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Abstract
The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) resulted in many ice-sheet
simulations from multiple ice-sheet models. To date, no model weighting studies have analyzed
or quantified the model performance, possible duplication of the ISMIP6 ice-sheet models and
the effect on mass loss projections. In this study, we adopt a model weighting scheme for the
ISMIP6-Greenland that accounts for both model performance compared to observation and
model similarity due to possible duplication. We choose ice velocity and thickness for the mea-
surement of model performance, and we use all suitable variables to compute similarity indexes.
We update the sea level rise contribution from ISMIP6-Greenland by the end of this century with
the weights, and we find that, although the multi-model mean is not considerably shifted (mostly
within ±1cm), the model spreads are reduced by 10–30% after applying the model weights. The
magnitude of reduction varies largely among experiments and types of model weights applied.
In general, we find that the model weighting scheme is skillful in producing model weights that
effectively and reasonably quantify the model performance and inter-dependency, which can
potentially benefit the future phase of the Ice Sheet Model Intercomparison Project, i.e. ISMIP7.

1. Introduction

Greenland ice-sheet mass loss has shown a large contribution to global sea level rise in the
past decades (Shepherd and others, 2020) and will continue to play an important role in future
sea level rise (Hofer and others, 2020; Fox-Kemper and others, 2021). The Ice Sheet Model
Intercomparison Project for CMIP6 (ISMIP6) (Nowicki and others, 2016, 2020) serves as an
important estimator for ice-sheet evolution in the future, showing considerable spreads by the
end of the 21st century for the Greenland ice sheet (Goelzer and others, 2020; Payne and others,
2021). Following the approach taken by previous ice-sheet community efforts, such as Sea-level
Response to Ice Sheet Evolution (SeaRISE; Bindschadler and others, 2013; Nowicki and others,
2013), the analysis of the ISMIP6 ice-sheet model ensemble has adopted a ‘one model one vote’
strategy that assigns equal weights to each model.

The issues of assigning equal weights have been extensively discussed in climate model-
ing literature (Knutti, 2010; Knutti and others, 2010, 2017; Masson and Knutti, 2011; Pennell
and Reichler, 2011), but not thoroughly explored in the ice-sheet modeling realm. There are
existing studies that used calibration strategy to generate performance scores for ice-sheet
model ensemble (Gladstone and others, 2012; Ritz and others, 2015; DeConto and Pollard,
2016; Nias and others, 2019, 2023; Brinkerhoff and others, 2021; Aschwanden and Brinkerhoff,
2022; Felikson and others, 2023; Jager and others, 2024), but this approach has not yet been
applied to the ISMIP6 ensemble. Furthermore, as these studies mostly calibrate on single model
ensembles, the model inter-dependence is not a pertinent topic. The single model ensemble
members are essentially different realizations branching from the same model with different
model parameters, while the ISMIP6 models are different ice-sheet models.

Similar to the issues faced by climate models, the assignment of equal weights to ice-
sheet models has the following assumptions: (i) each ice-sheet model has an equal perfor-
mance of capturing the present-day ice-sheet state (e.g. ice thickness, surface ice velocity,
and temperature) and projecting the ice-sheet evolution, and (ii) all models in the ensem-
ble are independently developed without any duplications or exchanges of modeling ideas,
codes, and subcomponents. For the first assumption, ice-sheet models do not perform
equally even at their initial states, which can be shown by the model errors of ice velocity
and thickness compared to observation documented in SeaRISE (Bindschadler and others,
2013; Nowicki and others, 2013) and ISMIP6-Greenland (Goelzer and others, 2020). Also,
it is highly unlikely that the models will all have equal performance in projecting the ice
sheet into the future, which is shown by the great differences in sea level projections in
2100 reported by ISMIP6-Greenland. The uncertainty range of contributions is almost the
same magnitude as the ensemble mean (Goelzer and others, 2020; Payne and others, 2021).
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As for themodel inter-dependence, it is unreasonable to assume
the models are completely independent. Commonly, the ice-sheet
models have similar initialization processes (e.g. data assimilation
using the same velocity or thickness) and similar physical laws. If
these similar simulations are counted repetitively, the unweighted
ensemble will be biased toward the repeated projections. This is
true for ISMIP6-Greenland, as multiple submissions come from
the same ice-sheet model. For example, the Ice-sheet and Sea-level
System Model (ISSM; Larour and others, 2012) has been used by
multiple modeling groups, and in some cases, a group might have
submitted several simulations. The three ISSM submissions from
Alfred Wegener Institute (AWI) have mostly identical configura-
tions. The main differences are that they are run with slightly dif-
ferent horizontal resolutions over the fast-flowing regions (Goelzer
and others, 2020). Therefore, they are expected to produce simi-
lar simulations (Rückamp and others, 2020). In contrast, the ISSM
simulations from other groups (e.g. JPL_ISSMPALEO) might have
larger differences resulting from different initialization techniques
and modeling choices. These submissions are all considered inde-
pendent models in Goelzer and others (2020) and Payne and
others (2021), motivating our interests to account for not just
model performance but also interdependence to better interpret
the information provided by ISMIP6.

