e.g., the small-scale features and detailed information are crucial for analyzing extreme weather events
that can only be observed at high resolutions. Downscaling can also help upsample medium-range
weather forecasts (Jiang et al., 2023) and is useful for optimal grid planning and management of
renewable resources such as wind energy (Stengel et al., 2020; Kurinchi-Vendhan et al., 2021; Pu Ren
et al., 2023; Benton et al., 2024; Buster et al., 2024).

Although earth system processes, such as weather and climate, can be approximately expressed as
systems of partial differential equations (PDEs), solving these models numerically at sufficiently high
resolutions for many practical applications is computationally infeasible. Data-driven downscaling
approaches, which promise better efficiency than numerical physics-based solvers, have shown great
promise (Kurinchi-Vendhan et al., 2021; Jiang et al., 2023; Pu Ren et al., 2023; Yang et al., 2023; Buster
et al., 2024; Mikhaylov et al., 2024). While statistical downscaling methods (Wood et al., 2004;
Kaczmarska et al., 2014; Pierce et al., 2014) have been used traditionally, deep learning techniques, in
particular, have gained attention due to their ability to efficiently learn complex relationships from large
amounts of data. Moreover, the rapid advancement of deep learning in the computer vision field of super-
resolution has been adaptedwith success for downscaling in the atmospheric sciences (Kurinchi-Vendhan
et al., 2021; Chen et al., 2022; Pu Ren et al., 2023).

Neural operators (Kovachki et al., 2023) have recently been applied to many scientific machine-
learning (ML) tasks involving the emulation of physical systems. Unlike traditional neural networks,
neural operators approximate a mapping between infinite-dimensional function spaces. For example,
neural operators can be used to learn the solution operator for an entire family of PDEs, such as Navier
Stokes andDarcy flow (Li et al., 2021). For this application, neural operators are muchmore efficient than
traditional numerical solvers, which run on finely discretized grids. Once trained, neural operators are fast
to solve any new instance of the PDE (Li et al., 2021; Kovachki et al., 2023). Neural operators have
demonstrated the ability to perform zero-shot super-resolution (Li et al., 2021; Rahman et al., 2023;
Raonic et al., 2023) when emulating physical systems. That is, they can be trained on coarse resolution
data and then tested “zero-shot” on a previously unseen fine discretization of a grid.

Neural operator’s ability to perform zero-shot super-resolution raises the question of whether they can
be applied to perform zero-shot weather downscaling. Currently, downscaling pipelines train models to
map an LR input to an HR output at an upsampling factor (the ratio of the size of the HR grid to the LR
grid), and they are evaluated on generating downscaled outputs with the upsampling factor seen during
training. In zero-shot weather downscaling, a model is trained with a (small) upsampling factor and then
the same model is tasked with producing an HR output at an unseen and higher upsampling factor at test
time. The success of neural operators at zero-shot super-resolution when emulating dynamical systems
suggests they hold promise for this task as well.

We design challenging experiments to investigatewhether neural-operator-basedmodels have an enhanced
ability to perform zero-shot weather downscaling. We adapt and expand the learning framework for applying
neural operators to this setting as proposed in (Yang et al., 2023). One of the key difficulties of zero-shot
weather downscaling is generalizing to an upsampling factor where the data at the finest spatial scales contains
physical phenomena unseen at the highest resolutions seen during training. Fine-scale atmospheric processes
such as turbulence and boundary layer dynamics are often unresolved in low-resolution simulations. These
simulations also frequently underestimate the intensity of cyclones and storm cells (if they are resolved at all)
and smooth over orographic effects due to the coarse representation of topography (Pryor et al., 2012; Li et al.,
2021; Singh et al., 2021). We design experiments that aim to test this zero-shot setting by using large
upsampling factors (e.g., 8x and 15x) and high target resolutions (e.g., 2 km × 2 km wind speed data).

Overall, our work investigates the zero-shot downscaling potential of neural operators. To summarize,
our contributions are:

1. We provide a comparative analysis based on two challenging weather downscaling problems,
between various neural operator and non-neural-operator methods with large upsampling factors
(e.g., 8x and 15x) and fine grid resolutions (e.g., 2 km × 2 km wind speed).
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2. We examine whether neural operator layers provide unique advantages when testing downscal-
ing models on upsampling factors higher than those seen during training, i.e., zero-shot
downscaling. Our results instead show the surprising success of an approach that combines a
powerful transformer-based model with a parameter-free interpolation step at zero-shot weather
downscaling.

3. We find that this Swin-Transformer-based approach mostly outperforms all neural operator models
in terms of average error metrics, whereas an enhanced super-resolution generative adversarial
network (ESRGAN)-based approach is better than most models in capturing the physics of the
system, and suggests their use in future work as strong baselines. However, these approaches still
do not capture variations at smaller spatial scales well, including the physical characteristics of
turbulence in the HR data. This suggests a potential for improvement in transformer or GAN-based
methods and neural-operator-based methods for zero-shot weather downscaling.

2. Related work

Weather downscaling with deep learning Deep learning models have recently shown promise at
weather downscaling tasks such as precipitation downscaling (Chaudhuri and Robertson, 2020; Watson
et al., 2020; Harris et al., 2022). These end-to-end differentiable approaches directly learn to map low-
resolution inputs to high-resolution outputs. The most popular approaches such as the super-resolution
Convolutional Neural Network (SRCNN) (Dong et al., 2015) are based on architectures introduced by the
computer vision community for super-resolution (Wang et al., 2020). These models are used as key
baselines in our experiments, thus, we describe them in more detail in Section 4. (Groenke et al., 2020)
have used normalizing flowmodels (Rezende andMohamed, 2015) to perform climate downscaling in an
unsupervised manner. (Harder et al., 2023) add physics-based constraints in the learning process of the
convolutional neural network (CNN) and generative adversarial network (GAN)models for downscaling
variables such as water content and temperature. Our work does not include these constraints as our focus
is solely on studying the neural operator layers for the downscaling task. Works (Stengel et al., 2020;
Buster et al., 2024) downscale renewable energy datasets, such as wind and solar, as energy system
planning depends on high-resolution estimates of these resources. Buster et al. (2024) use a custom GAN
(Stengel et al., 2020) trained on Global Climate Models (GCMs) projections to generate high-resolution
spatial and temporal features capturing small-scale details otherwise lost in the coarse GCM models.
(Benton et al., 2024) also use the custom GAN (Stengel et al., 2020) for spatiotemporal downscaling of
wind data to learn amapping from low-resolution European Centre forMedium-RangeWeather Forecasts
Reanalysis version 5 (ERA5) (Hersbach et al., 2020) to high-resolutionWind IntegrationNational Dataset
Toolkit (WTK) (Draxl et al., 2015). (Tran et al., 2020) use ESRGAN (Wang et al., 2018) for super-
resolution of the wind field. Through this work, we also perform downscaling of wind data using ERA5
andWTK datasets, but with the goal of investigating the utility of neural operator models for the weather
downscaling task with a specific emphasis on zero-shot downscaling.

