
Glasgow Math. J. 49 (2007) 257–268. C© 2007 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089507003539. Printed in the United Kingdom

LINEAR FRACTIONAL RELATIONS IN BANACH SPACES:
INTERIOR POINTS IN THE DOMAIN AND ANALOGUES OF

THE LIOUVILLE THEOREM

M. I. OSTROVSKII∗

Department of Mathematics and Computer Science, St. John’s University, 8000 Utopia Parkway,
Queens, NY 11439, USA

e-mail: ostrovsm@stjohns.edu

(Received 9 June, 2006; revised 6 December, 2006; accepted 9 January, 2007)

Abstract. In this paper we study linear fractional relations defined in the
following way. Let Bi, B′

i, i = 1, 2, be Banach spaces. We denote the space of bounded
linear operators by L. Let T ∈ L(B1 ⊕ B2,B′

1 ⊕ B′
2). To each such operator there

corresponds a 2 × 2 operator matrix of the form

T =
(

T11 T12

T21 T22

)
, (∗)

where Tij ∈ L(Bj,B′
i), i, j = 1, 2. For each such T we define a set-valued map GT from

L(B1,B2) into the set of closed affine subspaces of L(B′
1,B′

2) by

GT (K) = {K ′ ∈ L(B′
1,B′

2) : T21 + T22K = K ′(T11 + T12K)}.
The map GT is called a linear fractional relation.
The paper is devoted to the following two problems.
• Characterization of operator matrices of the form (*) for which the set GT (K)

is non-empty for each K in some open ball of the space L(B1,B2).
• Characterizations of quadruples (B1,B2,B′

1,B′
2) of Banach spaces such that

linear fractional relations defined for such spaces satisfy the natural analogue
of the Liouville theorem “a bounded entire function is constant”.

2000 Mathematics Subject Classification. 47A56, 46B20, 47B50.

1. Introduction. Consider a bounded linear operator T between Banach spaces
B, B′ which can be decomposed into direct sums B = B1 ⊕ B2, B′ = B′

1 ⊕ B′
2. Such a

linear operator can be represented by a 2 × 2 operator matrix of the form

T =
(

T11 T12

T21 T22

)
,

where Tij ∈ L(Bj,B′
i), (i, j = 1, 2). (By L(Bj,B′

i) we denote the space of bounded linear
operators acting from Bj to B′

i (i, j = 1, 2).) The map GT from L(B1,B2) into the set of
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258 M. I. OSTROVSKII

closed affine subspaces of L(B′
1,B′

2), defined by

GT (X) = {Y ∈ L(B′
1,B′

2) : T21 + T22X = Y (T11 + T12X)}
is called a linear fractional relation (LFR) associated with T . The set of all X ∈ L(B1,B2)
satisfying GT (X) �= ∅ is called the domain of GT and is denoted by domGT .

Such relations can be considered as a generalization of linear fractional
transformations which are defined in the case when the ‘denominator’ (T11 + T12X) is
invertible, by the formula

HT (X) = (T21 + T22X)(T11 + T12X)−1.

It is clear by comparing the defining formulas, that for invertible (T11 + T12X) the
operator HT (X) is the only element of GT (X), and the mappings can be identified.

M. G. Krein [12] found applications of operator linear fractional transformations
to the theory of spaces with an indefinite metric. The theory of linear fractional
transformations was developed further in [13]. Now linear fractional transformations
are used in many different contexts (see references in the introduction of [8]). In some
situations the requirement of invertibility of the operator (T11 + T12X) (needed to
define a linear fractional transformation) does not come from the nature of the problem
and narrows the applicability of the results obtained. For this reason it is natural to
develop a (more general) theory of linear fractional relations, and to prove some of
the known results in more general form. Some steps in this direction have already been
done. (See [7], [8], [9], and references therein.) Another direction of generalization of
the classical results is to consider the Banach space case (see [1, pp. 448–449], [3], [4],
[9], [10], [11], and references therein). In this paper we combine these directions.

