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Abstract

An equation which has arisen in a study of the magnetic coupling through a small
rectangular aperture of dimension A x B in a thin shield wall is discussed. The
magnetic polarisability of such an aperture in a conducting wall of zero thickness is
known to be expressible as RfjA3, in which Ru is dimensionless and is a function
of the aspect ratio a = B/A. An asymptotic solution procedure of a certain
variational formulation of this problem is described in the limiting case of large
aspect ratio a. Explicit analytical formulae for the leading terms in the expansion
are given. These analytical results justify the purely numerical procedures used
previously to obtain approximate solutions of this formulation of the problem.

1. Introduction

This paper is concerned with a certain variational formulation that arose in a
study of the electromagnetic field penetration through small apertures in thin
metallic shield walls. An integro-differential equation for the "shape" function
p that minimises this variational statement is given, and an asymptotic solution
for the "shape" function and the polarisability coefficient RH is obtained for
large values of a.

Most work on this topic of small apertures in electromagnetics is based on the
work of [2] which showed that the field radiating into one region from another
via an aperture which is small compared with the wavelength of the exciting
field, is the same as that resulting from a combination of electric and magnetic
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[2] Magnetic coupling through thin shield walls 415

dipole sources, the former associated with the normal electric field at the aper-
ture location and the latter associated with the tangential magnetic field. The
relationship between the exciting field (electric or magnetic component) and the
resulting dipole moment is referred to as the polarisability (electric or magnetic)
of the aperture. More specifically, the dipole moments are calcuated from the
excitation fields which exist prior to opening the aperture (and which are there-
fore independent of the aperture size and shape) and the polarisabilities, which
are functions of the aperture size and shape but independent of the excitation.
In this way the problem is partitioned into excitation and aperture components.

It has been established [2,3] that each aperture polarisability has the dimen-
sions of (length)3. Accordingly, for a given shape, the polarisability can be ex-
pressed as a dimensionless function of the ratio of width to length (here referred
to as the polarisability coefficient) multiplied by the cube of a characteristic di-
mension. For example, the magnetic polarisability of a rectangular aperture of
dimension A x B is expressible as RHA3 in which RH is a dimensionless function
of the aspect ratio B/A.

In the particular case of the magnetic polarisability of a square aperture, it
is recognised in the literature (see, for example, [10]) that there is a spread of
approximately 4% in the values obtained by different authors for the magnetic
polarisability coefficient RH- Because these values have arisen as numerical
estimates from distinctly different methods of solution applied to completely
different formulations of the problem, it is not possible to compare results at any
intermediate stage of the various solution procedures.

The method adopted in [5], for example, is entirely numerical and based on
a finite element formulation. Associated with the mathematical statement of
the problem in such rectangular regions are the inherent difficulties faced by any
purely numerical procedure; in particular, the known singular behaviour of the
solution occurring in the vicinity of the corners of such regions.

The method adopted by [8,9] to calculate the magnetic polarisability of rect-
angular apertures uses a variational formulation and a numerical Ritz procedure
based on a sum of twelve TEno waveguide mode trial functions. The benefit of
using waveguide mode functions was that any wall thickness could be accom-
modated by that approach. However, there is considerable interest in numerical
values for the special case of zero, or negligibly small, wall thickness. For this
purpose, the more general variational formulation [8,9] for RH has been recast
into a more attractive form for this special case; see (2.1). This has been achieved
by replacing the truncated modal sum used in [8,9] by a general "shape" function
p that is to be chosen to minimise the relevant expression for the polarisability
coefficient RH for each value of the aspect ratio a.
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Physically, p is proportional to the electric field strength across the aper-
ture and because of the variational formulation, its absolute magnitude is irrel-
evant. Also in the derivation of (2.1), the aperture length A is normalised to
unity, so that the electric field p{a), which is dependent on the position a along
the aperture, exists only in the interval [-1/2,1/2]. From arguments based on
physical considerations, the "shape" function p is assumed to be symmetric on
the interval [-1/2,1/2], to vanish at ±1/2 and to be suitably differentiable on
(—1/2,1/2). With no loss of generality this shape function p can be normalised
so that /„* p{a) da = 1.

It is worth noting that for smooth regions, such as a circle and an ellipse, the
numerical techniques of [8,9] and [5] yield nearly identical results. Moreover,
these results are in excellent agreement with the known exact solution, see for
example [2] and [4].

In this paper the numerical results obtained by [8,9] using a variational for-
mulation for rectangular apertures in thin shield walls are shown analytically to
be correct to better than four figure accuracy in the limiting case of the aspect
ratio a large compared with unity.