For the model weighting strategy, it is challenging to define the
correct metrics (or diagnostics/variables) to measure the model
performance because it is difficult to have a proper definition of
the general skills of models (Knutti and others, 2017). When the
simulations are scored based on different metrics, each model
could outperform the other models on one metric but underper-
form on another. No decisive conclusions may be properly drawn
in terms of which metric is the ‘best one’ or ‘most appropriate
one’. The choices of diagnostics might have considerable influences
on the performance weighting, as demonstrated by both climate
model weighting (Lorenz and others, 2018) and a recent study
using Bayesian calibration to a single ice-sheetmodel (Felikson and
others, 2023). The latter study assigned weights using ice veloc-
ity, dynamic thickness change, and mass balance separately as
diagnostics for calibration and showed largely different posterior
distributions. Also, for the same diagnostic, such as ice surface
velocity, complexity may arise from the initialization step of some
ice-sheet models that used data assimilation via velocity. If the
same observation is chosen for measuring the performance, the
weighting scheme will likely favor the models that used the same
observation for the data assimilation, while the other models may
be scored lower.

Yet, it is not trivial to assign weights based on some met-
rics, as shown in the practices in the climate modeling commu-
nity for extracting credible and reliable information from multi-
model ensembles. The Climate model Weighting by Independence
and Performance project (ClimWIP; Brunner and others, 2019;
Merrifield and others, 2020), following the previous work of
Sanderson and others (2015) and Knutti and others (2017), has
assigned weights to CMIP6 models that lead to a reduction of
the model spreads. A recent ClimWIP study (Brunner and oth-
ers, 2020) utilized an updated version of this model weighting
strategy and found a reduction of model spreads and generally
lower global temperature rise under both weak and strong climate
scenarios. This reduction is because several climate models with
strong warming received low weights. In this study, we utilize the
ClimWIP model weighting framework to assign model weights to
the ice-sheet models that participated in ISMIP6-Greenland and
we investigate if the model weighting shifts sea level projections
and to what extent.

2. Data and methods

2.1. Model weighting scheme

The ClimWIP model weighting scheme is generally applicable for
process-based model weighting, as it accounts for both the perfor-
mance of model simulation and the similarity of a certainmodel in
a multi-model ensemble due to possible duplication of codes and
components. In short, a certainmodel is weighted by both skill and
independence. Essentially, the weight of a model wi is determined
via two parameters: (1) the weight of quality wq, which measures
how close the simulations are to the observed values, and (2) the
weight of uniquenesswu, which scores higher if the model demon-
strates uniqueness compared with other models in the ensemble.
The total weight wi is then evaluated as the multiplication of these
two quantities, as shown in Eq. (1):

wi = wq × wu = exp[−(
Di(obs)

Dq
)

2

] × 1

1 +
m
∑
j≠i

exp [−(Dij

Du
)

2
]

(1)
Whereas Di(obs) is the distance of the ith model from the

true observation, Dij is the model similarity between a model
pair. Following the method described by Sanderson and others
(2017), we evaluate both Di(obs) and Dij as root mean square errors
(RMSEs). The pairwise distances are calculated for each variable
and then linearly combined to formulate the distancematrices. For
each variable, only the grid cells where all models and observations
have valid values are retained to compute the distances, and other
grids are removed. The ice-sheet mask of each model will evolve in
future projections as somemarginal grids are retreated andmarked
as ice-free. However, the time-varying ice masks in the projection
do not have influences here because we use only the snapshots of
ice thickness and velocity in 2015, as described in more detail in
Section 2.2.