The paper [8] contains, in the Hilbert space case, a characterization of operators T
for which the domain of GT contains interior points. The main purpose of the present
paper is to generalize these results of [8] to the Banach space case. We use the Banach
space theory terminology and notation from [14]. For a Banach space X we denote
by BX (r) the set {x ∈ X : ||x|| ≤ r}; the unit ball (corresponding to r = 1) is denoted
by BX . If X is not specified, we mean the space L(B1,B2). We say that a continuous
linear operator acting between two Banach spaces is left Fredholm if its kernel is finite
dimensional and its image is closed.

DEFINITION 1. A linear fractional relation GT is called constant if domGT =
L(B1,B2) and there exists W ∈ L(B′

1,B′
2) such that W ∈ GT (X), for each X ∈

L(B1,B2).

Constant LFR can be characterized in terms of the corresponding operator.

PROPOSITION 1 [9, Proposition 1]. For a matrix T the following conditions are
equivalent:

(i) GT is constant.
(ii) There exists an operator W in L(B′

1,B′
2) such that

T =
(

T11 T12

WT11 WT12

)
. (1)

The main result of [8] characterizes, in the Hilbert space case, operators T for
which 0 is an interior point in the domain of GT ; (the case of other interior points can
be reduced to this using ‘change of coordinates’; see [8, Remark 3.8]).
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THEOREM 1 [8, Theorem 3.2]. If B1,B2,B′
1,B′

2 are Hilbert spaces, then an LFR
GT is defined on some ball B(r), where r > 0, if and only if at least one of the following
conditions is satisfied.

(a) GT is constant.
(b) The operator T11 is bounded below.
(c) The operator T11 is left Fredholm and T(B) ∩ B′

2 = {0}.
We prove (Theorem 2(1)) that for separable Banach spaces the conditions of

Theorem 1 are still necessary. They become sufficient either when GT is constant, or
when the image of T11 is complemented (Theorem 2(2)). On the other hand, there exist
Banach spacesB = B1 ⊕ B2,B′ = B′

1 ⊕ B′
2 and operators T11, T12, T21, such that (i) T11

is bounded below, (ii) there exists T22 such that the obtained LFR GT is non-constant
and domGT = L(B1,B2) (iii) changing T22 we get an LFR whose domain does not
contain any B(r) with r > 0 (Theorem 2(3)). This example shows that, in the Banach
space case, the condition (b) is not sufficient, and that the complementability of the
image of T11 is not necessary, even in the non-constant case.

The second purpose of this paper is to continue the study (initiated in [9]) of
the problem: to what extent do linear fractional relations share the property of
entire functions described by the Liouville’s theorem: “a bounded entire function
is constant”? Bounded linear fractional relations are defined in the following way.

DEFINITION 2. A linear fractional relation GT is called bounded if

sup
X∈dom(GT )

inf
Y∈GT (X)

||Y || < ∞.

It was discovered in [9] that the existence of bounded everywhere defined non-
constant linear fractional relations depends on the geometry of the Banach spaces
B1,B2, B′

1,B′
2. In this connection we introduce the following terminology.

DEFINITION 3. A quadruple (B1,B2,B′
1,B′

2) is called a Liouville quadruple if for
each T : B1 ⊕ B2 → B′

1 ⊕ B′
2 such that domGT = L(B1,B2) and GT is bounded, the

relation GT is constant.

In Theorem 3 we find a class of non-Liouville quadruples, generalizing [9, Theo-
rem 2].

All examples of Liouville quadruples found in [9] are such that the canonical image
of B′

2 in its second dual is complemented. In Theorem 4 we show that if B1, B2, and
B′

1 are Hilbert spaces, then (B1,B2,B′
1,B′

2) is a Liouville quadruple for an arbitrary
Banach space B′

2.

2. Interior points in the domain of an LFR between Banach spaces. Our
generalization of Theorem 1 to the Banach space case is as follows.