2. The integro-differential equation

In [8,9], a Calculus of Variations procedure was used to obtain an expression
for the dimensionless polarisability coefficient RH with a sum of TEno mode
fields as the trial functions. The replacement of the approximating modal sum
by the "shape" function p in that work leads to the following expression for the
dimensionless polarisability coefficient RH-

* * •

The objective of the present project is to find an analytic solution of the
variational formulation (2.1). The two main reasons for desiring such an analytic
solution are:

• to confirm the numerical results obtained earlier;
• to provide a basis for the resolution of the discrepancies between the

values obtained by other workers using different formulations.

A linear change of both variables, followed by a further linear change of the
resulting inner integration variable and use of the result

, 2 ,
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where K\ is the modified Bessel function of the first kind of order one, and Ki\
is the first integral of Ko, the Bessel function of the third kind of order zero,
together with the assumed evenness of p yields the result

4 f°° (1 1 \ I"/"* . (2wa\ I"
/ I — •7r»/) l I / p(a) cos I I da dw

Ai V " J J (2.2)

where F(w) = w(K1(2w) - Kii(2w))f\ p(b)cos{2wb/a)db (see [6] for details
here and throughout this section).

Extensive use of the tables of [7] leads to the following three identities needed
in the subsequent simplification of (2.2) for the polarisability coefficient RH'-

f°° 2w{a^b)^, . _, n ( / O T & \
/ w c o s — v 'KA2w)dw= - I 1 H- I —=!=— I

Jo a 8 \ \ a J

/ w cos — Ki\ (2w) dw

7T

8

and

-i

- 2

/"* '/ w /"* / / ^ ^ /•oosin(2wa/a)sin(2w6/q) _,
/ p'(a) da / p'(b) db / —* •> ^-^ d u >

Further extensive use of the tables of [7] together with the above three idenities
and the assumed properties of the function p yields the following simplified form
for RH.

1 ri rh
— = / p'{a)da p'(b)g(a>b)db

o / P (°) da+ I p{p-) da j f{a, b)p(b) db,
™ 2 y_£ y_4 j_i

https://doi.org/10.1017/S0334270000006354 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006354


418 G. F . Fitz-Gerald and N. A. McDonald [5]

where the kernel functions / and g are defined by

- 1

and

Including the constraint imposed on p by virtue of the normalisation require-
ment with the use of a Lagrange multiplier A, and rearranging this last expression
for RH into a more symmetric form leads to the expression

JT= [ f \p(a)p(b)f(a,b)+p'(a)p'(b)g(a,b)
RH J-iJ-il ( 2 4 )

dadb.

Formal application of the standard argument of the Calculus of Variations (that
is, replacing p by p + erj with ry(±l/2) = 0 and demanding that the coefficient
of the term multiplying e vanishes) yields for stationarity of RJj1 the equation

f f [(p(a)r,(b) + p(b)V(a))f(a, b) + (p'(a)r,'(b) + p'(b)V'(a))g(a, b)
J-iJ-i (2.5)

^ v(a) + 2p(b)r,(b)) + X(p(a)r,(b) + p(b)r,(a))} da db = 0.

Performing one integration by parts to remove the terms involving 77' (but
avoiding the introduction of terms in p" because of the order of this function's
singular behaviour near to ±1/2) and using simple symmetry properties of the
introduced functions / and g yields as the requirement of stationarity of RJj1

the condition

/_ /_ (P(a)f(a>b)-P'(a)9b(a,b) - -Lp(6) +Ap(a)) do r,(b)db = 0.

(2.6)
The standard argument of the Calculus of Variations and use of the integral
constraint imposed on the "shape" function p then yields the result

rh 1
/ (p(a)f(a,b)-p'(a)gb(a,b))da jp(b)+2X = 0, V6e (-1/2,1/2). (2.7)

The value of the Lagrange multiplier A is obtained by formally integrating (2.7)
with respect to b from —1/2 to 1/2.
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Substitution of this value of A into the above equation and use of the def-
initions of / and g yields as the governing equation for the "shape" function
P

/ _ a2-

a a

(2.8)

where the value of M is given by

p{a) da.