We note that any form of model weighting scheme is not an
absolute but somehow subjective choice regarding the conversion
from model distances to model weights. The form in Eq. (1) is also
empirically defined, and it meets certain important criteria: (1) for
quality weighting, the model gets increasingly higher weights as it
approaches the observation and infinitely converges to zero when
the model–observation distance gets farther; (2) likewise, for sim-
ilarity weighting, a similarity index exp[−(Dij

Du
)2] is computed for

each model-to-model pair and they are summed up, and the value
of amodel to itself is 1 becauseDij is zero.The reciprocal form taken
by the similarity weight ensures that the weight will approach 1 if
the distance of one model to every other model is small, and it will
converge to 0 if the summed distance gets larger.Du andDq are free
parameters representing the radius of uniqueness and the radius of
quality, respectively. They are used to scale the distancesDi(obs) and
Dij.Du andDq are quantified as percentiles of themean of the inter-
model distances.We explore the choices of these two parameters in
later sections.

Observations are necessary to quantify the weights of quality,
but they are not needed to measure the weights of uniqueness
(interchangeable with ‘weights of similarity’).Therefore, we use the
variables described in Section 2.2 for quality weighting, and we use
the simulated quantities mentioned in Section 2.3 to produce simi-
larity weights. Finally, all fields are normalized before they are used
to compute the weights. The normalization is the classic ‘z-score’
standardization so that the normalized data has a mean of 0 and a
standard deviation (std dev.) of 1.
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Figure 1. (a) The differences of simulated ice-sheet thickness by ISMIP6-Greenland ice-sheet models and (b) observed ice thickness magnitude obtained from BedMachine
datasets (Morlighem and others, 2017, 2020). The differences between model pairs and model–observation are visualized with (c) heatmap and (d) Taylor diagram. Note that
the values shown in (c) and (d) are normalized, and the red cross in (d) corresponds to the observation shown in (b).

2.2. Simulation and observational data for quality weighting

In this study, we limit our focus to the same variables as used
in Goelzer and others (2020) to assign performance weights to
models, i.e. ice velocity and thickness. The simulated ice thick-
ness and ice velocity fields are used directly from the outputs of
ISMIP6-Greenland (Goelzer and others, 2020), and we plot the
differences with observations in Figs 1a and 2a. We use the snap-
shots of ice velocity and thickness at the beginning of the control
projection (‘ctrl_proj’ hereafter) to compare with the observational
datasets. We note that not all ice-sheet models report surface
ice velocity; for instance, the ice-sheet models BGC_BISICLES,
IMAU_IMAUICE1, and IMAU_IMAUICE2 only provide ver-
tically averaged ice velocity fields, as these three models are
run under either Shallow-Ice Approximation or Shallow-Shelf
Approximation. To maintain consistency with Goelzer and oth-
ers (2020), which compares the vertically averaged velocity with
observation, we use the samemean velocity to comparewith obser-
vation. The ice thickness observation (Fig. 1b) is obtained from
BedMachine datasets (Morlighem and others, 2017, 2020). The

observed surface ice velocity fields (Fig. 2b) are obtained from
MEaSUREs Greenland Ice Sheet Velocity Map from InSAR Data,
Version 2 (Joughin and others, 2015), for the Greenland ice sheet.
The coverage of satellite mosaics varies from year to year, par-
ticularly in the southeast of the Greenland ice sheet. We use the
2016–2017mosaics for Greenland that were producedmostly from
Sentinel-1A/1B data and provided almost complete coverage over
the southeast region (Joughin and others, 2015).The sameperiod is
used for the ISMIP6-Greenland for the model weighting regarding
surface velocity.

For Figs 1 and 2, we use both heatmaps and Taylor diagrams
(Taylor, 2001) to visualize the inter-model distances as well as
model–observation differences. In a heatmap, each cell shows the
distance between either a model pair or model and observation
(last row in Fig. 1c). In a Taylor diagram, the RMSE, the std dev.
and the Pearson correlation between models and observation are
shown. Note that the values shown in both heatmaps and Taylor
diagrams are normalized, and the red crosses in the Taylor dia-
grams (Figs 1d and 2d) correspond to the observations shown
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Figure 2. (a) The differences of simulated ice-sheet velocity by ISMIP6-Greenland ice-sheet models and (b) observed ice velocity obtained from MEaSUREs Greenland Ice
Sheet Velocity Map from InSAR Data, Version 2 (Joughin and others, 2015). The differences between model pairs and model–observation are visualized with (c) heatmap and
(d) Taylor diagram. Note that the values shown in (c) and (d) are normalized, and the red cross in (d) corresponds to the observation shown in (b).

in Figs 1b and 2b. From themodel–observation distances shown in
the last row in Fig. 1c, three models (MUN_GSM1, MUN_GSM2
and JPL_ISSMPAELO) show the largest differences between sim-
ulations and observations. This can be anticipated from Fig. 1a as
well.