THEOREM 2.
(1) If the spaces B1 and B2 are separable and B(r) ⊂ domGT for some r > 0, then at

least one of the following conditions is satisfied:
(a) GT is constant.
(b) T11 is bounded below.
(c) T11 is left Fredholm and T(B) ∩ B′

2 = {0}.
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(2) If imT11 ⊂ B′
1 is complemented, then each of the conditions (b) and (c) implies

that domGT contains B(r) for some r > 0.
(3) Let X and U be Banach spaces such that there exists an isomorphic embedding

A : X → U with an uncomplemented image. Let B1 = B2 = X , B′
1 = U , B′

2 =
U ⊕ X . Let T11 = A, T21 = A ⊕ 0, T12 = 0. Then, for some choices of T22 �= 0 the
linear fractional relation GT is non-constant and domGT = L(B1,B2), whereas 0
is not an interior point of domGT for some other choices of T22.

Proof. Part (1). Suppose that T is such that B(r) ⊂ domGT for some r > 0 and GT

is non-constant.

PROPOSITION 2. Let B1 be a separable Banach space. If an operator S : B1 → B′
1 is

not left Fredholm, then there exists a closed subspace L of infinite codimension in B1,
such that S(L) is dense in S(B1).

Proof. SinceB1 is separable, then there exists a fundamental minimal system {xi}∞i=1
in the space cl(S(B1)); (see [14, p. 43]). The construction of [14, Proposition 1.f.3] shows
that we may assume that xi ∈ S(B1). Let yi ∈ B1 be such that Syi = xi. We may and
shall assume that

∞∑
i=1

||yi|| <
1
4
. (2)

(If the condition (2) is not satisfied for the originally selected sequence {yi}∞i=1, we
multiply xi and yi by suitable constants.) We need the following version of the well-
known (see e.g. [14, Proposition 1.a.9]) perturbation result. �

LEMMA 1. There exists a sequence {δi}∞i=1, δi > 0, such that, if ui ∈ S(B1) satisfy
||ui − xi|| < δi, then {ui}∞i=1 is also fundamental in cl(S(B1)).

Proof. Let {x∗
i }∞i=1 ⊂ (cl(S(B1)))∗ be such that ({xi}∞i=1, {x∗

i }∞i=1) is a biorthogonal
system. Let δi > 0 be such that

∑∞
i=1 δi||x∗

i || < 1, and let ui be such that ||ui − xi|| < δi.
Consider the operator T : cl(S(B1)) → cl(S(B1)) given by

Tx = x +
∞∑

i=1

x∗
i (x)(ui − xi).

Observe that
(1) Txi = ui.
(2) ||T − Icl(S(B1))|| < 1.
The condition (2) implies that T is invertible. Hence {ui}∞i=1 is the image of a

fundamental system under an invertible operator, therefore {ui}∞i=1 is fundamental. �

Recall that a sequence {zi}∞i=1 in a Banach space is called basic if for each vector z
in the closure of the linear span of {zi}∞i=1 there is a unique sequence of scalars {ai}∞i=1
so that z = ∑∞

i=1 aizi. We refer to [14, Chapter 1] for information on this notion.

LEMMA 2. There exists a normalized basic sequence {zi}∞i=1 ⊂ B1 with basic constant
2, such that ||Sz2i|| < δi.

Proof. Since S is not left Fredholm, then for each subspace C of finite codimension
inB1 and for each δ > 0, there exists v ∈ C such that ||v|| = 1 and ||Sv|| < δ. We get the
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result by combining this observation with the well-known approach to the construction
of basic sequences [14, pp. 4–5]. �

We continue the proof of Proposition 2. We show that the subspace L =
cl(lin({z2i + yi}∞i=1)) ⊂ B1 satisfies all the conditions of Proposition 2.

1. Infinite codimension. Indeed, the condition (2) combined with the well-known
result on stability of basic sequences [14, Proposition 1.a.9(i)] implies that the
sequence

z1, z2 + y1, z3, z4 + y2, . . . , z2i−1, z2i + yi, . . .

is a basic sequence in B1. Hence, its even terms span a subspace of infinite
codimension in B1.