Related benchmarks for weather downscaling SuperBench (Pu Ren et al., 2023) introduces super-
resolution datasets and benchmarks for scientific applications, such as fluid flow, cosmology, andweather
downscaling. Their work compares various deep learning methods and analyzes the physics-preserving
properties of thesemodels. RainNet (Chen et al., 2022) is one of the first large-scale datasets for the task of
spatial precipitation downscaling, spanning over 17 years and covering important meteorological
phenomena. Their work also presents an extensive evaluation of many deep learning models. WiSoSuper
(Kurinchi-Vendhan et al., 2021) is a benchmark for wind and solar super-resolution. The dataset released
by WiSoSuper is based on the National Renewable Energy Laboratory’s (NREL’s) WTK and National
Solar Radiation Database (NSRDB) (Sengupta et al., 2018) datasets. They compare generative models
introduced in (Stengel et al., 2020) with other GAN and CNN-based models. In contrast to these
benchmarking efforts, our work benchmarks models for weather downscaling but with a focus on neural
operator models and zero-shot weather downscaling. In a concurrent work focusing on climate down-
scaling (Prasad et al., 2024), CNNs, transformers (Alexey, 2020), and neural-operator-based models are
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compared in terms of their ability to pretrain on diverse climate datasets so as to learn transferrable
representations across multiple climate variables and spatial regions.

Arbitrary-scale super-resolution Arbitrary-scale super-resolution (ASSR) has been gaining in
popularity (Liu et al., 2023) in the study of super-resolution in computer vision. ASSR involves
training a single deep learning model to super-resolve images to arbitrarily high (potentially non-
integral) upsampling factors. Unlike ASSR, which broadly considers any image datasets relevant to
computer vision, our work focuses specifically on zero-shot weather downscaling problems which
possess unique challenges due to, for example, multi-scale physical phenomena. Super-resolution
neural operator (SRNO) (Wei and Zhang, 2023) and the recent Hierarchical Neural Operator Trans-
former (HiNOTE) model (Luo et al., 2024) are two advanced deep learning models built with neural
operator layers that show promising ASSR performance. SRNO proposes treating the LR and HR
images as approximations of finite dimensional continuous functions with different grid sizes and
learns a mapping between them. They introduce an advanced LR image encoding framework and
kernel integral layers to learn an expressive mapping. HiNOTE is a hierarchical hybrid neural
operator-transformer model. We did not include SRNO and HiNOTE in our experiments as we focus
on a simple framework (Figure 1) where downscaling performance can be easily attributed to the
neural operator components under study.

3. Background

Neural operators Operator learning models, such as neural operators (Kovachki et al., 2023), are
composed of layers that learn mappings between infinite-dimensional function spaces. In doing so, they
approximately learn a continuous operator, which can be realized at any arbitrary grid discretization of the
input and output. Thus, neural operators do not depend on the discretization of the grid they are trained on,
and we expect them to generalize to grid resolutions different than the ones they are trained on. (Li et al.,
2021) introduced Fourier neural operators (FNOs), expressing neural operators as a combination of linear
integral operators to incorporate the non-local properties of the solution operator with Fourier Transform
and non-linear local activation functions (Kovachki et al., 2023), which helps tomodel non-linear systems
and their high-frequency modes. They show improved performance over convolution-based models for
complex non-linear PDEs such as the Navier–Stokes equation.With the Fourier layers, the parameters are
learned in the Fourier domain, which enables FNOs to be invariant to the grid discretization or resolution.
Because neural operators such as FNOs learn resolution-invariant approximations of continuous oper-
ators, we aim to understand whether this provides advantages for zero-shot weather downscaling.

(Yang et al., 2023) adapt FNOs (Li et al., 2021) to perform downscaling on ERA5 and PDE data. Their
proposed model, which they refer to as DFNO, outperforms CNN and GAN-based models. They also
evaluate zero-shot downscaling on unseen upsampling factors to observe the model’s zero-shot gener-
alization potential. We adapt and expand this downscaling pipeline in our benchmarking study. Our work
differs from this paper as we investigate higher upsampling factors (8x and 15x) for training and zero-shot
evaluations as opposed to 2x and 4x in their work. We also create a realistic set of experiments that
includes LR andHRdata sourced from different simulations (ERA5 toWTKdownscaling, as described in
Section 4.2) and compare various neural operator approaches against strong baselines including powerful
transformers.

Weather downscaling In weather downscaling, we are given a snapshot of LR weather data (e.g., an
image) with a goal of upsampling this data to a higher target resolution. Mathematically, in the standard
downscaling problem, we have the LR input grid x∈ℝh×w × c, and a target, HR output, y∈ℝh0 ×w0 × c,
where h,w∈N, c is the number of atmospheric variables, and h×w is a lower resolution than h0 ×w0.
Deep-learning-based downscaling techniques introduced in Section 2 learn an approximation f between
two finite-dimensional vector spaces f :ℝh×w × c !ℝh0 ×w0 × c. We refer to the setting where models are
trained and tested on the same upsampling factor as standard weather downscaling. In this work, we
restrict our focus to only static downscaling problems, i.e., each snapshot represents a single instant
in time.
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Zero-shot weather downscaling In our work, we wish to evaluate the extent to which downscaling
models built with resolution-invariant neural operator layers generalizewhen tested on previously unseen,
higher upsampling factors compared to approacheswithout such layers. The simplest way to obtain anHR
image at any arbitrarily fine discretization is a non-learned interpolation scheme such as bicubic
interpolation.

We are looking into neural-operator-based downscaling models that learn a mapping G† :ℝh×w × c!U

from x∈ℝh×w× c to a function u∈U. We aim to obtain HR outputs y∈ℝh0 ×w0 × c from a discretization of u,
whereU is an infinite-dimensional function space (Li et al., 2021;Yang et al., 2023).Aneural-operator-based
downscaling framework (Yang et al., 2023) (Figure 1b) learns a parametric approximation of amapping from
the finite-dimensional LR input space to the infinite-dimensional space, Gθ xð Þ :ℝh×w × c!U, as an
approximation of G† such that Gθ xð Þ≔F θ T�1 f θ xð Þ,ð Þ� �

, with θ as the parameters of the model. It is
comprised of (a) neural network layers that first learn to map LR inputs to an embedding vector,

Fourier Neural
Operator

LR
HR

Bicubic
Interpolation (e.g., 15x)

(a) FNO

RRDB Blocks Neural
Operator

LR
HR

Conv Conv Conv
(b) DXNO (e.g., DFNO)

LR
HR

Non-
Neural Operator

Model

Conv ConvBlocks

Upsampler
(e.g., 5x)

(c) e.g., SwinIR

Bicubic
Interpolation (e.g., 15x)

Bicubic
Interpolation (e.g., 3x)

Figure 1. Overview of the neural operator and non-neural-operator zero-shot weather downscaling
approaches. We show 5x to 15x zero-shot downscaling as an example. (a,b) For neural operators, the
interpolation scale factor is the same as the upsampling factor, e.g., the bicubic interpolation layer
upsamples to 5x during training and 15x during evaluation. (c) For regular neural networks (e.g.,
SwinIR), the model is trained to output at 5x (e.g., using a learnable upsampler such as sub-pixel
convolution). At test time, the model generates a 5x output which is then interpolated 3x more to produce
the final 15x HR output.
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f θ :ℝ
h×w × c!ℝd , (b) a discretization inversion operator that converts the vector to a function (e∈E) with

T�1 :ℝd !E D;ℝde
� �

, and (c) neural operator layers F θ :E!U that learn to map the function to another
function, which can be discretized to produce the HR output y∈ℝh0 ×w0 × c. We refer to these approaches as
downscaling NO models (e.g. DFNO (Yang et al., 2023)). In order to use vanilla FNOs without resolution-
dependent neural network layers (a) (as seen in Figure 1(a)), we learn Gθ xð Þ≔F θ T�1 xð Þ� �

. Several
improvements have since been proposed over FNOs (Guibas et al., 2021; Rahman et al., 2023; Raonic
et al., 2023) which we include in our downscaling study and describe in further detail later (Section 4).