The relationships between model pairs are captured in the
heatmap (Fig. 1c) as well. For instance, the three ISSM submis-
sions from AWI show small differences between each other. This
is expected because these three submissions start from the same
initial ice-sheet state, and their major differences are mainly the
minimum horizontal resolutions and mesh grids. From the Taylor
diagram of the ice thickness (Fig. 1d), it can be seen that all models
have high correlations (from 0.95 to 0.99) with observation, mean-
ing that all models capture the spatial features of thickness well. In
addition, the distances from models to observation are also shown
as radial distances from models to the reference point in the Taylor
diagrams.

For the ice velocity comparison, there are some mod-
els that show large differences between simulated ice velocity

and observations (Fig. 2c), e.g. VUB_GISM and VUW_PISM.
However, the heatmap scales by all distances and it is difficult to
convey any useful information for the rest of the models (other
than VUB_GISM and VUW_PISM), as their distances seem to be
similar. On the other hand, the Taylor diagram highlights more
on the model–observation differences and gives a clearer view of
which models are farther from observation and which are closer.
We notice that most ISSM submissions match the observation
quite well except JPL_ISSMPALEO. This is because it used a longer
period of interglacial spin-up, while others used data assimilation
of the ice velocity that matches better with present-day observa-
tion, such as AWI_ISSMs and GSFC_ISSM. Note that the ISSM
submissions from JPL used different velocity datasets (Rignot and
Mouginot, 2012) for data assimilation; therefore, this might add to
the distance betweenmodel and observation because we use veloc-
ity data from Joughin and others (2015) as observation. However,
larger differences are observed for other models; therefore, we do
not expect much difference if a different ice velocity dataset is used
for quality weighting.
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Table 1. ISMIP6 variables used to generate similarity weighting

Variable name Variable Units

1 acabf Surface mass balance flux kg m−2 s−1
2 dlithkdt Ice thickness imbalance m s−1
3 hfgeoubed Geothermal heat flux W m−2

4 litempbotgr Basal temperature beneath
grounded ice sheet

kg m−2 s−1

5 litemptop Surface temperature K
6 lithk Ice thickness m
7 orog Surface elevation m
8 topg Bedrock elevation m
9 xvelbase Basal velocity in the x-direction m s−1
10 xvelmean Mean velocity in the x-direction m s−1
11 yvelbase Basal velocity in the y-direction m s−1
12 yvelmean Mean velocity in the y-direction m s−1

In summary, models demonstrate different performances com-
pared to different observations. For example, JPL_ISSMPALEO
and MUN_GSM show large differences between simulated and
observed ice thickness but smaller differences in velocity, while
some models (e.g. VUB_GISM and VUW_PISM) show the oppo-
site. This highlights the value of using both variables for quality
weighting for the remainder of this study. Finally, we note that
the purpose of the correlation coefficients shown in the Taylor
diagrams (Figs 1d and 2d) is to provide another angle to view
the differences between simulation and observation. In the actual
model weighting, the correlation is not a part of the calculation
according to Eq. (1).

2.3. ISMIP6 data for similarity weighting

Since similarity weighting does not require a complete set of corre-
sponding observational data for each field considered, we use as
many fields as we can to calculate the model similarity weights.
We also exclude the variables with more than five models that do
not have simulations in the first year of ‘ctrl_proj’. This gives a
reasonable size of variables that we can use for similarity weight-
ing. The fields used to produce similarity weights are tabulated in
Table 1. The other variables in the data repository are not consid-
ered because there are more than five models that do not report
them.

We take each variable tabulated in Table 1 directly from the
ISMIP6-Greenland dataset and reshape the field into a vector. The
distances between each pair of models are evaluated as RMSE. The
inter-model distances are then shown as heatmaps utilizing data
from different times: initial state (Fig. 3a), 2100 in exp05 (Fig. 3b),
2100 in all experiments excluding control and control projection
(Fig. 3c) and averaged values of initial state and 2100 in all experi-
ments (Fig. 3d).The reason for testingmodel similarity beyond the
initial state of the ice sheet is that, despite its large influence on the
future ice-sheet evolution as shown in Goelzer and others (2018),
similar initial conditions do not always guarantee that a pair of
models are truly similar, even if they stem from the samemodeling
group. Although they might have been initialized in an identical
fashion, they can respond differently to climate forcing due to dif-
ferent modeling choices in the projections, eventually leading to
different sea level rise projections.Therefore, we use both the initial
condition of the ice sheet in the first year of ‘ctrl_proj’ experiment
and the last year of different experiments to measure the proximity
of models.