2. Density of S(L). Indeed, S(L) contains the vectors ui = S(z2i + yi) = S(z2i) + xi.
The choice of vectors z2i (see Lemma 2) implies that the ui satisfy the condition
of Lemma 1. By Lemma 1 the system {ui}∞i=1 is fundamental in cl(S(B1)). Hence
S(L) is dense in S(B1). �

REMARK. A Hilbert space analogue of Proposition 2 was proved in [8] using results
on quasi-complements from [5], [6], and [17]. Since the proof in [8] uses duality, the
approach of [8] does not seem to be suitable for the non-reflexive case. This is why we
use the double-perturbation approach of the paper [15] instead.

We continue our proof of Theorem 2. Assume that T11 is not left Fredholm. By
Proposition 2 there exists a subspace L ⊂ B1 of infinite codimension such that T11(L)
is dense in T11(B1). We introduce K ∈ L(B1,B2) as an operator satisfying the following
conditions:

(I) K|L = 0,
(II) K maps B1 onto a dense subspace of B2.

To construct such an operator we observe that the quotient space B1/L is infinite
dimensional, hence (see [14, p. 43]) there are sequences {xi}∞i=1 ⊂ (B1/L) and {x∗

i }∞i=1 ⊂
(B1/L)∗ such that x∗

i (xj) = δi,j (Kronecker delta). Let {bi}∞i=1 be a dense sequence in B2

(we use the separability of B2). We introduce an operator D : B1/L → B2 by

D(x) =
∞∑

i=1

x∗
i (x)

2i||x∗
i ||||bi||bi.

Observe that D(xi) is a scalar multiple of bi. Hence imD is dense in B2. Let
Q : B1 → B1/L be a quotient mapping. Then K = DQ satisfies the conditions (I) and
(II).

Fix t ≤ r/||K||. We have assumed that B(r) ⊂ domGT . Hence there exists Wt

satisfying

T21 + T22tK = Wt(T11 + T12tK), (3)

and W0 such that

T21 = W0T11.

From (3) and (I) we get

T21x = WtT11x, ∀x ∈ L.
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Since T11(L) is dense in T11(B1), we conclude that

Wtx = W0x, ∀x ∈ T11(B1).

Hence
T21 = WtT11. (4)

Subtracting (4) from (3) we get

T22tK = WtT12tK.

Since the image of K is dense in B2, we get

T22x = WtT12x, ∀x ∈ B2.

We get a contradiction with the assumption that GT is non-constant. This contradiction
implies that T11 is left Fredholm.

To finish the proof of Part (1) it remains to show that if T11 is not bounded below,
then T(B) ∩ B′

2 = 0. The argument of this part of the proof is the same as in the Hilbert
space case. (See the end of the proof of Theorem 3.2 in [8].) We reproduce it for the
convenience of the reader.

Suppose that T(x ⊕ y) ∈ B′
2. This means that T11x + T12y = 0. We need to show

that this implies that T21x + T22y = 0.
The operator T11 is left Fredholm and is not bounded below. Therefore

ker T11 �= {0}. Hence we can choose z ∈ ker T11 in such a way that r||z + x|| ≥ ||y||.
Then there exists K ∈ B(r) satisfying K(z + x) = y. Hence z + x ∈ ker(T11 + T12K).

The LFR GT is defined on B(r). Hence there exist W satisfying

T21 + T22K = W (T11 + T12K) (5)

and W0 satisfying

T21 = W0T11. (6)

From (5) we get that z + x ∈ ker(T21 + T22K). It follows from (6) that z ∈ ker T21.
Hence

0 = (T21 + T22K)(z + x) = T21z + T21x + T22K(z + x) = T21x + T22y,

and we are done.
PART (2). Case (b). Suppose that T11 is bounded below and its image is

complemented. We show that in such a case domGT ⊃ B(r) for some r > 0.
Let P : B′

1 → imT11 be a projection. The operator

W0 = T21(T11|imT11 )−1P ∈ L(B′
1,B′

2)

satisfies W0T11 = T21 and hence W0 ∈ GT (0). It is now clear that it is enough to verify
that im(T11 + T12K) is complemented if ||K|| is small enough.