4. Methodology

Weuse two experimental setups to compare the performance of neural operators and non-neural-operator-
based methods at both standard and zero-shot weather downscaling. First, we downscale ERA5 data,
where we learn a mapping from coarsened LR ERA5 to HR ERA5. In our second experiment, we
downscale from LR ERA5 to HRWTK.We expect the second task to be more challenging as it presents a
more realistic downscaling scenario where the LR inputs belong to a different simulation than the HR
data. Thus, we do not assume the LR is a coarsened version of the HR (Pu Ren et al., 2023; Benton et al.,
2024). The coarse simulation in this case differs from the fine simulation in terms of modeling
assumptions and physics. The performance of our downscaling models for this complex task provides
important insights into their capability to infer unseen fine-scale physical phenomena and to be used in an
operational context.

Downscaling neural operator models We compare (vanilla) FNO with downscaling FNO (DFNO),
downscaling U-shaped neural operator (Rahman et al., 2023) (DUNO), downscaling convolutional neural
operator (Raonic et al., 2023) (DCNO), and downscaling adaptive Fourier neural operator (Guibas et al., 2021)
(DAFNO). The downscaling (D)models are based on (Yang et al., 2023) (as described in Section3)with FNO,
UNO, CNO, and AFNO as the neural operator layers in the modeling framework. We show details of this
model in Figure 1(b). The low-resolution (LR) image first passes through a set of Residual-in-Residual Dense
Block (RRDB) blocks, where an RRDB block is composed of multiple levels of residual and dense
networks as introduced in ESRGAN (Wang et al., 2018). Then, the embedding is interpolated
corresponding to the upsampling factor using bicubic interpolation to obtain a high-resolution output.
Finally, this goes through neural operator layers to produce the final downscaled HR image. We can
think of this last stage as a post-processing step over the features extracted by the RRDB layers followed
by the interpolation. The number of RRDB blocks is a hyperparameter tuned during training. All the
Downscaling (D) models are trained with the mean-squared-error (MSE) loss. To perform zero-shot
downscaling with either the FNO or DXNO (e.g. DFNO) models at the test time on higher upsampling
factors than the ones seen during the training, we use the interpolation layer to increase the resolution by
the corresponding higher upsampling factor.

The four neural operator models we compare are:

1. FNO (Li et al., 2021) FNO uses a combination of linear integral operators and non-linear local
activation functions to learn the operator mapping on complex PDEs such as the Navier–Stokes
equation. We follow the original implementation of FNO from (Li et al., 2021) for the FNOmodel.
Figure 1(a) shows the vanilla FNO model as used in our downscaling pipeline where FNO is post-
processing the interpolation output.

2. UNO (Rahman et al., 2023) is introduced as a deep and memory-efficient architecture that allows
for faster training than FNOs. This neural operator has a U-shaped architecture, comprising an
encoder-decoder framework built with neural operator layers to learn mappings between function
spaces over different domains.

3. AFNO (Guibas et al., 2021), a transformer model that uses FNOs for efficient token-mixing instead
of the traditional self-attention layers. AFNOs have been used as an integral part of FourCastNet
(Pathak et al., 2022), a data-driven weather forecasting model.
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4. CNO (Raonic et al., 2023) adapts CNNs for learning operators and processing the inputs and
outputs as function spaces. They adopt a UNet (Ronneberger et al., 2015)-based modeling
framework to learn amapping between bandlimited functions (Vetterli et al., 2014), which supports
resolution invariance within the captured frequency band and can help them to learn operators that
reduce aliasing errors (Bartolucci et al., 2024) which occurs when the neural operator models try to
learn a continuous operator on a finite, discretized grid.

The hyperparameters and model training details are presented in Appendix A.2. Additionally, we also
conducted a detailed analysis of how the frequency cutoff hyperparameter affects the downscaling
performance of the FNO, see Appendix A.4.

Baseline models We compare all the neural operator models with five baselines: (1) bicubic inter-
polation, (2) SRCNN, (3) ESRGAN, (4) EDSR, and (5) SwinIR. Super-resolution convolutional neural
network or SRCNN (Dong et al., 2015) is the first CNN-based model to perform single image or spatial
super-resolution. SRCNN first upsamples the LR inputwith bicubic interpolation followed by lightweight
CNN layers to obtain the HR image. Enhanced deep super-resolution network (EDSR) (Lim et al., 2017)
introduces deep residual CNN networks to do super-resolution, where the CNN layers are followed by an
upsampling block performing sub-pixel convolution (Shi et al., 2016). ESRGAN (Wang et al., 2018) is a
GAN-based architecture where the generator is composed of many RRDB blocks. The model is trained
with pixel and perceptual loss along with adversarial loss, the perceptual loss minimizes the errors in the
feature space and helps improve the visual quality of the generated super-resolved image (Ledig et al.,
2017). Swin Transformer for Image Restoration (SwinIR) (Liang et al., 2021) has the advantages of both
the CNN and Swin transformer (Liu et al., 2021) layers. It captures long-range dependencies and learns
robust features to improve super-resolution performance with the residual Swin Transformer blocks
(RSTB) which is composed of many Swin Transformer layers stacked together with residual connections.

We refer to the implementation of thesemodels as released in the SuperBench (PuRen et al., 2023)work,
hyperparameter details are added inAppendixA.2. Unlike neural operators, thesemodels have architectures
that expect their inputs and outputs to have the same grid resolution at both training and test time. Thus, we
add a bicubic interpolation module on the output obtained from these models to produce outputs at higher
upsampling factors than seen during training for our zero-shot downscaling experiments (Figure 1(c)).

See Appendix A.3, Table 4 comparing the parameter count and training wall-clock time of all the
neural operator and non-neural-operator-based models. Notably, we tested the vanilla FNO downscaling
framework (Figure 1(a)), by moving the bicubic interpolation module after the FNO layers (as in baseline
models, Figure 1(c)), which led to worse performance compared to our proposed pipeline with interpol-
ation before the FNO layers.

4.1. ERA5 to ERA5 downscaling

For our first experiment, we downscale coarsened LR ERA5 to HR ERA5. We use the ERA5 dataset for
the entire globe at 25-km spatial resolution. We compare all models using two downscaling paradigms:

1. Standard downscaling:We train and test all the neural operators and baseline models with the same
upsampling factor of 8x. An upsampling factor of 8x maps LR images of size 90 × 180 to HR
outputs of size 720 × 1440.

2. Zero-shot downscaling: We first train all the models with an upsampling factor of 4x. Then, during
testing, we observe their ability to produce outputs at a higher 8x upsampling factor.

Dataset details We use the European Centre for Medium-Range Weather Forecasts Reanalysis version
(ERA5) dataset released as a part of the SuperBench (Pu Ren et al., 2023) paper. The data is at a 0.25-
degree (25 km) grid resolution over the globe, i.e., each image has size 720 × 1440. We have three

atmospheric variables (three channels): (1) wind speed,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ v2

p
, u and v being the two components of

wind velocity at 10m from the surface, (2) temperature at 2m from the surface, and (3) total columnwater
vapor. This ERA5 dataset consists of image snapshots at 24-hour intervals over an eight year period. Years
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2008, 2010, 2011, and 2013 are used for training while 2012 and 2007 are reserved as a validation set for
tuning hyperparameters. The years 2014 and 2015 are set aside for testing. Following (Pu Ren et al.,
2023), we extract eight patches of size 64 × 64 (for the zero-shot downscaling) from each image to obtain
HR images for training. The LR images are created by coarsening the HR patches with bicubic
interpolation. We normalize each channel separately with a mean and standard deviation before training.
See Appendix A.1 for further details on the training process.