Formodel distances shown in Fig. 3b, we use exp05 for all mod-
els except for UAF_PISM2, which did not participate in exp05.

Therefore, we use its expc01 submission instead. For the heatmap
in Fig. 3c, all experiments are considered to generate themodel dis-
tances, and we do not need to make substitutions for UAF_PISM.
In the case when not all models participated in an experiment, then
the distances are only computed using the availablemodels. Finally,
the model distances are averaged over each experiment. Figure 3d
shows the average values of Figs 3a and 3c.

We observe that the three submissions from AWI_ISSM have
the smallest model distances to each other in the ensemble, which
can be seen from both the initial state (Fig. 3a) and future projec-
tions (Figs 3b and 3c). JPL_ISSM, JPL_ISSMPALEO, MUN_GISM
(1 and 2), UAF_PISM (1 and 2) and VUW_PISM show the largest
model differences with other models for both initial state (Fig. 3a)
and future projections in exp05 (Fig. 3b). VUW_PISM is less dis-
tinct when all experiments are considered (Fig. 3c). We also note
that the model distances are smaller when using future projections
in exp05 (Fig. 3b) and much smaller when using all future projec-
tions (Fig. 3c) compared to using the initial state only (Fig. 3a).This
motivates the utilization of both initial state and future projection
for the similarity measurement. The usage of only one experiment
may not fully capture model behaviors, because ice-sheet models
may respond similarly to one set of climate forcing but differently
to another. For instance, one ice-sheet model may be sensitive to
high atmospheric forcing but not oceanic forcing, and the ISMIP6
project was designed to sample their different responses to cli-
mate forcing (table 3 in Nowicki and others, 2020). In addition,
ice-sheet models may have different ocean forcing strategies (stan-
dard or open experiments) such as UAF_PISM1 and UAF_PISM2.
Therefore, it is meaningful to explore the complete set of experi-
ments for model similarity. On the other hand, using only future
projections to infer the similarity weighting could also be prob-
lematic. For instance, two models could have distinctly different
initial conditions, parameterizations and all other components, yet
they may still have similar projections for the future. This does
not mean they should be given less weights because they are still
different models. The intention of similarity weighting is to avoid
double-counting of similar models, but not to give less weights to
the models that happen to project similar sea level rise. In fact, if
two different models simulate similar future ice-sheet configura-
tions, there should be higher confidence in this future (i.e. larger
weights) rather than lower.

3. Results

3.1. Similarity weighting

As mentioned in Section 2, the radius of uniqueness Du that rep-
resents the nearest distance of one model is a free parameter;
therefore, we show the similarity weights of each model with vary-
ing uniqueness radii expressed as percentiles of the mean of the
intermodal distances in Fig. 4.The similarity weights are separately
computed using the initial condition (Fig. 4a), year 2100 in exp05
(Fig. 4b) and year 2100 in all experiments (Fig. 4c). The averaged
values from Figs 4a and 4c are shown in Fig. 4d.

From the approach in Knutti and others (2017), it has been
shown that it is ideal to select a Du that produces nearly 1/N of
similarity weights for the same model with different variants (N
is the number of variants submitted to ISMIP6). For example, if
there are eight submissions of ISSM, then each of them receiv-
ing 1/8 of weight is an ideal case; whereas SICOPOLIS receiving
a weight of 0.5 is ideal as it has two submissions. However, there
does not seem to be an optimal value of Du that yields approxi-
mately 1/N of similarity weights for allmodels (Fig. 4). In addition,
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Figure 3. A heatmap representation of the inter-model distances of ISMIP6-Greenland models using the variables listed in Table 1 from (a) initial condition, (b) 2100 in exp05
(with UAF_PISM1 using expc01) and (c) 2100 in all experiments. The averaged inter-model distance of (a) and (c) is shown in (d).

there are many different physical parameterizations and initial-
ization methods for the same ice-sheet model that could lead to
different model simulations. For example, ISSM simulated by AWI
is quite distinct from the simulations by JPL. Indeed, from all pan-
els in Fig. 4, the three ISSM simulations of AWI receive lowweights
of similarity due to their similar simulations among themselves
and also with other models, while the two ISSM submissions from
JPL are distinct from all other models resulting in higher similarity
weights.