To see this we observe that im(T11 + T12K) is the image of im(T11)
under the operator (T11 + T12K)(T11|imT11 )−1P and, hence, under the operator
I + T12K(T11|imT11 )−1P. If the operator K has sufficiently small norm, then
||T12K(T11|imT11 )−1P|| < 1, and, by the well-known observation, the operator I +
T12K(T11|imT11 )−1P is an automorphism ofB′

1. Hence it maps complemented subspaces
onto complemented subspaces.
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Case (c). Suppose now that T11 is a left Fredholm operator with a non-trivial finite
dimensional kernel F . First we prove that im(T11 + T12K) is complemented if ||K|| is
small enough.

Let C be a complement of F in B1. Then T11|C is bounded below. Repeating the
argument used in the case (b) we get that (T11 + T12K)(C) is a complemented subspace
of B′

1, if ||K|| is small enough. Observe that

(T11 + T12K)(B1) = lin((T11 + T12K)(C) ∪ T12K(F)).

Hence (T11 + T12K)(B1) is complemented as a sum of a complemented subspace and
a finite-dimensional subspace.

It is also known (see [14, p. 78]) that (T11 + T12K) is left Fredholm when ||K||
is small enough. It remains to show that the complementability of the image of
(T11 + T12K) and the left-Fredholmness of (T11 + T12K) for K ∈ B(r) together with the
condition T(B) ∩ B′

2 = {0} imply that B(r) ⊂ domGT . The condition T(B) ∩ B′
2 = {0}

implies that x ∈ ker(T11 + T12K) (or T(x ⊕ Kx) ∈ B′
2) implies T(x ⊕ Kx) = 0. This

means that (T21 + T22K)x = 0. We get ker(T21 + T22K) ⊃ ker(T11 + T12K).
Let FK be the kernel of T11 + T12K . Let CK be a complement of FK in B1. Then

(T11 + T12K)|CK is invertible. Denote by P a continuous linear projection onto im(T11 +
T12K). Let

W = (T21 + T22K)((T11 + T12K)|CK )−1P.

The identity

W (T11 + T12K)x = (T21 + T22K)x

can be easily verified for x ∈ CK . The condition ker(T21 + T22K) ⊃ ker(T11 + T12K)
implies that it is satisfied, also, for x ∈ FK . Hence

W (T11 + T12K) = (T21 + T22K),

and B(r) ⊂ domGT .
PART (3). Let T22 : B2 → B′

2 be any non-zero operator that can be factored through
�∞ (any other injective space can be used for this example), that is, there exist F :
B2 → �∞ and G : �∞ → B′

2 such that GF = T22. We claim that with this choice of
T22 the LFR GT is defined everywhere. Since T21 = IB′

1→B′
2
T11, where IB′

1→B′
2

is the
natural embedding of U into U ⊕ X , and T12 = 0, it is enough to establish, that, for
an arbitrary X : B1 → B2, the operator T22X is equal to ZT11 for some Z ∈ L(B′

1,B′
2).

Observe that the existence of such Z is equivalent to the possibility of extension of
the operator T22XA−1 from AX (its natural domain) to U . This possibility follows
from the requirement that T22 = GF . Indeed, it implies T22XA−1 = GFXA−1. By the
injectivity of �∞ the operator FXA−1 can be extended to an arbitrary Banach space
containing AX as a subspace. Since T12 = 0 and T22 �= 0, then, by Proposition 1, GT

is non-constant.
Now let T22 = 0 ⊕ IX . To finish the proof of the theorem it suffices to prove

that the operators X = εIX , ε �= 0, are not in domGT . That is, we need to prove
that there is no Y ∈ L(B′

1,B′
2) satisfying YT11 = T21 + T22εIX for ε �= 0. Indeed, the

subspace (T21 + T22εIX )(X ) ⊂ B′
2 is complemented, whereas the subspace T11(X ) ⊂

B′
1 = U is uncomplemented, and a bounded linear operator cannot map isomorphically

an uncomplemented subspace onto a complemented one. In more detail: since both
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T11 and T21 + T22εIX are isomorphic embeddings, then the restriction to T11(X ) of
a continuous linear operator Y satisfying YT11 = T21 + T22εIX should be a bijection
between T11(X ) and (T21 + T22εIX )(X ). Also its inverse, let us denote it by (Y |T11(X ))−1,
should also be continuous. Denote by P : B′

2 → (T21 + T22εIX )(X ) a continuous linear
projection onto (T21 + T22εIX )(X ). It is easy to check that (Y |T11(X ))−1PY : U → U
is a continuous linear projection onto T11(X ). The existence of such a projection
contradicts our assumption. �

3. More non-Liouville quadruples. Our next purpose is to describe a class of
non-Liouville quadruples. The result obtained is a strengthening of [9, Theorem 2].