4.2. ERA5 to WTK downscaling

For this second experiment, we focus on downscaling fromLRERA5 to HRWTK. It should be noted that
the LR data in this setup is not obtained by coarsening the HR data but comes from another simulation.We
include this experiment to observe the performance of neural operators in a challenging andmore realistic
setup; for e.g., where ERA5 serves as boundary conditions for dynamical downscaling with a Numerical
Weather Prediction model (Benton et al., 2024). The HRWTK dataset is available over two regions in the
US at a 2-km resolution (Benton et al., 2024) andwe use two variables: the u and v components of thewind
velocity at 10 m from the surface for this task. We perform the following experiments with the ERA5 to
WTK downscaling setup:

1. Standard downscaling: We train and test all the neural operators and the baseline models with an
upsampling factor of 5x, to go from 30-km to 6-km. The LR and the HR sizes are 53 × 53 and
265 × 265 for one region and 40 × 106 and 200 × 530 for the other region.

2. Zero-shot downscaling: For the zero-shot setup, we use the models trained with the 5x upsampling
and evaluate themon an upsampling factor of 15, going from30-km to 2-km.While the LR sizes are
the same as above, the HR sizes for the zero-shot case are 795 × 795 for one region and 600 × 1590
for the second region.

Dataset details We use the NREL’s WTK (Draxl et al., 2015) as the ground truth dataset. WTK has a
spatial resolution of 2-km and a temporal resolution of 1-hour. We get LR images from the ERA5 dataset
(Hersbach et al., 2020), available at 30-km (~0.28 degree) spatial resolution and 1-hour temporal
resolution. This data has two channels, the u and v components of the wind velocity at 10 m from the
surface.We have paired ERA5 andWTKdatasets over two regions in theUS,with image sizes ~800 × 800
and ~600 × 1600 respectively (see Figure 2 and (Benton et al., 2024) for more details).

Models are trained to map from coarse 30-km ERA5 to fine 6-kmWTK with a 5x upsampling factor.
This HR data is created by coarsening the WTK grid from 2-km to 6-km resolution. We realign, that is
regrid 30-km ERA5 to the 6-kmWTK coarsened grid using inverse distance weighted interpolation. For
zero-shot experiments, we map the 30-km low-resolution ERA5 to the original 2-km resolution WTK
(a 15x upsampling) for evaluation. The year 2007 is split 80/20 between the training and validation. We
keep the year 2010 for testing. A single model is trained for both regions. While training, we ensure that
every batch has an equal number of LR and HR pairs from both regions. We extract patches of size
160 × 160 from the WTK image tiles to obtain the HR images and the corresponding coarse patches
(32 × 32) from ERA5 image tiles as the LR images for training (Benton et al., 2024). This patch size is a
hyperparameter tuned on the validation set. We normalize each channel separately with a mean and
standard deviation before training. See Appendix A.1 for further details on the training process.

4.3. Evaluation metrics

Our study quantitatively analyzes model performance using the following:

1. Error metrics: We use four pixel-level error measures: MSE, mean-absolute-error (MAE), L∞
norm (IN), and the Peak signal-to-noise ratio (PSNR (Pu Ren et al., 2023)). IN is the maximum
pixel error between two images and it informs us about the tails of the pixel error distribution
(Pu Ren et al., 2023).
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2. Energy spectrum:We plot the kinetic energy spectrum (Kolmogorov, 1991) for eachmodel which
shows a distribution of energy across various wavenumbers (Stengel et al., 2020; Kurinchi-
Vendhan et al., 2021; Benton et al., 2024; Buster et al., 2024). These are normalized kinetic energy
plots, with wavenumbers measured relative to the domain (or the spatial region) size. We compare
each of themodels with the energy curve for the ground truthHR. These plots describe howwell the
models capture physically realistic variations at smaller spatial scales in their downscaled outputs,
for example, providing information about the physical characteristics of the turbulence of wind
flow captured in the model outputs.

5. Evaluation

5.1. ERA5 to ERA5 downscaling

Error MetricsWe show the results for the ERA5 to ERA5 standard downscaling experiments and zero-
shot experiments in Table 1. Standard downscaling compares models trained and evaluated with an
upsampling factor of 8x.We observe that SwinIR outperforms every other model in terms ofMSE,MAE,
IN, and PSNR.DCNO is a close second and the best-performing neural operatormodel. TheDFNOmodel
shows improved results over the vanilla FNO indicating the advantage of adding convolutional RRDB
layers that learn spatial domain features useful for downscaling (as shown in ESRGAN (Wang et al.,
2018)). Table 1 zero-shot results show a performance comparison between models trained on a 4x
upsampling factor but evaluated zero-shot on generating 8x upsampled HR outputs. The zero-shot
experiments show that the SwinIR is still the best-performing model. While DUNO is best among the
neural operatormodels at zero-shot ERA5 to ERA5 downscaling, DCNOperformsmuchworse than it did
on standard downscaling. All the neural operator models are better than bicubic and SRCNN for both the
standard and zero-shot downscaling. We also include downscaling results on the temperature and total
column water vapor variables for the ERA5 to ERA5 experiments in Appendix C (Tables 6, 7) and
observe similar relative model performance, with SwinIR outperforming every other model in both the
standard and zero-shot downscaling in terms of all the metrics.

Takeaways: SwinIR outperforms every other model in both the standard and zero-shot downscaling in
terms of all the metrics. While we expected neural operator models to be better, especially in the zero-shot
experiments, they do not perform as well as SwinIR. DUNO achieves the best zero-shot downscaling
performance amongst the neural operator models, while DCNO achieves much lower errors than DUNO
in the standard downscaling setting.

Figure 2. Figure shows the two regions used for the ERA5 to WTK downscaling experiments. The
600 × 1600 (800 × 800) region is shown in black (blue). We use NREL’s rex (Rossol and Buster, 2021)
tools to rasterize the WTK dataset.
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Energy Spectrum Figure 4 shows zero-shot downscaled wind speed for the SwinIR, ESRGAN,
DFNO, DUNO, DCNO, and DAFNOmodels, alongside the LR, HR, and bicubic interpolated images.
We observe that SwinIR appears to learn fine-scale features closest to the HR or the ground truth
image. We refer to the energy spectrum plots in Figures 3a and 3b to show the kinetic energy
distributions as functions of wavenumber, across all the downscaling models. For the standard
downscaling case in Figure 3a, ESRGAN matches the HR spectrum at all wavenumbers, DAFNO
is second to ESRGAN at high wavenumbers, even though DAFNO is behind the DCNO model in
terms of the error metrics. Figure 3b demonstrates the energy spectrum for the zero-shot downscaling
scenario. SwinIR best captures the physical properties of the ground truth at low-to-medium
wavenumbers, ESRGAN is better at medium-to-high wavenumbers but DAFNO is the best at the
highest wavenumbers, even though they underestimate the energy content at higher wavenumbers.
DCNO matches the HR curve for lower wavenumbers but falls behind ESRGAN at higher wave-
numbers. We observe that SwinIR, ESRGAN, and EDSR produce peaks at the very high-end
wavenumbers but the neural operator models except DAFNO do not introduce this high-end noise.
Moreover, DUNO and DFNO seem to have similar intermediate peaks as bicubic interpolation, but
that’s not the case with DAFNO and DCNO.We suggest this points to the difference in spatial domain
features learned by DAFNO and DCNOwhich leads to a change in their spectrum.We also suspect the
intermediate artifacts or spikes in ESRGAN and DAFNO (in both Figures 3a and 3b) might be caused
by aliasing.