In this study, we pick an intermediate value of 50% of the mean
of inter-model distance as the similarity radius Du (Fig. 4). We
note that this choice of Du is not a strict choice but rather an
empirical selection. With Du smaller than this value, most mod-
els are given similar weights and there is essentially little weighting
effect. With greater radius, the few models that are most unique
receive the most weights. This results in little weighting effect

on all other models, because the rest of them are almost equally
downweighted. The two variants of UAF_PISM have almost iden-
tical initial conditions, so they would have received much lower
weights using ‘ctrl_proj’ only (Fig. 4a). However, UAF_PISM1
shows a considerably different response (compared to all other
models including UAF_PISM2), which leads to higher weights
(Fig. 4c). This highlights the value of using both initial con-
ditions and future responses to measure model behavior and
their similarities (Fig. 4d). We notice that the differences between
UAF_PISM1 and UAF_PISM2 are not obvious using exp05 only
(Fig. 4b) because they respond similarly to the climate. Eventually,
we use the 50% of the mean inter-model distance as Du shown in
Fig. 4d.

We perform the same practice as in Brunner and others (2020)
to examine the validity of similarity weighting via a hierarchical
clustering approach using the initial state, and the results are shown
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Figure 4. Weight of similarity of ISMIP6-Greenland models with a varying radius of uniqueness Du measured as percentiles of mean inter-model distances using (a) the initial
state, (b) 2100 in exp05 experiments and (c) 2100 in all experiments. The average weight of similarity is shown in (d), which is used as the final similarity weight under selected
Du = 0.5 times the mean of inter-model distance.

in Fig. 5. The hierarchical clustering technique automatically sorts
similar models into the same family and formulates a complete
family tree. When the distances (or cut-offs) are large (beginning
from the leftmost side), all models are sorted into the same fam-
ily.Themodels are gradually sorted out to different branches in the
treewhen the cut-off is decreased until eachmodel is its own family
(the rightmost side of the family tree).

The ‘clusterdata’ function in MATLAB is used to perform the
hierarchical clustering algorithm and create the dendrogram as
shown in Fig. 5. The algorithm first calculates the pairwise dis-
tances between each model pair, and a binary tree is then for-
mulated starting by grouping the closest two points (in this case,
two models) into one cluster. New clusters are gradually formed,
with only two clusters joined at each time. Eventually, all the
models are grouped into the same cluster. In Fig. 5, the algo-
rithm proceeds from right to left, but we view the dendrogram
from left to right to better tell which models are branched out
first.

JPL_ISSMPALEO is the first one to formulate an indepen-
dent branch. Other unique models that show considerably dif-
ferent initial conditions (see Section 2), including VUW_PISM,
MUN_GSM1 and MUN_GISM2, are also rapidly branched out.
The vertical line shows the same distance as in Fig. 4. We can
observe that, under this cut-off, the unique models that scored
high in Fig. 4 (such as JPL_ISSMPALEO) are clearly distinguished

from the others. In contrast, the similar models that scored lower
are grouped into the same model family. For instance, the three
ISSM simulations from AWI are grouped together, and the same
applies to UAF_PISM (1 and 2), ILTS_PIK_SICOPOLIS (1 and
2) and IMAU_IMAUICE (1 and 2). GSFC_ISSM and JPL_ISSM
are sorted into the same family but not with the other ISSMs
from JPL and UCIJPL, indicating that our choice of similar-
ity radius can still highlight the differences among these ISSM
models.

3.2. Quality weighting

The choice of the radius of quality Dq is also a free parameter,
and we use similar tests as shown in Knutti and others (2017).
Ideally, the chosen radius of quality should result in a decrease
of RMSE between the weighted ensemble mean and observa-
tion (compared to the unweighted ensemble), because we want
the weighted ensemble to be closer to observation. Therefore, we
show the fraction of RMSE of the weighted ensemble (between
model and observation) compared to the unweighted ensemble
with varying quality radii measured as percentiles of the mean of
model–observation distances (Fig. 6). For both the velocity and the
multivariate cases, strong quality weighting with a narrow radius
results in the largest decrease of RMSE, that is, when the skill radius
equals around 20% of the mean of model–observation distances.
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Figure 5. Hierarchical clustering of ISMIP6-Greenland models
using the initial conditions of control projections in 2015. The
vertical line indicates the selected similarity radius, which is
Du =0.5 times the mean of inter-model distance.

