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Abstract

We prove that the variety consisting of all involutory inflations of normal bands is the unique maximal
residually finite variety consisting of combinatorial semigroups with involution.
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1. Introduction and formulation of the main result

A universal algebra A= (A, F) is residually finite if, for all a, a′ ∈ A such that a 6= a′,
there exist a finite algebra B (of the same similarity type as A) and a homomorphism
ϕ : A→ B such that ϕ(a) 6= ϕ(a′). A variety V is residually finite if each algebra from
V is residually finite. It is not difficult to see that a variety is residually finite if and
only if all of its subdirectly irreducible members are finite. Recall that an algebra A
is subdirectly irreducible if θi 6=1A for all i ∈ I implies that

⋂
i∈I θi 6=1A, for each

family of its congruences {θi : i ∈ I }. In other words, A has a minimum nonidentical
congruence µ, which is called the monolith of A. Similarly, A is not residually finite
if and only if the intersection of each family of nonidentical congruences of A of finite
index (that is, with finitely many equivalence classes) is not equal to 1A.

A closely related notion is that of a subdirect product of algebras {Ai : i ∈ I }: this is
just a subalgebra of the direct product

∏
i∈I Ai whose i th projection coincides with the

whole of Ai for all i ∈ I . It is now quite easy to see that subdirectly irreducible algebras
are precisely those which have, in a sense, only trivial decompositions into subdirect
products: that is, for such an algebra A we must have A∼= Ai for some i ∈ I . On the
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182 I. Dolinka [2]

other hand, by a well-known theorem of Birkhoff, any algebra is isomorphic to a
subdirect product of subdirectly irreducible algebras; therefore subdirectly irreducible
algebras serve as basic building blocks of general algebras. This is true in varieties,
too: any variety is uniquely determined by its class of subdirectly irreducible members.
For additional background, consult [3, 18].

From the point of view just presented, residually finite varieties are the simplest;
indeed—as residual finiteness is obviously a hereditary varietal property—they
constitute the lower regions in the lattice of varieties of a given type. Characterizations
of residually finite varieties are known in several classes of algebras. For example,
by a well-known result of Ol’shanskiı̆ [25], a group variety is residually finite if
and only if it is generated by a finite group all of whose Sylow subgroups are
Abelian. On the other hand, Golubov and Sapir [17] provide several characterizations
of residually finite semigroup varieties. We shall return to some aspects of their
result later. Independent descriptions of residually finite varieties of semigroups
have been supplied (as corollaries to solutions of some more general questions) by
Kublanovskiı̆ [20] and McKenzie [22, 23].

The aim of this paper is to initiate an investigation of residually finite varieties of
involution semigroups. Recall that an involution semigroup is a natural ‘intermediate’
notion between (plain) semigroups and groups: we have a semigroup (S, ·, ∗)
equipped with a unary operation ∗, subject to the identities (xy)∗ ≈ y∗x∗ and
(x∗)∗ ≈ x . For example, any inverse semigroup is an involution semigroup satisfying
two additional identities x ≈ xx∗x and xx∗yy∗ ≈ yy∗xx∗.

To formulate our result, let us quickly introduce several varieties of involution
semigroups, along with notes on their subvarieties:
• O∗, the variety of all null semigroups with involution (whose only nontrivial

proper subvariety is Oid, defined by x ≈ x∗, the variety of null semigroups with
trivial involution [5]);

• RB∗, the variety of all rectangular bands with involution (which is a minimal
involution semigroup variety [14]);

• SL∗, the variety of all involution semilattices (which has three nontrivial proper
subvarieties [8, Theorem 3.1]);

• NB∗ = RB∗ ∨ SL∗, the variety of all normal bands with involution (whose
subvariety lattice was determined in [9]).

Recall that a semigroup S is combinatorial if all of its subgroups are trivial. In this
paper we set ourselves the task of proving the following result.

THEOREM 1.1. Let V be a variety consisting of combinatorial semigroups with
involution. Then V is residually finite if and only if it is contained in O∗ ∨NB∗.

We briefly justify the backward implication. By [5, Lemmas 1.7.11 and 1.7.12], the
variety O∗ ∨NB∗ consists of all subdirect products of null semigroups with involution
and normal bands with involution. As remarked in [5], O∗ has two subdirectly
irreducible algebras: the two-element null semigroup with an identical involution, and
the three-element null semigroup whose involution fixes the zero and exchanges the

https://doi.org/10.1017/S1446788710001552 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710001552


[3] Varieties of involution semigroups 183

other two elements. On the other hand, the subdirectly irreducible members of NB∗

were discussed in [11, Theorem 7.4]: the largest of them has nine elements. Hence
O∗ ∨NB∗ is residually finite.

The proof of the forward implication in the theorem above occupies most of the rest
of the paper. In what follows, V will stand for a residually finite involution semigroup
variety in which the underlying semigroup of each member is combinatorial. But first
let us introduce the rest of the necessary concepts and notation, and then take a look at
some examples of involution semigroup varieties that are not residually finite.

2. Further definitions and notation

We say that a semigroup with zero S is a nil-semigroup if for each a ∈ S there
exists an integer k ≥ 1 such that ak

= 0. A very special type of nil-semigroup is an
n-nilpotent semigroup; in such a semigroup, a1 · · · an = 0 for all a1, . . . , an ∈ S; S is
said to be nilpotent if it is n-nilpotent for some n. A 2-nilpotent semigroup, in which
every product is equal to 0, is called null.

As usual, O, SL, RB and NB denote the varieties of all null semigroups,
semilattices, rectangular bands and normal bands, respectively. For a semigroup
variety U, we denote by U∗ the class of all involution semigroups whose semigroup
reducts belong to U. It is quickly seen that U∗ is always an involution semigroup
variety, defined by the involution laws and the plain semigroup identities of U, thus
making the notation from the introductory section consistent.

In the following we shall frequently encounter a situation where a semigroup S has
an ideal I such that S/I is a nil-semigroup; then S is said to be a nil-extension of I
by (a semigroup isomorphic to) S/I . In the particular case where S/I is null we are
concerned with a null extension of I , which is equivalent to saying that S2

⊆ I . Now
if S is an involution semigroup and a nil-extension (or a null extension) of its ∗-ideal
I = I ∗, then S/I is a nil-semigroup (or a null semigroup) with involution, and S is
said to be an involutory nil-extension (or a null extension, respectively) of I .