Takeaways:All the models underestimate the energy content at the higher wavenumbers, for the case
of zero-shot downscaling. For the highest wavenumbers, or the dissipation range, this underestimation is
most significant (for all the models except DAFNO). The inherent length dependence of the dissipation
range makes zero-short downscaling a challenge for even the best-performing models. This is not
surprising, as, for example, it is challenging for the models to fill in smaller-scale physical features if
they do not see this level of detail when training on smaller upsampling factors. ESRGAN appears to be
the best in capturing the ground truth energy spectra across all wavenumbers for standard downscaling
and at medium-to-high wavenumbers for zero-shot downscaling. However, DAFNO outperforms all the
models at the highest wavenumbers for the zero-shot downscaling case.

Table 1. ERA5 to ERA5 wind speed downscaling results. MSE has units m=sð Þ2, MAE m=s and IN m=s.
We bold the best-performing model among all the models and underline the best-performing neural

operator model. Results for the other channels are added to the Appendix C

Standard Downscaling Zero-shot Downscaling

is NO? MSE↓ MAE↓ IN↓ PSNR↑ MSE↓ MAE↓ IN↓ PSNR↑

bicubic ✕ 1.23 0.73 14.82 27.53 1.23 0.73 14.82 27.53
SRCNN ✕ 1.14 0.7 14.75 27.83 1.06 0.67 14.56 28.18
ESRGAN ✕ 1.29 0.75 15.43 27.3 0.85 0.6 14.51 29.1
EDSR ✕ 0.51 0.44 13.6 31.33 0.54 0.45 13.66 31.1
SwinIR ✕ 0.37 0.38 12.12 32.79 0.51 0.44 13.22 31.33
FNO ✓ 0.91 0.66 14.53 28.84 0.71 0.54 14.04 29.9
DFNO ✓ 0.7 0.54 12.8 29.94 0.63 0.5 13.33 30.43
DUNO ✓ 0.69 0.53 13.36 30.04 0.63 0.5 13.56 30.44
DAFNO ✓ 0.65 0.51 13.77 30.29 0.66 0.52 14.01 30.23
DCNO ✓ 0.45 0.43 12.98 31.93 0.92 0.65 14.89 28.76
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5.2. ERA5 to WTK downscaling

Error Metrics We show the results for the ERA5 to WTK downscaling in Table 2. As discussed in
Section 4.2, using ERA5 as the LR for this setup makes it more challenging as the LR data is obtained
from a different simulation than the HR data rather than using a coarsened version of the HR data.
Table 2 shows the (1) standard downscaling results obtained from evaluating the models mapping
ERA5 to WTK for a 5x upsampling factor and (2) zero-shot downscaling results where we evaluate the
models trained on 5x upsampling to generate HR outputs at a 15x upsampling factor. SwinIR remains
the best-performingmodel in both setups. DCNO achieves the best standard downscaling scores among
the neural operators but is poor at zero-shot downscaling, as can be seen in Table 2 zero-shot results,
where it performs worse than bicubic interpolation. We also observe DAFNO to be performing worse

Figure 3. Figures (a) and (b) show kinetic energy spectrum plots for ERA5 standard downscaling and
zero-shot downscaling respectively. Kinetic Energy is normalized and wavenumber is measured relative
to the domain size. We add a zoomed-in plot (right) beside the main plot to zoom in on the key region of
interest. We observe that ESRGAN appears to be the best in capturing the ground truth energy spectra
across all wavenumbers for standard downscaling (a) and at medium-to-high wavenumbers for zero-shot
downscaling (b). DAFNO is the best performing at the highest wavenumbers in (b).
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than bicubic interpolation at zero-shot downscaling. EDSR is a close second to SwinIR in both
experiments. DUNO performs better than the other neural operators (and bicubic as well as SRCNN)
at zero-shot downscaling.

Takeaways: Overall, we observe the same relative model performance in this more difficult setting
(ERA5 to WTK downscaling) as the easier setting (ERA5 to ERA5). The most significant takeaway
remains that SwinIR is the best model at ERA5 to WTK zero-shot downscaling.

Figure 4. ERA5 wind speed visualizations inm=s generated from the zero-shot downscaling. We zoom in
on a small region for better comparison. SwinIR captures better and finer details of the HR image, over
neural operator models, especially in the zoomed-in region. It is also better over regions with complex
terrain (e.g. the mountain ranges in North and South America).

Table 2. ERA5 to WTK wind speed downscaling results. MSE has units m=sð Þ2, MAE m=s and IN m=s.
We aggregate the error metrics over u and v wind velocity channels. We bold the best-performing

model among all the models and underline the best-performing neural operator model

Standard Downscaling Zero-shot Downscaling

is NO? MSE↓ MAE↓ IN↓ PSNR↑ MSE↓ MAE↓ IN↓ PSNR↑

bicubic ✕ 3.56 1.18 12.87 18.4 4.07 1.25 16.59 19.91
SRCNN ✕ 3.16 1.11 12.62 18.83 3.65 1.18 16.39 20.31
ESRGAN ✕ 2.75 1.05 13.06 19.27 3.12 1.11 15.96 20.8
EDSR ✕ 2.46 0.98 11.89 19.85 2.92 1.05 15.61 21.2
SwinIR ✕ 2.29 0.94 11.71 20.12 2.73 1.02 15.34 21.43
FNO ✓ 5.69 1.94 14.45 14.48 5.45 1.89 17.82 16.76
DFNO ✓ 3.04 1.26 12.56 17.86 3.53 1.33 16.14 19.4
DUNO ✓ 2.81 1.09 12.11 18.97 3.3 1.16 15.85 20.43
DAFNO ✓ 2.71 1.02 12.12 19.47 4.17 1.19 17.5 19.51
DCNO ✓ 2.47 0.99 11.77 19.79 4.66 1.32 17.32 19.51
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Energy Spectrum The energy spectrum plots for the ERA5 to WTK downscaling experiments are
presented in Figures 5a and 5b. ESRGAN matches the HR spectrum at all wavenumbers for the standard
downscaling. ESRGAN also comes closest to matching the HR energy spectrum for the zero-shot
downscaling. However, as seen in Section 5.1, these models still underestimate the energy content in
the high wavenumber range for zero-shot downscaling. SwinIR and EDSR follow behind ESRGAN for
both setups, but they outperform all the neural operator-based models. We observe DCNO to be close to
the HR curve for most of the wavenumbers except for the highest ones for standard downscaling
(Figure 5a), but it is much worse at zero-shot downscaling (Figure 5b). DAFNO no longer shows good
performance for this experimental setup. FNO performs the worst, consistent with their performance in

Figure 5. Figures (a) and (b) show kinetic energy spectrum plots for the ERA5 to WTK standard
downscaling and zero-shot downscaling respectively. Kinetic Energy is normalized and wavenumber is
measured relative to the domain size. We add a zoomed-in plot (right) beside the main plot to zoom in on
the key region of interest. ESRGAN matches the HR spectrum at all wavenumbers for the standard
downscaling (a). ESRGAN also comes closest to matching the ground truth energy spectrum for the zero-
shot downscaling (b), but the gap increases for higher wavenumbers. SwinIR and EDSR rank second to
ESRGAN for both (a) and (b).
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terms of the average error metrics (as seen in Table 2). Figure 6 compares the zero-shot downscaled
outputs in terms of the wind speed for the bicubic interpolation, ESRGAN, SwinIR, DFNO, DUNO,
DCNO, andDAFNOmodels.We see fine-scale features of the ground truth captured better in ESRGAN’s
downscaled outputs over other models.