THEOREM 3. Let X be a Banach space with the bounded approximation property and
such that its canonical image in X ∗∗ is uncomplemented.

Let U be a Banach space satisfying the condition: there is an isomorphic embedding
A : X → U such that

(a) there is a bounded net Bα : U → A(X ) of finite rank operators such that the
restrictions {Bα|A(X )}α converge to IA(X ) in the strong topology,

(b) A(X ) is uncomplemented in U .
Let Y be such that each linear continuous operator X : X → Y is compact, and there

exists a linear continuous operator D : Y → X with dense range.
Let B1 = X , B2 = Y ⊕ A2, B′

1 = X ⊕ U ⊕ A′
1, B′

2 = X ⊕ X ⊕ A′
2, where

A2,A′
1,A′

2 are arbitrary Banach spaces.
Then (B1,B2,B′

1,B′
2) is a non-Liouville quadruple.

REMARK 1. A space U satisfying the conditions (a) and (b) of Theorem 3 exists
for each X satisfying the conditions above, one of such spaces is X ∗∗, with A being
the canonical embedding of X into X ∗∗ and Bα being the second conjugates of the
operators strongly approximating the identity on X .

REMARK 2. Many pairs (X ,Y) of Banach spaces satisfying this condition are
known, starting with the well-known result of H. R. Pitt [16] that shows X = c0 and
Y = �p (1 ≤ p < ∞) satisfy the condition. See, also [14, p. 76].

Proof. Let

T11(x) = (x, 0, 0),

T21(x) = (x, 0, 0),

T12(y, a) = (Dy, ADy, 0),

T22(y, a) = (Dy, Dy, 0).

Let GT be the corresponding LFR. It is enough to prove the following result.

LEMMA 3. GT is a non-constant, everywhere defined, bounded LFR.

Proof. To show that GT is non-constant, assume the contrary. By Proposition 1
this assumption implies that there exists W : B′

1 → B′
2 such that T21 = WT11 and

T22 = WT12. From the definitions of Tij we immediately get:

W (x, 0, 0) = (x, 0, 0) (∀x ∈ X ). (7)

W (Dy, ADy, 0) = (Dy, Dy, 0) (∀y ∈ Y). (8)
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Since the image of D is dense in X , the condition (8) implies that

W (x, Ax, 0) = (x, x, 0) (∀x ∈ X ).

Subtracting the equation (7), we get

W (0, Ax, 0) = (0, x, 0) (∀x ∈ X ).

Let P : B′
2 → X be defined by P(x, y, a) = y, and let IU,B′

1
: U → B′

1 be the natural
embedding operator. Then the composition APWIU,B′

1
, acting along the sequence

U → B′
1 → B′

2 → X → U , is a projection onto A(X ). The existence of this projection
contradicts the assumption that A(X ) is uncomplemented. Hence GT is non-constant.

To show that GT is bounded and domGT = L(B1,B2), we consider an arbitrary
X ∈ L(B1,B2). Let X(x) = (X1(x), X2(x)), where X1 : X → Y and X2 : X → A2. Then

(T11 + T12X)(x) = (x + DX1(x), ADX1(x), 0),

(T21 + T22X)(x) = (x + DX1(x), DX1(x), 0).