A special, and in a way the simplest, type of null extension is obtained from the
construction of an inflation of a semigroup T . Here we construct a semigroup on a set
S ⊇ T by starting from a function f : S→ T such that fT is the identity mapping on
T and defining

a ·S b = f (a) ·T f (b)

for all a, b ∈ T . It is easy to see that in this way all products from T are preserved
and that T is an ideal of S such that S2

⊆ T . In the case where T is an involution
semigroup (with unary operation ∗) and we have an involution ′ on the set S \ T such
that f agrees with ′ in the sense that, for all a ∈ S \ T ,

f (a′)= f (a)∗,

then S may be turned into an involution semigroup by defining a∗ = a′ for all
a ∈ S \ T . In the setting just described, we say that S is an involutory inflation of T .
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As recorded in [27, Proposition 2.6], for a semigroup variety U, the variety O ∨ U

consists of all inflations of members of U. This is true in the involutory setting as well:
for each involution semigroup variety W, the members of O∗ ∨W are characterized
as involutory inflations of members of W. Therefore the variety O∗ ∨NB∗ from our
Theorem 1.1 is precisely the variety of all involutory inflations of normal bands. In
addition, if U ∈ {SL, RB,NB} (and in many other cases), then O∗ ∨ U∗ = (O ∨ U)∗,
so we use these two forms interchangeably.

A congruence ρ of a semigroup S is called a semilattice congruence if S/ρ is a
semilattice; S is semilattice indecomposable if its only semilattice congruence is its
universal relation. It is well known (consult, for example, [26, Ch. II] or [29]) that
each semigroup S has a least semilattice congruence ρ0 such that all ρ0-classes are
semilattice indecomposable subsemigroups of S. It is not difficult to show that if S is
an involution semigroup, then the least semilattice congruence of its semigroup reduct
agrees with ∗, so that it is in fact a congruence of S, the least involution semilattice
congruence of S. If ρ is an (involution) semilattice congruence of a semigroup S (with
involution) such that each ρ-class belongs to a class of semigroups C, then we refer
to S as an (involution) semilattice of semigroups from C. Notice that in the involutory
case, not every ρ-class needs to be fixed by ∗, so it is in general not expected to be
an involution subsemigroup of S. All semilattice decompositions explicitly mentioned
in this paper will have semilattice indecomposable classes, so we can take for granted
that whenever an involution is involved, it actually defines an involution semilattice
decomposition of the involution semigroup considered.

3. Some examples

EXAMPLE 3.1. First of all, recall the well-known five-element combinatorial Brandt
semigroup B2 generated by two elements a, b and a zero 0, subject to the defining
relations a2

= b2
= 0, aba = a and bab = b. However, B2 may also be viewed as a

semigroup reduct of an inverse semigroup, also denoted by B2, generated by a and 0
such that a∗ = b, a2

= 0 and aa∗a = a. This is just a special case of the following
construction. Let I be any nonempty set; define a multiplication on (I × I ) ∪ {0} by

(i1, j1)(i2, j2)=

{
(i1, j2) if j1 = i2,

0 otherwise,

and (i, j)∗ = ( j, i), for all i, i1, i2, j, j1, j2 ∈ I . The resulting involution (in fact,
inverse) semigroup is denoted by BI , and when |I | = 2 it is isomorphic to B2. It
is well known [19, 28] that when |I | ≥ 2 each BI generates the same variety B of
combinatorial strict inverse semigroups [2, 30], defined within inverse semigroups
by xyx∗ ≈ xy2x∗. It is fairly easy to check that BI is (congruence-)simple for each
nonempty set I , and thus subdirectly irreducible; therefore B is not residually finite.

Before presenting the next example, we consider a general construction of the
0-direct union of a semigroup with its dual. Let S be a semigroup; denote by S∂
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its dual semigroup: S∂ = {a : a ∈ S} with a · b = ba. Upon assuming that S ∩ S∂ =∅
and 0 6∈ S ∪ S∂ , define a semigroup on the set S ∪ S∂ ∪ {0} whose multiplication ◦ is
given by a ◦ b = ab for all a, b ∈ S and a ◦ b = ba for all a, b ∈ S∂ , while all the other
products are equal to 0. The involution is defined by 0∗ = 0 and a∗ = a and a ∗ = a
for all a ∈ S. In this way we obtain an involution semigroup, denoted by I ∗0 (S).

A characterization of the identities satisfied by these involution semigroups is given
in [6] and we reproduce it here, as it will be repeatedly used later. Due to the involution
semigroup axioms, the elements of the free involution semigroup on the set X can be
considered simply as (nonempty) words over the ‘doubled’ alphabet X ∪ X∗, where
X∗ = {x∗ : x ∈ X}. Such words we call involutory words. Hence involution semigroup
identities are of the form u≈ v for two involutory words u, v. To distinguish between
the elements of the set X ∪ X∗, considered as the alphabet for involutory words, and
symbols from X (which, for example, may be a part of a term of the form x∗), we
call the former letters and the latter variables. A variable x ∈ X such that both letters
x and x∗ occur in u is called paired (in u); the set of all paired variables in u is
denoted by π(u). A (plain) semigroup identity w1 ≈ w2 is called homotypical if the
set of variables occurring in w1 coincides with that of w2. If←−w is the word obtained
from w by reading it backwards, then the reverse of w1 ≈ w2 is the identity←−w1 ≈

←−w2.
We now provide the reformulation of [6, Theorem 6] given in [12].

PROPOSITION 3.2. Let u, v be involutory words and let S be a semigroup. Then the
identity u≈ v holds in I ∗0 (S) if and only if either:
(a) π(u) 6=∅ and π(v) 6=∅; or
(b) π(u)= π(v)=∅ and u≈ v is obtained from a homotypical semigroup identity

satisfied by S whose reverse is also true in S, by replacing some of the variables
by their stars.