Takeaways: ESRGAN is the closest to the energy spectrum of the ground truth HR data, but, there is
an underestimation in the energy content for the higher wavenumber range, in the zero-shot downscaling.
None of the neural operator models, including DAFNO, perform well in capturing the HR energy
spectrum.

5.3. Ablation study: Localized integral and differential kernel layers

In this section, we ablate using localized operator layers (Liu-Schiaffini et al., 2024) in the FNO and FNO-
basedmodels. It has recently been shown that global operations in FNOs limit their ability to capture local
features well (Liu-Schiaffini et al., 2024). (Liu-Schiaffini et al., 2024) propose two localized operators:
differential operators and integral operators with local kernels, and augment FNO layers with them to
show improved performance on PDE learning tasks. We add these localized operators into the FNO and
FNO-based models (DFNO and DUNO) and compare them against the same models without the local
layers. Inspired by the strength of SwinIR andEDSR,we explorewhether incorporating local layersmight
help the FNO-based models learn better local features and improve their performance in our
downscaling task.

Table 3 shows the results of our ablation study on the effect of local layers (Liu-Schiaffini et al.,
2024) on the FNO, DFNO, and DUNO modeling frameworks. Overall, the numbers do not indicate a
significant impact on theMSE scores, especially for the ERA5 experiments. We observe FNOwith the
local layers to be better than without them on the ERA5 to WTK downscaling experiment, and DFNO
and DUNO without the local layers to be better across most experiments. We suspect this might be
pointing to the difference in architectures between the FNO and DFNO (or DUNO) models where the
latter apply neural operators on the upsampled features obtained from RRDB layers. We note that the
results in Sections 5.1 and 5.2 are for FNO with local layers and the DFNO and DUNO results are
without them.

Figure 6.WTK wind speed visualization inm=s generated from the zero-shot downscaling (figure shows
results on one of the two regions).We observe ESRGAN’s downscaled outputs (followed by SwinIR’s) to be
sharper with better details than the neural operator models.
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6. Discussion

In the literature, neural operators have performed well at zero-shot super-resolution (Li et al., 2021;
Kovachki et al., 2023; Rahman et al., 2023; Raonic et al., 2023) when trained to predict the solution of a
PDE or when trained to act as an emulator of a time-dependent dynamical system. Their resolution
invariance property has also been utilized in (Jiang et al., 2023) to train an FNO to act as an emulator for
zero-shot super-resolution of weather forecasts. However, our results show that the neural operators under-
perform the non-neural operators at zero-shot weather downscaling. Importantly, physical system emulation
differs fromour static downscaling setting,wherewe train onpairs of low and high-resolution images. In our
case, the neural operators are trained to learn amapping between resolutions, and are tested on their ability to
generalize zero-shot to higher upsampling factors. We believe this distinction is important to help
contextualize our results, which show that neural operators have difficulty with this task.

Our results show that bicubic interpolation followed by a vanilla FNO performs poorly at weather
downscaling. Inmost cases, this performsworse than bicubic interpolation alone. FNO learns spectral features
in Fourier spacewhichmakes it resolution-invariant—these features are not inherently tied to the resolution of
the training dataset. Weather downscaling may benefit from learning spatial features tied to the specific input
and output grid resolutions. This could be limiting the vanilla FNO’s ability to downscale well. We also
evaluate neural operator models with convolutional RRDB blocks before the neural operator layers (the
DXNOmodels (Section 4)), which improves the downscaling performance significantly. The DCNOmodels,
based on CNOs (Raonic et al., 2023), adapt U-Net style convolutions to approximately learn an operator
mapping. They perform close to the best model SwinIR in the standard downscaling experiments, but, their
performance drops significantly in the zero-shot setup, as CNO uses explicit up/down-sampling and thus
cannot be applied to different resolutions without some degraded performance (Liu-Schiaffini et al., 2024).

ESRGAN proves to be the best model for capturing the physical properties of the data at medium-to-
highwavenumbers for ERA5 to ERA5 and all wavenumbers for ERA5 toWTKexperiments, asmeasured
in our work by kinetic energy plots, for zero-shot downscaling. It is important to note that zero-shot
downscaling is a challenging task as we expect the models to produce outputs that have super-resolved
physics at the finer scale without training on them. It is possible that ESRGAN learns to generate
downscaled outputs with better visual quality because of its architectural design and use of perceptual
loss, which may help in capturing the HR physics across spatial scales, yet, we observe that all models
underestimate the energy content in the high-wavenumber range for zero-shot downscaling. It seems that
SwinIR learns superior-quality features at the smaller upsampling factor during training, enabling an
interpolation on top of SwinIR to generate downscaled outputs better than other models as shown by the
average error metrics. We did an ablation study where we replaced the convolutional RRDB blocks in
DXNOmodels with the RSTB as adopted in SwinIR to compare their downscaling performances (details
in Appendix B). DXNOmodels with SwinIR-based feature extraction performed worse than DXNOwith
RRDBmodules, suggestingmore advanced hybrid neural-operator-transformer architecture (Luo et al., 2024)

Table 3. Ablation study on the effect of local layers from Liu-Schiaffini et al. (Liu-Schiaffini et al.,
2024) on FNO, DFNO, and DUNO. We show the MSE in all the experiment setups. The local layers
mostly benefit FNOs for the downscaling tasks but do not improve the performance of DFNO or

DUNO models

Local layers ERA5 ERA5 zero-shot ERA5!WTK ERA5!WTK zero-shot

FNO ✕ 0.83 0.74 7 7.5
FNO ✓ 0.91 0.71 5.69 5.45
DFNO ✕ 0.7 0.63 3.04 3.53
DFNO ✓ 0.66 0.66 4.63 5.31
DUNO ✕ 0.69 0.63 2.81 3.3
DUNO ✓ 0.62 0.67 3.03 3.79
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may be needed.We recommend that researchers benchmark against powerful non-operator-learningmethods
with interpolation as strong baselines. However, given that SwinIR and ESRGAN need to use bicubic
interpolation (which has no learnable parameters) to do zero-shot downscaling, it could be fundamentally
limited in its ability to downscale small-scale physics unseen during training. It is also possible that the set of
neural operator models we explored can be improved. Overall, all models appear to be quite far from solving
our downscaling tasks.

7. Conclusion

This work comprehensively benchmarks neural operators on the task of weather downscaling, with a
particular emphasis on critically investigating the zero-shot downscaling capabilities of neural operators.
Our analyses involve two studies over (1) learning a mapping from coarsened ERA5 to high-resolution
ERA5 and (2) learning a mapping from low-resolution ERA5 wind data to a high-resolution wind data
(2 km × 2 km). Our zero-shot downscaling experiments involve challenging upsampling factors: 8x and
15x over the two studies, respectively.

With an extensive evaluation using various errormetrics and kinetic energy spectrumplots, we show that
resolution-invariant neural operators are outperformed by the Swin-Transformer and ESRGAN-based
models, even at zero-shot downscaling. This was surprising, as resolution-invariant neural operators were
previously shown to be good at zero-shot super-resolution for the task of emulating dynamical systems.
While our current study presents limitations of neural operators atweather downscaling, future researchmay
consider improving the neural operator downscaling frameworks with better feature encoders or advanced
hybrid neural-operator-transformer models. We hope this work provides a deeper understanding of the role
of neural operators in weather downscaling and furthers research in this direction.
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A. Training details

A.1. Additional data details
1. ERA5 to ERA5 downscaling: The number of samples (image snapshots) in training, validation, and test are 1460, 730, and

730 respectively. Refer to the main text for the size details (height, width, channels) of each image.