However, the decrease of the present-day bias does not guarantee
the weighted ensemble will have better performance in predict-
ing the future. Thus, we also perform an out-of-sample test as a
cross-validation, and we show the results shown in Fig. 6b.

Out-of-sample test is an additional examination extending
beyond Fig. 6a, which is based on present-day observation. Relying
completely on Fig. 6a may potentially lead to over-fitting the
weighting scheme to present-day observations and picking up on
idiosyncrasies of the observational data (O’Loughlin, 2024). The
out-of-sample test then provides a way ‘to test the skill of the
method, flag overfitting to natural variability or certain data sets,
and guide the choice of parameters and metrics’ (Knutti and oth-
ers, 2017, p. 1915), in this case, the choice of the quality parameter
Dq. Since we obviously do not have observational data in the future
to work with, e.g. ice thickness in 2100, then the out-of-sample
test uses each simulated projection in 2100 as ‘truth’ to validate the
weighting choices. This test is mostly considered necessary to pass
and we should have more confidence in the weighting choices with
this test than without (Knutti and others, 2017).

The velocity and ice thickness of the ‘exp05’ projection at the
end of the 21st century are used to conduct the out-of-sample test.
Each model projection in 2100 is iteratively treated as the truth.
The distances from the remaining models to this ‘truth’ are com-
puted, which are also measured as RMSEs, and then summed up.
During this procedure, the obvious family members of each model
are removed when it is treated as the ‘truth’ model. For a certain
model, if the distance to another model is smaller than its distance
to observation, then this model is considered as its family mem-
ber. The family models are indicated as black cells in Fig. 6c. The
diagonal is all removed since the model itself is its family model.

The fractions of RMSE of the weighted ensemble to the unweighted
(Fig. 6b) suggest that extreme quality weighting with a small qual-
ity radius does not necessarily reduce the bias in future projection.
Assigning excessive weights to only a few models (i.e. using a small
quality radius), which have a close agreement with the present-day
observation, does not guarantee a reduction of future projection
bias, especially for ice thickness change (blue-dotted curve in Fig.
6b). Note that Fig. 6a is constructed using the initial state in 2015
only, while Fig. 6b uses the last year in the ‘exp05’ projection, which
is 2100. Eventually, we chose the quality radius Dq as equal to the
mean model–observation distance. This choice reduces both the
present-day ensemble distance to observation and the ensemble
bias of future projection.

3.3. Model weighting results

We show the final weighting results (Fig. 7) in the same fashion
as Sanderson and others (2015). We test the weighting scheme
under both univariate quality weighting (Fig. 7a using velocity
only and Fig. 7b using ice thickness only) and combined weights
(Fig. 7c). Obvious clustering behavior is observed for most mod-
els, for instance, most ISSM variants receive similar model weights
except for the submissions from JPL, indicating the JPL submis-
sions are quite different than the rest of the ISSMs. The ISSM
submissions from AWI, GSFC, UCIJPL and BGC_BISICLES used
data assimilation for initialization that resulted in close agreement
with the present-day ice-sheet state, and therefore these models
receive higher quality weights for both velocity and thickness.
However, since thesemodels that chose data assimilation as initial-
ization have similar initial conditions, they receive lower similarity
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Figure 6. The fraction of RMSE of weighted to unweighted results with a varying radius of quality Dq measured as percentiles of mean model–observation distances using
(a) the data in 2015 and (b) ‘exp05’ experiment in 2100. The magnitude of ice velocity and thickness (dashed curves) and their changes from 2015 to 2100 (dotted curves) as
well as the mean of the above (solid curve) are shown in (b). (c) The models that are excluded from the out-of-sample test in (b) when each model is treated as the truth.
The black cells in (c) represent the excluded family models for each model. Finally, note that (a) is constructed using the initial state in 2015 of ‘ctrl_proj’ only, while (b) is
using the last year in the ‘exp05’ projection, which is 2100.

weights (x-axes in Fig. 7). SICOPOLIS, IMAUICE and GSM mod-
els, each having two submissions, also show little differences in
model weights (for each pair), indicating each pair of submissions
is quite similar. The PISM model simulated by the VUW group is
clearly distinguishable from UAF_PISM1 and UAF_PISM2.