We need to show that for each X there is an operator YX : B′
1 → B′

2 satisfying

YX (x + DX1(x), ADX1(x), 0) = (x + DX1(x), DX1(x), 0),

and such that there exists an estimate of ||YX || from above that does not depend on X .
We are going to find YX in the form,

YX (x, u, a) = (x, ZX (x, u), 0),

and so, we need to find ZX with norm bounded by a constant depending only on A
and {Bα}, and such that

ZX (x + DX1(x), ADX1(x)) = DX1(x). (9)

By one of the conditions of Theorem 3, the operator X1 is compact. Hence, for
each ε > 0, there exists α such that ||(IU − Bα)ADX1|| < ε. From here we conclude
that there exists an absolute constant C < ∞, such that for each X1 we can choose α

in such a way, that there exists E = EX1,α : X → X satisfying

E(IX + (IX − A−1BαA)DX1) = (IX − A−1BαA)DX1

and ||E|| ≤ C.
We let

ZX (x, u) = E(x − A−1Bαu) + A−1Bαu.

It is clear that ||ZX || is bounded from above by a constant which depends only on
||A−1|| and supα ||Bα||. It remains to verify that (9) is satisfied. The verification is
straightforward. �

4. More Liouville quadruples. Positive Liouville-type results for LFR in [9] (see
[9, Theorem 1]) use the condition “B′

2 is complemented in its second dual space”. Our
next purpose is to prove a positive Liouville-type result of a somewhat different nature.

https://doi.org/10.1017/S0017089507003539 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003539


266 M. I. OSTROVSKII

THEOREM 4. Let B1 = B′
1 = B2 = �2 and B′

2 be an arbitrary Banach space. Then
(B1,B2,B′

1,B′
2) is a Liouville quadruple.

Proof. Let T be such that GT is everywhere defined and bounded. We need to
show that GT is constant. By Proposition 1, in order to do this, we need to find
W : B′

1 → B′
2 satisfying WT11 = T21 and WT12 = T22. For each subspace L of infinite

codimension inB1 and each M ∈ � there exists an operator X = XL,M : B1 → B2, such
that X |L = 0 and the unit balls satisfy X(BB1 ) ⊃ MBB2 . Let Y = YL,M ∈ GT (XL,M)
with supL,M ||YL,M|| = C < ∞. (Such YL,M exist because we assume that GT is
bounded.) �

By Theorem 2, if GT is defined everywhere, then either GT is constant, or T11

is left Fredholm. Therefore, to prove Theorem 4 it suffices to consider the case in
which T11 is left Fredholm. We introduce the subspaces K1,L = T11(L) ⊂ B′

1 and K2 =
cl(T12(B2)) ⊂ B′

1.

LEMMA 4. Let KL = cl(K1,L + K2). The restrictions {YL,M|KL}∞M=1 converge in the
strong operator topology as M → ∞ and the limit YL : KL → B′

2 of this sequence satisfies
(1) YLT11(x) = T21(x) (∀x ∈ L),
(2) YLT12(x) = T22(x) (∀x ∈ B2).

Proof. Since

YL,M(T11 + T12XL,M) = T21 + T22XL,M

and XL,M|L = 0, we have that

YL,MT11(x) = T21(x) ∀x ∈ L ∀M ∈ �. (10)

Let z ∈ B2 be of norm 1. Then there is x ∈ BB1 such that XL,Mx = M′z, for some
M′ ≥ M. From

YL,M(T11 + T12XL,M)x = (T21 + T22XL,M)x

we get

||YL,MT12M′z − T22M′z|| ≤ C||T11|| + ||T21||. (11)

Hence

lim
M→∞

||YL,MT12z − T22z|| = 0.

Therefore {YL,M|KL}∞M=1 is a bounded sequence of operators that is convergent on a
dense subset of cl(K1,L + K2). Hence it is convergent in the strong topology. It is clear
that its strong limit satisfies (1) and (2). �

We shall “paste” the desired operator W from two “pieces”. These are the operators
YL1 and YL2 , constructed according to Lemma 4 for suitably chosen subspaces L1, L2 ⊂
B1.

Let K1 = T11(B1). Let P : K1 → K⊥
2 be the restriction to K1 of the orthogonal

projection of B′
1 onto K⊥

2 .
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LEMMA 5. There exists an orthogonal decomposition K1 = R1 ⊕ R2 of K1 into a
sum of two infinite dimensional subspaces such that the images P(R1) and P(R2) are also
orthogonal.