We train all the models two times in this setup.

Standard downscaling: This involves training all the models with an upsampling factor of 8x. Following (Pu Ren et al.,
2023), we do not use the entire image snapshots but random crops of the images for training. We extract eight patches of
size 128x128 from each image snapshot to obtain HR image data for training. The corresponding LR image patches of
size 16x16 are created by coarsening the HR patches with bicubic interpolation.
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Zero-shot downscaling: This involves training all the models with an upsampling factor of 4x. For this case, we extract
eight patches of size 64x64 from each image snapshot to obtainHR image data for training. The corresponding LR image
patches of size 16x16 are created by coarsening the HR patches with bicubic interpolation.

2. ERA5 toWTK downscaling: We work with two regions in the US. For each of the regions: the number of samples (image
snapshots) in training, validation, and test are 7008, 1752, and 8760 respectively. Refer to the main text for the size details
(height, width, channels) of each image.

All the models are trained just once in this setup, with an upsampling factor of 5x. We again use random crops of the
images for training.We extract eight patches of size 160x160 from each image snapshot to obtain HR (WTK) image data
for training. The LR image patches of size 32x32 are obtained from the corresponding ERA5 image snapshots.We train a
single model for both regions, ensuring that every training batch has an equal number of LR and HR pairs from both
regions.

The crop size for the ERA5 to ERA5 experiments is the same as the one used in SuperBench (Pu Ren et al., 2023). We tune the
crop size for the ERA5 to WTK downscaling experiments and obtain the optimal crop size reported above.

A.2. Hyperparameters
All the models are trained for 400 epochs.

Neural-operator-based models:

All the hyperparameters are tuned over the validation dataset. We perform a sweep over learning rates {0.005,0.0001,0.00001}
for all models. The models are trained using the ADAM (Kingma and Ba, 2015) optimizer with a batch size of 32, weight decay of
1e-4, and a step learning rate scheduler with a step size of 60. For the Downscaling (D) models, we add the RRDB module
(a component of the ESRGAN framework (Wang et al., 2018)), before the bicubic interpolation layer and the subsequent neural
operator layers. RRDB implementation is adapted from the ESRGAN implementation discussed below. We perform a sweep over
the number of RRDB blocks {6,12,24} for all the downscaling models.

1. FNO We follow the original implementation of FNO from the neuraloperator library (Kossaifi et al., 2024), based on
(Li et al., 2021; Kovachki et al., 2023), incorporating localized operator layers from (Liu-Schiaffini et al., 2024) and using
most of the default model hyperparameters. We perform a hyperparameter sweep over the number of hidden channels in the
lifting and projection blocks, testing values {128,256}, selecting 256 for them. We also examine the number of modes to
keep in the Fourier layers - extensive study detailed in A.4, selecting the optimal number of modes as 16 for the ERA5 to
WTK experiments and 8 for ERA5 to ERA5 experiments. The best learning rate for the FNOmodel is found to be 0.005.We
use the lp loss with p¼ 2, reduced over dim¼ 0 as defined in the original implementation.

2. DFNOWe keep the selected values for the lifting, projection channels, and the number of modes, obtained from tuning the
above FNOmodel. The best learning rate for training DFNO is found to be 0.0001, and the optimal number of RRDB blocks
is selected as 12. MSE is used as the loss function.

3. DUNOWe follow the UNO model implementation, again from the neuraloperator library (Kovachki et al., 2023; Kossaifi
et al., 2024).While we use most of the default model hyperparameters, we do hyperparameter tuning on the hidden channels
(initial width of UNO) over {32,64}, selecting 64 as optimal, and the number of output channels of each Fourier layer over
{32,64}, selecting them as 64. We found the best learning rate to be 0.0001, and the optimal number of RRDB blocks is 12.
MSE is used as the loss function.

4. DAFNOWe follow the implementation of the AFNO network from the FourCastNet (Pathak et al., 2022) implementation.
With most model hyperparameters as default, we perform a hyperparameter sweep over the patch size {4,8}, choosing 8 as
optimal, and the number of blocks (block as defined in (Guibas et al., 2021)) {4,8}, selecting 8. It should be noted that the
optimal patch size is found to be 4 when training for the ERA5 to ERA5 zero-shot downscaling setup. For the DAFNO
training, we find the best values for the learning rate to be 0.0001, and the number of RRDB blocks to be 12. MSE is used as
the loss function.

5. DCNO We follow the original CNO implementation from (Raonic et al., 2023) with most of the the default model
hyperparameters. We tune the number of layers (upsampling/downsampling blocks) over {3,4} and find the optimal to
be 3. For the DCNO training, we find the best values for the learning rate to be 0.0001, and the number of RRDB blocks to be
12. MSE is used as the loss function.

Baseline models:

The implementations of SRCNN, EDSR, and SwinIR model pipelines follow the implementations provided by Pu Ren et al.,
(2023). We follow an open-source implementation of ESRGAN from Li (Esrgan-pytorch, 2023) for our ESRGAN downscaling
framework. We keep intact most of the hyperparameters and training setups from these implementations, but we train each of the
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baselinemodels for a fixed 400 epochs (consistent with the neural-operator-basedmodels).We also do a hyperparameter sweep over
the learning rates {0.001,0.0001,0.00001} for all the baseline models, using the validation dataset to tune this hyperparameter. For
the ERA5 to ERA5 experiments: we find the optimal learning rate as 0.0001 for EDSR, SwinIR, and ESRGAN, and 0.001 for
SRCNN. For the ERA5 to WTK experiments, we find the optimal learning rate as 0.0001 for SRCNN, SwinIR, and ESRGAN, and
0.001 for EDSR.

A.3. Model parameters and training wall-clock time

A.4. Analysis of FNO frequency-cutoff
We conduct a study to investigate the impact of the frequency cutoff, or the number of modes retained in the Fourier layers (Li et al.,
2021; Kovachki et al., 2023), on the downscaling performance of FNO. This hyperparameter specifies the number of frequency
components retained for training after a Fourier transform is applied to the data. Aswith other hyperparameters, we select the number
of modes for the FNO model that yields the lowest error on the validation dataset.

1. ERA5 toWTKdownscaling:We need to train a single FNOmodel for this setup.With image crops of size 160x160 used in
training, we perform a sweep over {16, 32, 64, 128, 160} number of modes and observe the lowest train, validation and test
MSE with 16 modes. Figure 7 shows the effect of the number of modes on the test MSE for both the standard downscaling
and zero-shot downscaling. We also show the train MSE and validation MSE (for the standard downscaling task) in this
figure. Thus, we select 16 as the optimal number of modes for this setting. Additionally, Figure 8 presents energy spectrum
plots comparing the number ofmodes for downscaling on the train, validation, and test datasets.We again note that FNOwith
16 modes is better in capturing the ground truth energy spectra, even at high wavenumbers, though the energy content
underestimation becomes more pronounced with higher wavenumbers.

2. ERA5 to ERA5 downscaling: The FNO model is trained twice in this setup:

Standard downscaling: With image crops of size 128x128 used in training the FNO model in this case, we perform a
sweep over {8, 16, 32, 64, 128} number of modes and observe the lowest train, validation and test MSE with 8 modes.
Thus, we select 8 as the optimal number of modes for this setting.