For a semigroup variety U, let U∂ denote its dual variety: this is defined by the
reverses of identities of U, and if S generates U, then S∂ generates U∂ . A variety U is
self-dual if U= U∂ . We note the following easy consequence of the proposition above.

LEMMA 3.3. Let U be a semigroup variety generated by a semigroup S. If T ∈
U ∨ U∂ ∨ SL, then I ∗0 (T ) belongs to the involution semigroup variety generated by
I ∗0 (S).

PROOF. Let u≈ v be an identity satisfied by I ∗0 (S). If π(u) 6=∅ and π(v) 6=∅, then
u≈ v holds in I ∗0 (T ) as well. Otherwise, assume that π(u)= π(v)=∅. Then there is
no loss of generality in assuming that u≈ v is a semigroup identity. By the proposition
above, it is homotypical and holds in both S and S∂ , which is equivalent to saying that
it holds in U ∨ U∂ ∨ SL. However, note that U ∨ U∂ ∨ SL is a self-dual variety, so
that T ∈ U ∨ U∂ ∨ SL implies that T ∂ ∈ U ∨ U∂ ∨ SL. Hence u≈ v holds in both
T and T ∂ , and since it is homotypical, we conclude that it is satisfied by I ∗0 (T ). 2

EXAMPLE 3.4. Let B0 be the variety generated by I ∗0 (B2). For an arbitrary I
satisfying |I |> 1, let θ be the congruence on I ∗0 (BI ) collapsing 0, 0 and 0; write
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SI = I ∗0 (BI )/θ . It quite straightforward to check that SI is congruence-free (and so
subdirectly irreducible), just like BI . On the other hand, B is self-dual, as B2 is a
semigroup reduct of an involution semigroup, so its equational theory is closed under
taking reverses. Since SL⊆B, Lemma 3.3 implies that I ∗0 (BI ) (and thus SI ) belongs
to B0, preventing the latter variety from being residually finite.

EXAMPLE 3.5. Let M1 be the variety of 3-nilpotent semigroups defined by identities
xyz ≈ 0, x2

≈ 0 and xy ≈ yx . As it is commutative, it can be trivially ‘expanded’
to an involution semigroup variety by the identical involution, x∗ ≈ x . The resulting
variety is also denoted by M1. As noted in [17], M1 is not residually finite.

LEMMA 3.6. Let W be an involution semigroup variety such that M1 6⊆W.

(i) W satisfies an identity of the form xy ≈ w, where |w| ≥ 3.
(ii) If W is generated by a nil-semigroup with involution N, then N is null.

PROOF. (i) By the given condition, W satisfies an identity that fails in M1. Then after
possible substitutions of variables by their stars, the identity in question is either of
the form x ≈ u, where |u| ≥ 2, or of the form xy ≈ w, where either |w| = 2 and w
contains a variable not in {x, y}, or w contains exactly one of the variables {x, y}, or
|w| ≥ 3. Clearly, an identity of the first type implies an identity of the second type, so
we may conclude that W satisfies a nontrivial identity xy ≈ w. Moreover, if |w| = 2
and w contains a letter z or z∗ different from x, x∗, y, y∗, then z may be substituted
by a product of any two letters in order to deduce an identity of the form xy ≈ w1,
|w1| ≥ 3. Finally, if, for example, w ∈ {x2, xx∗, x∗x, (x∗)2}, then xy ≈ w implies
that xyz ≈ w and so xy ≈ xyz. In any case, W satisfies an identity of the required
form.

(ii) First of all note that, from (i), whenever m ≥ 3, there is an involutory word wm
such that |wm | ≥ m and xy ≈ w implies that xy ≈ wm . Also from (i), the involutory
nil-semigroup N satisfies an identity of the form xyx ≈ w′ for some involutory
word w′ not graphically equal to xyx , so by [13, Proposition 2.6] the involution
subsemigroup N ′ of N generated by two arbitrary elements a, b ∈ N is finite. Since
each finite nil-semigroup is nilpotent, N1 satisfies the identity x1 · · · xm ≈ 0 for
some m. Therefore N1 satisfies xy ≈ wm ≈ 0, that is, N1 is a null semigroup. In
particular, ab = 0; but since the choice of a, b was arbitrary, we conclude that N must
be null. 2

EXAMPLE 3.7. Let S be a 3-nilpotent semigroup generating M1. Define M0
1 to be

the variety generated by I ∗0 (S) (Proposition 3.2 shows that the actual choice of S is
immaterial); we claim that it is not residually finite. To see this, we exhibit concrete
examples of infinite subdirectly irreducible algebras from the semigroup variety M1.
Let κ be any cardinal. Define Nκ to be the semigroup on {0, p} ∪ {xi : i < κ} such that
p2
= xi p = pxi = 0 for all i < κ and

xi x j =

{
p if i 6= j,

0 otherwise.

https://doi.org/10.1017/S1446788710001552 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710001552


[7] Varieties of involution semigroups 187

It is easily verified that Nκ ∈M1 and that it is subdirectly irreducible, where the
monolith is the congruence collapsing 0 and p. Now let N ′κ = I ∗0 (Nκ)/θ , where the
only nontrivial block of θ is 0̂= {0, 0, 0}. It suffices to see that each nontrivial con-
gruence ρ of N ′κ collapses p and p = p∗. This is clear when (a, b) ∈ ρ satisfy a 6= b
and a, b ∈ (Nκ \ {0}) ∪ {̂0} or a, b ∈ (N ∂

κ \ {0}) ∪ {̂0}, because ρ then contains either
(̂0, p) or (̂0, p), so it collapses 0̂, p, p. The remaining case is when a, c ∈ Nκ \ {0}
and b = c. The case where a = c = p is immediate. If a = xi for some i , then for all
j 6= i we have (p, 0̂)= (ax j , cx j ) ∈ ρ, with the same conclusion as in the previous
subcases. The possibility when c = xi for some i is analogous, so we are done.

LEMMA 3.8. Let N be a nil-semigroup, and let W be the variety generated by I ∗0 (N ).
If M0

1 6⊆W, then N is null.