(2.9)
The above equation (2.8) is a singular, Fredholm, integro-differential equation
of the second kind for the "shape" function p. The stationary value {R^1 )stat
of Rff1, as given by (2.4), can be simplified using the above integro-differential
equation (2.8) to yield

3. Asymptotic solution for large a

The limiting case a » 1 is now considered and the asymptotic solution
is sought using a standard regular perturbation expansion procedure. That
is, the "shape" function p is assumed to be expressible in the form p(a) =
p^(a) + a~lp(1)(a) + a~2p^2\a) + • • •, whilst each term of the above integro-
differential-equation (2.8) is expanded in a power series of inverse powers of a.
Upon equating like powers of a"1 that then appear on either side of (2.8), the
following sequence of problems for the first three terms p(°\ pW and p^ is
obtained:

/ * pW'(a)a/(a2 - b2) da = -M<°\ (3.1)
2

-f pW (a)a/{a2 -b2)da = 4- 2p{-°\b) - M^\ (3.2)
J-i

and

/ pW{a)a/(a2 -b2) da =-2p™ (b) + 1/2 / p^ {a) da - M^2\ (3.3)
J-i J-i
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where the constants Nf(°\ M^ and M^ are defined by

(7)

(3.4)

(3.5)

and

= I pw{a)l (± - aA da + 1/2 f ^ /><°)(a) da. (3.6)

The integral constraint condition arising from the normalising of the "shape"
function p further requires that /_ , p^{a) da = 2, and /_ , p^(a) da = 0, for
n = 1,2. Clearly, similar equations to equations (3.1) to (3.6) can be obtained
for all of the higher order terms.

In terms of the values Nf(°\ M^ and M^2\ the leading terms that represent
the stationary value of RJj1 (also expanded in inverse powers of a) are given by

M(o)

_
) 9 t a t - M ( o )

M<2> 1
M(°) a2 (3.7)

Equivalently, to the same order in powers of a *, the expression for (RH ) s t a t is
given by

2
not •n

(3.8)
Application of an inversion formula of [11] (see also [6]) to first solve for
^'(b), for b > 0) and then use of standard integration techniques to determine

shows that (3.1) has as its solution

M(°)
7T

where fc is an arbitrary constant and d is the constant of integration. The
solution for p^(b) on the symmetric interval [—|, | ] is then obtained by simply
extending the result obtained on the interval [0, ^] as an even function.

The values of k and d are determined by the conditions p(°'(l/2) — 0 and
/o P^°Hb)db = 1. The value of M(o) is then obtained using (3.4). In practice,
particularly in the determination of the higher order terms, it proves more con-
venient to determine the value of each M^ by invoking the symmetry condition
p(n) (0) = 0, rather than using the equations that define M^ directly.
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By either approach, it can easily be shown that k = —2M^/n and d = 0, so
that

p(°) (a) = - f pw {b) db = M(o> \ / l /4 - a2/7r, (3.10)

1 = / ^°)(a)do = M(o)/16. (3.11)
•'0

r^/Tr, (3.i2)

where

Thus, the zeroth order solution is given by

and the zeroth order approximation to the stationary value of RH by

(/40))stat = W 1 6 - (3-13)

Following the same procedure outlined above with the higher order terms
yields the results (see [6] for details):

1. For the first approximation

32 /•* / I ~ . h-b ,. 32 / T

with
Af (!) = 4 _ 128/(3TT2).

The first order approximation to the stationary value of RH is

2. For the second approximation

_ _ 64
7T5

64

(3.14)

(3.15)

(3.16)

3 2
(3.17)

where

with

/i(o,0= /
Jo

(3.18)
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TABLE 1. Approximations to

a

10.0
7.5
5.0
2.5
1.0

Numerical

2.0168
1.5259
1.0351
0.5444
0.2496

RH

2.0165
1.5257
1.0348
0.5439
0.2494

RH

2.0168
1.5260
1.0353
0.5448
0.2517

The second order approximation to the stationary value of RH is

The function f appearing in the above equation is the Riemann f-function and the
coefficient of the term I /a in the above expression for (RH )stat is approximately
0.002256 to four significant figures.

4. Discussion of results

In this paper, the large-a approximation for the polarisability coefficient
to the variational formulation of [8,9] has been obtained. The values of R^' and
R^2\ as given by (3.16) and (3.19) respectively, are given in Table 1 together
with the values calculated by [8,9] using a numerical Ritz procedure based on a
variational modal technique for selected values of a.

Agreement between the numerical and RH' values is excellent for large values
of a. For smaller values of a, it appears that RH' provides a better representa-
tion. In fact this linear dependence of RH on a appears to reasonably represent
the numerically obtained values for even quite small values of a. The reason
why this should be the case is currently under investigation, as is an attempt to
determine the correct asymptotic representation of RH in the limiting case of a
tending to zero.

The results summarised in Table 1 establish analytically that for rectangular
apertures in thin shield walls the numerically generated results obtained previ-
ously for the variational formulation of [8,9] are correct to better than four figure
accuracy in the limiting case of the aspect ratio a large compared with unity.
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