Zero-shot downscaling: With image crops of size 64x64 used in training the FNO in this case, we perform a sweep over
{8, 16, 32, 64} number ofmodes and observe the lowest train, validation and testMSEwith 8modes. Thus, we select 8 as
the optimal number of modes for this setting.

Table 4. Model parameters and training wall-clock time recorded on a single NVIDIA H100 GPU for
all the baseline and neural-operator-based models used in the ERA5 to WTK downscaling setup.

SwinIR achieves superior average error metrics (e.g., MSE), as shown in Table 2, while having only
marginally higher model parameters than the downscaling neural-operator-based models (except

DAFNO). ESRGAN is the best model in matching the ground truth energy spectrum (Figures 5a, 5b)
and is second to DAFNO in parameter count. Notably, ESRGAN takes the longest to run, followed by

SwinIR; both take longer to run than all the neural-operator-based models

Model #Parameters Training time (hours)

SRCNN 0.063 M 0.52
ESRGAN 39.18 M 14.84
EDSR 2.14 M 0.57
SwinIR 12.53 M 10.77
FNO 1.24 M 2.86
DFNO 9.88 M 4.8
DUNO 9.36 M 6.73
DAFNO 69.15 M 7.64
DCNO 11.33 M 4.83
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Figure 7. Plot comparing the mean-squared error (MSE) against the number of modes (n_modes) in the
Fourier Neural Operator (FNO) model for ERA5 to WTK downscaling.

(a) Energy spectrum plot on the train data. (b) Energy spectrum plot on the validation data.

(c) Energy spectrum plot on the test data (standard

downscaling task).

(d) Energy spectrum plot on the test data (zero-shot

downscaling task).

Figure 8. Energy spectrum plots comparing the effect of different numbers of modes ({16, 32, 64,
128, 160}) in the FNO model for ERA5 to WTK downscaling.
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Figure 9 shows the effect of the number of modes on the testMSE for both the standard downscaling and zero-shot downscaling.
The train and validation MSE scores show similar trends. The energy spectra plots for ERA5 to ERA5 downscaling do not provide
any additional insights.

Overall, we observe that the train, validation, and test MSE are lowest when using the smallest number of modes across all
setups.Moreover, the energy spectra plots for the lowest modematchmore closely with theHR energy spectra, capturing the physics
of the ground truth data better. While further investigation is needed to understand our observation better, these findings provide
useful insights into the effect of FNO frequency-cutoff on its performance.

B. Ablation study on DXNO models
Our superior results with SwinIR suggest that residual Swin-Transformer blocks (RSTB), as adopted in SwinIR, are good at
extracting high-quality features for the task of downscaling. This motivated us to explore whether they could enhance feature
extraction compared to the convolutional RRDBblocks when used in the DXNOmodels in our experiments.We replaced the RRDB
blocks in theDXNOmodelwith this transformer-based feature extractionmodule fromSwinIR, keeping the other parts of theDXNO
model (the interpolation and neural operator layers) unchanged. Table 5 shows that simply swapping the RRDB blocks with the
RSTBblocksworsens the downscalingmodel’s performance. It is possible that SwinIR’s effectiveness can be attributed to its overall
architecture, including the upsampling module and other layers that complement the RSTB feature extraction better. We may also
need advanced models to integrate the potential advantages of transformers with neural operators for the task of downscaling. The
table includes the ablation study results for the ERA5 toWTK standard and zero-shot downscaling experiments. Notably, the DFNO
model with RSTB blocks failed to converge when trained for the ERA5 to ERA5 downscaling setup.

Figure 9.Plot comparing theMSE against the numberof modes (n_modes) in the FNOmodel for ERA5 to
ERA5 downscaling. In this case (as discussed in A.4), the standard downscaling FNO model performs a
sweep over {8, 16, 32, 64, 128} number of modes, and the zero-shot downscaling model sweeps over {8,
16, 32, 64} number of modes.

Table 5. Ablation study on the effect of replacing convolutional RRDB blocks with residual Swin-
Transformer blocks (RSTB) in the DXNO models. The table shows the MSE for the ERA5 to WTK
downscaling experiments using the DFNO and DUNO models. DXNO with RRDB blocks show better

performance

Feature extractor ERA5!WTK ERA5!WTK zero-shot

DFNO RRDB 3.04 3.53
DFNO RSTB 5.69 6.19
DUNO RRDB 2.81 3.3
DUNO RSTB 4.65 5.15
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C. Additional ERA5 to ERA5 downscaling results

Cite this article: Sinha S, Benton B and Emami P (2025). On the effectiveness of neural operators at zero-shot weather
downscaling. Environmental Data Science, 4: e21. doi:10.1017/eds.2025.11

Table 6. ERA5 to ERA5 temperature downscaling results. MSE has units Kð Þ2, MAE K and IN K. We
bold the best-performing model among all the models and underline the best-performing neural

operator model

Standard Downscaling Zero-shot Downscaling

is NO? MSE↓ MAE↓ IN↓ PSNR↑ MSE↓ MAE↓ IN↓ PSNR↑

bicubic ✕ 2.47 0.89 20.41 45.99 2.47 0.89 20.41 45.99
SRCNN ✕ 2.09 0.83 20.94 46.74 1.95 0.78 20.35 47.02
ESRGAN ✕ 3.75 1.27 45.5 44.18 1.54 0.82 16.88 48.04
EDSR ✕ 0.68 0.44 15.5 51.6 0.81 0.47 15.91 50.84
SwinIR ✕ 0.38 0.34 11.09 54.15 0.81 0.46 15.88 50.84
FNO ✓ 1.12 0.6 17.68 49.41 1.08 0.57 17.84 49.59
DFNO ✓ 0.94 0.55 16.38 50.17 0.95 0.54 17.14 50.13
DUNO ✓ 0.88 0.52 15.61 50.47 0.94 0.53 17.18 50.2
DAFNO ✓ 0.9 0.56 15.45 50.39 1.21 0.68 32.75 49.1
DCNO ✓ 0.45 0.4 11.11 53.38 1.85 0.81 16.72 47.26

Table 7. ERA5 to ERA5 total column water vapor downscaling results. MSE has units kg=m2ð Þ2, MAE
kg=m2 and IN kg=m2. We bold the best-performing model among all the models and underline the best-

performing neural operator model

Standard Downscaling Zero-shot Downscaling

is NO? MSE↓ MAE↓ IN↓ PSNR↑ MSE↓ MAE↓ IN↓ PSNR↑

bicubic ✕ 2.72 0.98 29.44 33.18 2.72 0.98 29.44 33.18
SRCNN ✕ 2.59 0.96 29.24 33.4 2.27 0.89 29.01 33.97
ESRGAN ✕ 3.1 0.94 48.3 32.61 1.71 0.79 26.17 35.19
EDSR ✕ 0.94 0.55 23.76 37.81 2.92 1.05 15.61 21.2
SwinIR ✕ 0.61 0.46 16.07 39.68 1.09 0.56 26.72 37.15
FNO ✓ 1.88 0.79 29.31 34.77 1.67 0.76 27.74 35.28
DFNO ✓ 1.21 0.65 25.29 36.68 1.38 0.66 26.03 36.14
DUNO ✓ 1.18 0.64 25.47 36.81 1.38 0.66 26.14 36.13
DAFNO ✓ 1.16 0.65 25.28 36.87 1.85 0.84 26.62 34.84
DCNO ✓ 0.67 0.51 13.53 39.23 2.53 1.01 28.45 33.48
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