PROOF. Let S be a semigroup generating M1; then I ∗0 (S) 6∈W, so there is an identity
satisfied by I ∗0 (N ) that fails in I ∗0 (S). Bearing in mind Proposition 3.2, this cannot
be an identity of type (a). Therefore there must be a homotypical semigroup identity
u≈ v that holds in N and N ∂ and fails in S or S∂ . In any case, there is a semigroup
identity (u≈ v or←−u ≈←−v ) holding in N and failing in S. As noted in [17, proof of
Lemma 3], the identity in question may be assumed to be of the form xy ≈ w, where
w is a word of length at least three. Hence the proof of this lemma can be finished like
that of Lemma 3.6, but using [31, Lemma 3.2] instead of [13, Proposition 2.6]. 2

EXAMPLE 3.9. A band (an idempotent semigroup) is regular if it satisfies the identity
xyxzx ≈ xyzx . It is left regular if it satisfies xy ≈ xyx . It is well known that the
variety of left regular bands coincides with the class of all semilattices of left zero
bands. A ∗-band is a band with involution satisfying x ≈ xx∗x . In [34], Scheiblich
proved that each regular ∗-band B is a spined product of a left regular band and its dual
with respect to the structure semilattice of B: this is to say that there is a semilattice Y
and a left regular band L =

⋃
α∈Y Lα such that B =

⋃
α∈Y (Lα × Rα), where

Rα = L∂α , while the involution is just the operation of exchanging pairs: (a, b)∗ =
(b, a). It is a matter of straightforward (if somewhat tedious) verification to see that
B is subdirectly irreducible if and only if L is. On the other hand, the variety of left
regular bands is not residually finite (see, for example, [15, 16]), so it follows that the
variety ReBreg of regular ∗-bands is not residually finite either.

EXAMPLE 3.10. If L2 denotes the two-element left zero band, let ReB0 be the
variety generated by I ∗0 (L

1
2). This is the variety defined within regular bands with

involution by the identities xx∗y ≈ xyx∗ ≈ yxx∗ ≈ xx∗. By [11, Theorem 6.2], if L
is a subdirectly irreducible left regular band without a zero element, then I ∗0 (L) is a
subdirectly irreducible member of ReB0. By the already mentioned results of [15, 16],
we conclude that ReB0 is not residually finite.

LEMMA 3.11. Let U be a variety of involution bands that does not contain ReBreg

and ReB0. Then U⊆NB∗.
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PROOF. This is just an immediate consequence of [8, Lemma 2.1]. 2

Finally, we set out an elementary fact that will be used several times in the following
proofs.

LEMMA 3.12. Let S be a residually finite involution semigroup. Then all subsemi-
groups of its semigroup reduct are residually finite. In particular, if I ∗0 (T ) is residually
finite for a semigroup T , so is T .

PROOF. Assume that S is residually finite. Then in particular, for arbitrary a, b ∈ S,
a 6= b, there is an involution semigroup homomorphism ϕ : S→ F into a finite
involution semigroup F such that ϕ(a) 6= ϕ(b). However, ϕ|T : T → F is then a
plain semigroup homomorphism (where F is the semigroup reduct of F) separating a
and b. 2

4. Proof of Theorem 1.1, part 1

Recall that throughout the rest of the proof of Theorem 1.1, V denotes a residually
finite variety of combinatorial semigroups with involution. The first structural feature
we discover about members of V is as follows.

LEMMA 4.1. V consists of involution semilattices of null extensions of rectangular
bands.

PROOF. We employ the main result of [12] (namely, Theorem 5), which implies
that any involution semigroup variety omitting B2 and I ∗0 (B2) consists of involution
semilattices of Archimedean semigroups. Recall that a semigroup Q is Archimedean
if for all a, b ∈ Q there is an integer n ∈ N such that bn

= xay for some x, y ∈ Q1.
By Examples 3.1 and 3.4, this is the case with our variety V. Therefore each S ∈ V

can be decomposed as S =
⋃
α∈Y Sα for an involution semilattice Y , where each Sα

is Archimedean. On the other hand, M1 6⊆ V by Example 3.5, so by Lemma 3.6(i) it
follows that V satisfies an identity of the form xy ≈ w for an involutory word w such
that |w| ≥ 3. Our discussion now splits into two cases.

Case 1: w is a plain semigroup word. By identifying all the variables involved, we
conclude that V satisfies x2

≈ x p+2 for some p ≥ 1, so each member S of V is periodic.
It is well known that any periodic Archimedean semigroup, including each Sα , is
actually a nil-extension of a completely simple semigroup (see, for example, [33]).
So Sα has a completely simple ideal Iα such that Sα/Iα is a nil-semigroup for all
α ∈ Y . As we are dealing with the combinatorial case, each Iα is a rectangular band.

Case 2: w contains the unary symbol ∗, that is, a ‘starred’ letter. Now Y is a
homomorphic image of S =

⋃
α∈Y Sα ∈ V, so Y must satisfy the identity xy ≈ w,

which in this case implies that the involution on Y is the identity mapping. Hence Sα =
Sα∗ = S∗α is an involution subsemigroup of S for all α ∈ Y . Further, by substituting
xx∗ for each variable occurring in xy ≈ w, we infer that (xx∗)2 ≈ (xx∗)p+2 for
some p ≥ 1, which implies that (xx∗)2p

≈ (xx∗)4p
= [(xx∗)2p

]
2. Therefore each
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Archimedean component Sα contains an idempotent, as for all a ∈ Sα , the element
(aa∗)2p belongs to Sα as well. By [29, Theorem 4.1], (the semigroup reduct of) Sα
is a nil-extension of a simple semigroup Iα . In addition, Iα is a ∗-ideal of Sα , and so
is an involution subsemigroup of S that contains an idempotent. Now if Iα fails to
be completely simple for some α ∈ Y , then by the well-known result of Andersen [1]
(see also [4, Theorem 2.54]) the semigroup reduct of Iα contains a copy of the bicyclic
semigroup as a subsemigroup. Recall that the bicyclic semigroup is the inverse monoid
presented by 〈b, c : cb = 1〉; hence all of its elements are of the form bmcn , where
m, n ≥ 0, as the multiplication in B works as follows:

bmcn
· bpcq

= bm−n+max(n,p)cq−p+max(n,p).