Proof. Let S : K⊥
2 → K1 be any isometric embedding. Then, by the Polar

Decomposition (see, e.g. [2, p. 15]), SP = W |SP|, where W is a partial isometry with the
initial space (ker P)⊥ and the final space cl(im(SP)) (we use the terminology from [2]).
Since |SP| is a positive operator, then, by the spectral theorem (see, e.g. [2, §10]), there
exists an orthogonal decomposition K1 = R1 ⊕ R2 such that R1 and R2 are infinite
dimensional, and the subspaces |SP|R1 and |SP|R2 are orthogonal. Indeed, if the
spectrum σ (|SP|) of |SP| is infinite, then we consider an infinite relatively open subset
F ⊂ σ (|SP|) whose complement σ (|SP|)\F also contains an infinite relatively open
subset. Let E be the spectral measure of |SP|, and let χF be the indicator function of F .
It is clear that setting R1 to be the image of the projection

∫
χF dE, we get the desired

decomposition. If the spectrum σ (|SP|) is finite, then it consists of eigenvalues, and
at least one of the corresponding eigenspaces is infinite dimensional. We decompose
an infinite dimensional eigenspace into an orthogonal sum of infinite dimensional
subspaces, and add the remaining eigenspaces to one of them. It is clear that in both
cases we get the desired decomposition.

Since W maps cl(im|SP|) onto cl(imSP) isometrically, then the orthogonality of
the subspaces |SP|R1 and |SP|R2 implies the orthogonality of SP(R1) and SP(R2).
Since S is an isometric embedding of the space containing P(K1) then this, in turn,
implies the orthogonality of P(R1) and P(R2). �

Recall that our purpose is to find an operator W ∈ L(B′
1,B′

2), such that WT11 =
T21 and WT12 = T22.

Observe that since P(R1) and P(R2) are orthogonal, then (I − P)R1 and (I − P)R2

are also orthogonal. Hence K2 and K⊥
2 can be decomposed into the orthogonal sums

K2 = S1 ⊕ S2 and K⊥
2 = T1 ⊕ T2 in such a way that R1 ⊂ S1 ⊕ T1 and R2 ⊂ S2 ⊕ T2.

We define W in two “pieces” as follows.
Let L1 = T−1

11 (R1) and L2 = T−1
11 (R2). The subspaces L1 and L2 are infinite

dimensional and

B1 = lin(L1 ∪ L2). (12)

In the case in which T11 is left Fredholm, but is not bounded below, the subspaces L1

and L2 have finite dimensional intersection.
Let YL1 : cl(R1 + K2) → B′

2 and YL2 : cl(R2 + K2) → B′
2 be the operators whose

existence is shown in Lemma 4. We consider the restrictions

WL1 = YL1 |cl(R1+K2)∩S1⊕T1

and

WL2 = YL2 |cl(R2+K2)∩S2⊕T2 .

Since the spaces S1 ⊕ T1 and S2 ⊕ T2 are orthogonal, and the space B′
1 is a Hilbert

space, then there exists an operator W ∈ L(B′
1,B′

2) that is a common extension of WL1

and WL2 . It remains to show that W is the desired operator. By construction we have
(i) WT11(x) = T12(x) ∀x ∈ L1 and ∀x ∈ L2. By (12), this implies WT11(x) =

T12(x) ∀x ∈ B1, and also we have hence WT11 = T21.
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(ii) WT12(x) = T22(x) ∀x ∈ T−1
12 (S1) and ∀x ∈ T−1

12 (S2). Since K2 = S1 ⊕ S2, this
implies that WT12(x) = T22(x), ∀x ∈ B2. Hence WT12 = T22. �

REMARK. The classes of Liouville quadruples and non-Liouville quadruples that
were found in [9] and in the present paper are still far from being complementary
classes. In particular, the following problem is open.

PROBLEM. Let B′
2 be a Banach space whose canonical image in (B′

2)∗∗ is uncomp-
lemented. Does it follow that there exist B1,B2, and B′

1, such that (B1,B2,B′
1,B′

2) is a
non-Liouville quadruple?
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