The semigroup B is known not to be residually finite (see [7, 21]), so by Lemma 3.12
it follows that the involution semigroup Iα ∈ V is not residually finite either, a
contradiction. We conclude that each Iα is completely simple, and thus a rectangular
band, just as in Case 1.

It remains to be seen that all nil-semigroups Sα/Iα are in fact null. Again, we
have two cases to consider. If α = α∗, then S∗α = Sα∗ = Sα , and Iα is a ∗-ideal of the
involution subsemigroup Sα of S. Hence Sα/Iα is a nil-semigroup with involution
belonging to V. Now M1 6⊆ V, so M1 does not belong to the variety generated by
Sα/Iα , and by Lemma 3.6(ii) the latter nil-semigroup is null. The other case occurs
when α∗ 6= α. Then P = Sα ∪ Sα∗ ∪ Sαα∗ is an involution subsemigroup of S, while
the equivalence δ on P whose only nonsingleton blocks are Iα , Iα∗ and Sαα∗ is a
congruence on P . The involution semigroup P/δ belongs to V and is of the form
I ∗0 (N ), where N ∼= Sα/Iα is a nil-semigroup. Since M0

1 6∈ V, Lemma 3.8 implies that
N must be null, as required. 2

LEMMA 4.2. In involution semigroups, each identity of the form

xy ≈ w(x, y),

where w is an involutory word such that |w| ≥ 3 and both variables x and y occur in
w, implies an identity of the form

xy ≈ u(x, y)v(x, y),

where both variables x and y occur in both u and v. Moreover, if w is a plain word,
then both u and v may be assumed to be plain words as well.

PROOF. For an involutory word w0 = w0(x, y), let δx (w0) denote the total number
of occurrences of the variable x in w0 (both as x and x∗), that is, δx (w0)=

|w0|x + |w0|x∗ . Also, if u1, u2 are involutory words, then w0[u1, u2] will stand for
the word obtained by substituting x→ u1, y→ u2 into w0. In cases where w0 omits
one of the variables x, y, we write only w0[u1] to indicate that the variable that occurs
in w0 has been substituted by u1.

Since |w| ≥ 3, either δx (w)≥ 2 or δy(w)≥ 2; without loss of generality, assume
that the first case occurs. Now write w= w1w2w3, where δy(w1)= δy(w3)= 0 and w2
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begins and ends with a letter from {y, y∗}. Then w2 = ηw′2 for some η ∈ {y, y∗},
where the involutory word w′2 is either empty or is of the form w′2 = w′′2η

′ for some
η′ ∈ {y, y∗}.

Consider first the case where both w1 and w′2w3 are nonempty; then, in particular,
w1 ∈ {x, x∗}+. Write w1 = ξw′1, where ξ ∈ {x, x∗}. We apply the substitution
x→ w1η, y→ w′2w3 to the identity xy ≈ w, yielding

w= (w1η)(w′2w3)≈ u · w′1[w1η]w2[w1η, w′2w3]w3[w1η, w′2w3],

where u ∈ {w1η, η
∗w∗1}. In any case, δx (u), δy(u) 6= 0, since both variables x and y

are by construction contained in w1η. On the other hand, by our assumptions
δx (w′1w2w3) > 0, so when

v= w′1[w1η]w2[w1η, w′2w3]w3[w1η, w′2w3],

δx (v), δy(v) 6= 0 as well. Hence we infer an identity of the form xy ≈ uv with the
desired properties.

If w1 is empty but w′2 is not, then δy(w2)≥ 2 and we may apply essentially the same
argument as above with the roles of x, y switched to obtain the same result. Therefore
it remains to consider the case where either w1w′2 or w′2w3 is empty. Then our
identity xy ≈ w is of one of the forms xy ≈ u0η, xy ≈ ηu0, where u0 ∈ {x, x∗}+ and
|u0| ≥ 2. However, in the involution semigroup setting, xy ≈ u0η implies that yx ≈
(x∗y∗)∗ ≈ η←−u0 , and thus xy ≈ ξv0, where ξ ∈ {x, x∗}+ and v0 =

←−u0 [y] ∈ {y, y∗}+.
So if u0 = u′0ξ

′ for some ξ ′ ∈ {x, x∗}, then u′0 is nonempty, and we deduce the
following chain of identities:

xy ≈ u0η = u′0(ξ
′η)≈ u′0ξ

′′v0[η],

where ξ ′′ ∈ {x, x∗}. Since u′0 is nonempty and |v0| ≥ 2, the identity

xy ≈ u′0ξ
′′v0[η]

has the form already discussed in the preceding cases. The same conclusion is reached
if one starts from an identity of the form xy ≈ ηu0.

Finally, if w contains no occurrences of the unary symbol ∗, then it is not difficult
to see that all words constructed in the proof above, including u and v, fail to contain
that symbol as well. Thus the proof of the lemma is complete. 2

LEMMA 4.3. V consists of involutory null extensions of normal bands.

PROOF. Since M1 6⊆ V, Lemma 3.6(i) shows that V satisfies an identity of the
form xy ≈ w, where |w| ≥ 3. Moreover, it is straightforward to see that we may
confine ourselves to the case where both x and y but no other variables occur
in w. By the previous lemma, the identity xy ≈ w implies an identity of the form
xy ≈ u(x, y)v(x, y), with both variables x and y occurring in both u and v.

Now let S ∈ V and let a, b ∈ S be arbitrary. We already know that S is a semilattice
of null extensions of rectangular bands, S =

⋃
α∈Y Sα , and so a ∈ Sα and b ∈ Sβ for

some α, β ∈ Y . If w is a plain word, then both u and v may be assumed to be plain
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words, whence
ab = u(a, b)v(a, b) ∈ S2

αβ .

On the other hand, assume that w contains an occurrence of a ‘starred’ letter. Then
Y must have an identical involution, implying that Sγ ∗ = Sγ holds for all γ ∈ Y .
Thus a∗ ∈ Sα and b∗ ∈ Sβ , which allows us to deduce the same conclusion as above:
ab = u(a, b)v(a, b) ∈ S2

αβ . So in any case, ab is an idempotent of S; in other words,

S2 is a band. By Lemma 3.11 we must have S2
∈NB∗, so S is an involutory null

extension of a normal band. 2

We finish this section by recording a fact that is already contained in [27]. In the rest
of the paper, we denote by B1 and C1 the varieties of all null extensions of rectangular
and normal bands, respectively.

LEMMA 4.4. Let S =
⋃
α∈Y Sα , where each Sα is a null extension of the rectangular

band S2
α , such that S2 is a normal band. If U is the semigroup variety generated by all

Sα where α ∈ Y , then S ∈ U ∨ SL.

PROOF. By [27, Lemma 5.3] we have C1 =B1 ∨ SL. So S ∈ C1, whence
Proposition 2.9 of the same paper (which is in fact due to Mel’nik [24]) implies that S is
a dense semilattice of the Sα (see the cited proposition for the definition of the dense
semilattice construction). Conversely, since B1 satisfies a nonhomotypical identity
(for example, x2

≈ x2 y2x2), the same proposition yields that if Sα ∈ U for all α ∈ Y
and S is a dense semilattice of the Sα , then S ∈ U ∨ SL. 2

The previous lemma implies that if we manage to prove, for each S ∈ V such that
S =

⋃
α∈Y Sα (with Sα as above), that the semigroup reduct of each Sα is an inflation

of the rectangular band S2
α , then we can complete the proof of Theorem 1.1. Indeed,

as O ∨ RB is the variety consisting precisely of all inflations of rectangular bands,
U⊆ O ∨ RB (where U is the semigroup variety from the previous lemma). Hence, the
semigroup reduct of S belongs to O ∨ RB ∨ SL= O ∨NB, so that S ∈ (O ∨NB)∗ =

O∗ ∨NB∗, as required.

5. Proof of Theorem 1.1, part 2

In this section our goal is to prove the following result.

PROPOSITION 5.1. Let S ∈ V such that S =
⋃
α∈Y Sα , where each Sα is a null

extension of the rectangular band S2
α . Then Sα is an inflation of S2

α for all α ∈ Y .

As we have just noted, once we prove this proposition, Theorem 1.1 will be proved
as well.

We approach the proposition above by contradiction: if Sα fails to be an inflation of
S2
α for some α ∈ Y , then S generates a variety that is not residually finite. Two cases

emerge: α∗ = α and α∗ 6= α.
First we resolve the latter possibility. We have that Sα ∪ Sα∗ ∪ Sαα∗ is an involution

subsemigroup of S, in which Sαα∗ is a ∗-ideal, and the corresponding Rees quotient
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is isomorphic to I ∗0 (Sα). Since Sα is not an inflation of S2
α , that is, Sα 6∈ O ∨ RB,

from the description of the subvariety lattice of B1 (see, for example, [27, Diagrams 1
and 2]), it follows that the variety generated by Sα contains either the variety P of all
null extensions of left zero bands, defined by xyz ≈ xy, or its dual variety Q. Since
S∂α ∼= Sα∗ , there is no loss of generality in assuming that the former case occurs.

LEMMA 5.2. For all P ∈ P, I ∗0 (P) belongs to the variety generated by I ∗0 (Sα).

PROOF. It suffices to use Proposition 3.2 to see that each identity holding in I ∗0 (Sα)
holds in I ∗0 (P) as well. This is clear for the identities of type (a). On the other hand,
for identities of type (b) it is enough to confine ourselves to plain semigroup identities
u≈ v. This identity is homotypical and holds in both Sα and Sα∗ , that is, in the smallest
self-dual semigroup variety containing Sα . However, the latter variety can only be
P ∨ Q=B1 (see [27, Diagram 2, p. 122]). Therefore u≈ v holds in both P and Q and
thus in both P and P∂ . This implies that u≈ v is satisfied in I ∗0 (P). 2

It is proved in [17] that P (denoted there by M2) is not residually finite by showing
an explicit example of a null extension A of a left zero band that is not residually finite.
By the previous lemma and Lemma 3.12, I ∗0 (A) belongs to the variety generated by
I ∗0 (Sα) (which is, in turn, contained in the variety generated by S), while I ∗0 (A) is not
residually finite.

Hence it remains to deal with the case α∗ = α, that is, when S has an involution
subsemigroup Sα that is an involutory null extension, but not an inflation, of the
rectangular band S2

α . In the process of resolving this situation, we will determine
the subvariety lattice of B∗1.

For w ∈ (X ∪ X∗)+, let h1(w) and t1(w) denote the first and the last letter in w,
respectively. Furthermore, when |w| ≥ 2, let h2(w) and t2(w) denote the second and
the second-last letter of w, respectively. Since B∗1 satisfies abxcd ≈ abcd , the identity

w≈ h1(w)h2(w)t2(w)t1(w)

holds in this variety for each involutory word w. The following observation makes
some further considerations easier.

LEMMA 5.3. Within B∗1, every involution semigroup identity u≈ v such that
|u|, |v| ≥ 2 is equivalent to the conjunction of two the identities

h1(u)h2(u)h1(u)≈ h1(v)h2(v)h1(v)

and
t1(u)t2(u)t1(u)≈ t1(v)t2(v)t1(v).

PROOF. As already noted, u≈ v is equivalent in B∗1 to

h1(u)h2(u)t2(u)t1(u)≈ h1(v)h2(v)t2(v)t1(v). (5.1)
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However, due to the involution axioms, by substituting for each variable its star and
then starring the whole identity, we deduce the reverse identity

t1(u)t2(u)h2(u)h1(u)≈ t1(v)t2(v)h2(v)h1(v). (5.2)

By multiplying (5.1) and (5.2) and using abxcd ≈ abcd , we obtain

h1(u)(h2(u))2h1(u)≈ h1(v)(h2(v))2h1(v)

and
t1(u)(t2(u))2t1(u)≈ t1(v)(t2(v))2t1(v).

The lemma now follows, since B∗1 satisfies ax2b ≈ (ax)b(xb)= a(xb)2 ≈ axb. 2

We are now in a position to characterize those involution semigroup identities that,
when they hold, are strong enough to impose the structure of an involutory inflation of
a rectangular band on members of B∗1.

LEMMA 5.4. Let X be a subvariety of B∗1. Then X⊆ (O ∨ RB)∗ if and only if X

satisfies an identity u≈ v such that either 1 ∈ {|u|, |v|} or, alternatively, |u|, |v| ≥ 2
and one of the following two cases holds:

(i) h1(u) 6= h1(v);
(ii) h1(u)= h1(v) and h2(u) 6= h2(v), with at least one of h2(u), h2(v) not

belonging to {h1(u), h1(u)∗}.

PROOF. The forward implication is immediate, as (O ∨ RB)∗ satisfies xyz ≈ xz,
which complies with (ii). So assume that X satisfies an identity u≈ v of one of the
forms specified, and let S ∈ X.

If, for example, |u| = 1, then the identity u≈ v implies that S = S2 is a rectangular
band. If |u|, |v| ≥ 2 and h1(u) 6= h1(v), then, bearing in mind the previous lemma, the
rectangular involution band S2 (which also satisfies u≈ v) must be trivial, so S is a
null semigroup. Therefore we may assume that u≈ v is of type (ii). Without loss of
generality, assume that h2(u) 6∈ {h1(u), h1(u)∗}. Recall that by the lemma above, S
satisfies

h1(u)h2(u)h1(u)≈ h1(v)h2(v)h1(v).

In view of the assumptions made, the latter identity is equivalent to one of the
following:

(1) xyx ≈ xzx ;
(2) xyx ≈ xy∗x ;
(3) xyx ≈ xx∗x ;
(4) xyx ≈ x3.

It is quite easy to verify that (3) implies (1) and (1) implies (4) within B∗1. Also,
(2) yields xyz∗x ≈ xzy∗x , which in turn implies (1) by Lemma 5.3. However, (4) is
equivalent in B∗1 to xyx ≈ x2, since x3

≈ x2 holds in B∗1. By [27, Lemma 3.3], S is
then an inflation of S2, as S satisfies (xy)2 ≈ xy. 2
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FIGURE 1. Subvarieties of B∗1.

PROPOSITION 5.5. The lattice of all subvarieties of B∗1 is as given in Figure 1, in
which A denotes the subvariety of B∗1 determined by the identity x2

≈ xx∗x.

PROOF. The structure of the subvariety lattice of (O ∨ RB)∗ = O∗ ∨ RB∗ follows
immediately from [5, Theorem 1.7.14]. Now assume that X is a proper subvariety
of B∗1 such that X 6⊆ (O ∨ RB)∗. Then X must not satisfy any of the identities
described in the previous lemma. On the other hand, X satisfies an identity u≈ v
that does not hold in B∗1. Lemmas 5.3 and 5.4 imply that we must have |u|, |v| ≥ 2,
h1(u)= h1(v) and h2(u) 6= h2(v) while h2(u), h2(v) ∈ {h1(u), h1(u)∗} (dually, we
also have t1(u)= t1(v) and t2(u) 6= t2(v) while t2(u), t2(v) ∈ {t1(u), t1(u)∗}). By
Lemma 5.3 and the fact that B∗1 satisfies x3

≈ x2, we conclude that u≈ v is equivalent
in B∗1 to x2

≈ xx∗x . Hence X=A. 2

The final piece of our argument is now as follows.

LEMMA 5.6. The variety A is not residually finite.

PROOF. We modify the example of a null extension A that is not residually finite
of a left zero band, given in [17, proof of Lemma 1]. This semigroup is defined
on the set {a, b, ci , di , x : i ∈ N} and, setting C = {ci : i ∈ N}, the subset L = A \ C
forms a left zero band, ci di = a, ci d j = b and ci t = x for all i, j ∈ N such that j 6= i ,
and t ∈ {a, b, ci , x : i ∈ N}. Now define Â, with the multiplication ◦, to be a null
extension of the rectangular involution band on L × L (that is, (u, v) ◦ (w, z)= (u, z)
and (u, v)∗ = (v, u) for all u, v, w, z ∈ L) by the null semigroup on C ∪ {0} such
that ci ◦ c j = (x, x), ci ◦ (y, z)= (ci y, z) and (y, z) ◦ ci = (y, ci z) for all i, j ∈ N
and y, z ∈ L . It remains to specify an involution on the set C , a function f : C→ C
such that f ( f (ci ))= ci holds for all i ∈ N; as we shall see, the way in which this is
done is immaterial.

We have Â ∈A since ξ ◦ ξ = ξ ◦ ξ∗ ◦ ξ obviously holds if ξ ∈ L × L , while if
ξ = ci for some i , then ci ◦ ci = (x, x)= ci ◦ c j ◦ ci , where c j = c∗i . On the other
hand, let ρ be a congruence of Â of finite index. Then there are m, n, p, q ∈ N such
that (dm, dn)ρ(dp, dq), where either m 6= p or n 6= q . For example, assume that the
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latter occurs. Then

(dm, a)= (dm, cndn)= (dm, dn) ◦ cnρ(dp, dq) ◦ cn = (dp, cndq)= (dp, b),

and since ρ agrees with the involution, (a, dm)ρ(b, dp) as well. Hence

(a, a)= (a, dm) ◦ (dm, a)ρ(b, dp) ◦ (dp, b)= (b, b),

that is, all congruences of finite index of Â have a nonidentical intersection. In
other words, there is no homomorphism of Â onto a finite involution semigroup that
separates (a, a) and (b, b), so Â is not residually finite. 2

Thus if α∗ = α and Sα is not an involutory inflation of the rectangular band S2
α , then

Sα generates a variety that contains A, whence the variety generated by S cannot be
residually finite. This completes the proofs of Proposition 5.1 and Theorem 1.1.

6. Discussion and open problems

By the main theorem of Golubov and Sapir [17], there are precisely three maximal
combinatorial varieties of residually finite semigroups. One is O ∨NB, the variety
consisting of all inflations of normal bands. For the other two, define P to be the
semigroup on {0, a, e} such that e2

= e and ea = a, all the other products being equal
to 0, and let L2, R2 be the two-element left zero and right zero bands, respectively.
The remaining varieties in question are the variety U generated by L2 × P , and its dual
variety U∂ , generated by R2 × P∂ . We see that in the involutory case the latter two
simply ‘disappear’. Roughly speaking, this is because these varieties are not self-dual,
so that they cannot be generated by a class of semigroup reducts of some involution
semigroup variety; on the other hand, the largest self-dual variety contained in both is
their intersection, which is equal to O ∨ SL.

In comparison to the exhaustive result of [17], here we imposed the restriction of
dealing with combinatorial involution semigroups only. First of all, this is because
currently we do not know the solution to the following problem.

PROBLEM 6.1. Describe the residually finite varieties of groups with involution. Are
they all periodic?

We draw the reader’s attention to the fact that a given group may admit various
involutions; more precisely, any involution on a group G is of the form g 7→ ψ(g−1)

for some ψ ∈ Aut(G) such that ψ2
= ιG . Hence an involution group (in the signature

{·, −1, ∗}) is in fact term-equivalent to a group with a distinguished automorphism of
order two. This circumstance implies that it is likely that most of the considerations
concerning varieties of involution groups lead to elementary but quite tedious number-
theoretic complications, such as in [10]. Nevertheless, it is worth asking whether
an analogue of Ol’shanskiı̆’s result holds in the presence of an additional unary
operation. The removal of nontrivial subgroups probably reveals the semigroup-
theoretical aspects of residually finite varieties in a more transparent way. It is very
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likely, however, that the following conjecture holds: a variety of involution semigroups
is residually finite if and only if it is of the form V ∨ X, where V⊆ (O ∨NB)∗ and
X is a residually finite variety of periodic groups with involution (since, technically
speaking, only periodic groups are semigroups).

Significant progress towards this result may be made along the lines of this
paper. Namely, it is evident from the proof of Lemma 4.1 that each residually
finite involution semigroup variety V must consist of involution semilattices of null
extensions of completely simple semigroups. The ‘missing ingredient’ is the argument
that the completely simple semigroups in question are in fact rectangular groups; this
conclusion is true in the plain semigroup case, as any completely simple semigroup
that is not a rectangular group fails to generate a residually finite variety; see [17]. This
explains the motivation for the following task, which is more general than Problem 6.1.

PROBLEM 6.2. Describe residually finite varieties generated either by a completely
simple semigroup with involution, or by I ∗0 (A) where A is completely simple.

If we overcame this obstacle, we would obtain a result parallel to Lemma 4.3,
that all members of V must be involutory null extensions of orthodox normal bands
of groups. Furthermore, we could conclude that each S ∈ V is a dense involution
semilattice of null extensions of rectangular groups S2

α , that is, S =
⋃
α∈Y Sα . Our aim

would be then to show that these null extensions must be inflations. At this point, it
would be useful to invoke [27, Corollary 2.2] which implies that any null extension
Q of a rectangular group T × G (where T is a rectangular band and G a group) is a
subdirect product of G and Q/H ∈B1. Then by our Proposition 5.1, Sα/H must be
an inflation of a rectangular band for all α ∈ Y , since otherwise it would follow that
a homomorphic image of an involution subsemigroup of S generates a variety that is
not residually finite, whence Sα is an inflation of (S2

α/H )× Gα for each maximal
subgroup Gα of Sα .

Here is where we encounter the second difficulty. The considerations just presented
suffice to conclude, by using Lemma 4.4, that if the maximal subgroups of S generate
a (periodic) group variety G, then the semigroup reduct of S belongs to (O ∨ RB ∨

G) ∨ SL= O ∨NB ∨ G, so that S ∈ O∗ ∨ (NB ∨ G)∗. But what can be said about G?
If α∗ = α then there is a maximal subgroup Gα of Sα such that G∗α = Gα , thus each
such involution subgroup must generate a residually finite variety, so we depend on
the solution of Problem 6.1. However, if α∗ 6= α, then we should analyze the property
of residual finiteness for a variety generated by an involution semigroup of the form
I ∗0 (Gα), which returns us to Problem 6.2. Is it true that these conditions are satisfied
if and only if each subgroup of the semigroup reduct of S generates a residually finite
group variety? If not, then the localization of S within O∗ ∨ (NB ∨ G)∗ might turn
out to be not precise enough. In such a case, we would need an ‘involutory version’
of Mel’nik’s dense semilattice theorem (that is, [27, Proposition 2.9]) to answer the
question: under what circumstances does a dense involution semilattice of semigroups
belong to W ∨ SL∗ for an arbitrary involution semigroup variety W?

We finish this paper with two remarks.
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REMARK 6.3. The subvariety lattice of O∗ ∨NB∗ can be easily computed from [5,
Theorem 1.7.14]: it has exactly 30 elements, comprising the 14 subvarieties of NB∗

(see [9]), Oid, Oid
∨ SLid, and the varieties of the form O∗ ∨ V, where V⊆NB∗.

REMARK 6.4. A variety V is residually less than λ if each subdirectly irreducible
member of V has cardinality less than λ. A variety V is residually small if
V is residually less than λ for some cardinal λ (in other words, the class of
isomorphism types of subdirectly irreducible algebras of V is a set). Residually
small varieties of semigroups were investigated by McKenzie [22, 23] and Sapir
and Shevrin [32]. In particular, it follows from their results that a combinatorial
semigroup variety is residually small if and only if it is residually finite. By a
careful inspection of this paper, one can see that the same holds for combinatorial
varieties of involution semigroups: it is possible to replace the words ‘residually finite’
by ‘residually small’ or ‘residually less than λ’ (for any infinite cardinal λ) in the
formulation of our Theorem 1.1. This observation relies upon the fact that each of
Examples 3.1, 3.4, 3.5, 3.7, 3.9 and 3.10 actually supplies instances of subdirectly
irreducible involution semigroups of arbitrarily large cardinality. Also, for each
cardinal λ, an analog of Lemma 3.12 will hold for a semigroup S that is residually less
than λ, provided that in its proof, F is selected such that |F |< λ. Finally, the proof
of Lemma 5.6 will work verbatim if we let the indices of ci , di range over λ instead
of N, so that the variety A is residually large (that is, not residually small). These
modifications, in conjunction with the other results here, yield a strengthened version
of Theorem 1.1.
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