The same model may also receive different weights when either
velocity or ice thickness is used to measure their performance.
For instance, PISM submissions from UAF receive high weights
for thickness but low weights for velocity. These two models use
long inter-glacial spin-ups and keep the ice surface close to obser-
vation using a flux correction method (Aschwanden and others,
2016). This approach results in a close similarity between the sim-
ulated thickness and the observed thickness, while this is not the
case for the velocity. This highlights the need to use both velocity
and thickness to measure the model performance instead of uni-
variate as some models do not have equal performance regarding
different variables. In contrast, VUW_PISM receives low weights
for both velocity and thickness because it uses a different initial-
ization method than the submissions from UAF. VUW_PISM did
not use flux correction, leading to its lower thickness weights.

We notice that JPL_ISSM, JPL_ISSMPALEO, MUN_GSM1 and
MUN_GSM2 receive very low weights for quality weighting using
ice thickness. However, this does not mean they differ drastically
from the observed thickness field over the Greenland ice sheet
(Fig. 2), but they are comparatively less close to the observation
than other models. This is by design of Sanderson’s method (Eq.
(1)). These models used long interglacial spin-up that leads to
less constrained ice geometry, andMUN_GSM1 andMUN_GSM2
used different bedrock (Bamber and others, 2001) compared to
the other models that used BedMachine (Morlighem and oth-
ers, 2017). Finally, we note that the models simulated by different
groups may or may not be similar to each other, indicating it is
worthwhile to treat each submission as an independent model.

3.4. Weighted ice-sheet projections

The weights shown earlier in Section 3.3 are then used to produce
the weighted sea level projections by the ISMIP6-Greenland mod-
els (Table 2 and Figs 8–11). We pick the experiments shown in fig-
ure 12 of Goelzer and others (2020) to demonstrate the weighting
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Figure 7. Results of ISMIP6-Greenland model weights of similarity
(x-axis), weights of quality (y-axis) and total weights (indicated with
the shaded area) where the input for quality weighting are (a) ice
velocity only, (b) ice thickness only and (c) both ice velocity and
thickness. The legends show the markers for each model. The same
color is used for the same model variants; for example, red color for
all ISSMs.

effects on the final sea level rise projections. In Table 2, we define
the weighted ensemble mean as 𝜇SLR = ∑wi × SLRi/ ∑wi,
and the weighted ensemble std dev. is defined as 𝜎SLR =

√
N
∑
i=1

wi × (SLRi − 𝜇SLR)2/
N
∑
i=1

wi. For exploration purposes, we

show the results with varying choices of weights in Table 2 includ-
ing the total combined weights wi = wq × wu, quality weights
only wq, similarity weights only wu, velocity weights only wi =
wq(vel) × wu and thickness weights only wi = wq(thickness) × wu.

We find that the multi-ensemble mean of sea level rise projec-
tions does not deviate much from the equal weighting case (mostly
within ±1cm), indicating that the weighting has minimal effects

on the ensemble mean. However, we notice that the model weights
decrease the std dev. values (the ‘std dev. change’ rows in Table 2).
This decreasing effect varies among different experiments, ranging
from minor effects (around −1%) to moderate decreases (around
−30%). Using similarity weights only, the std dev. values are mostly
increased, which can be anticipated because the similarity weight-
ing is supposed to highlight the unique models, whose sea level
projections may deviate more from the majority of the ensemble
than others. For all other types of weights, the weighting effects
have similar influences on the std dev. decrease.

We also note that the weighted ensemble std dev. is a simple
statistical metric that does not take the distributions of original
sea level projections into account. Therefore, it does not directly
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Table 2. Weighted multi-model ensemble statistics of the chosen ISMIP6 experiments using various types of model weights

Weight Experiments

exp05 exp06 exp08 expa01 expa02 expa03 exp09 exp10 exp07

Type Statistics MIROC5
Med RCP8.5

NorESM-M
Med RCP8.5

HadGEM2-ES
Med RCP8.5

IPSL-CM5A-MR
Med RCP8.5

CSIRO-Mk3.6
Med RCP8.5

ACCESS1–3
Med RCP8.5

MIROC5
High RCP8.5

MIROC5
Low RCP8.5

MIROC5
High RCP2.6

Equal weight Mean (cm) 10.14 6.92 8.28 7.70 4.43 5.59 9.96 8.35 3.17
Std dev. (cm) 1.93 1.84 1.78 5.03 3.05 3.73 4.62 3.71 0.83
Std dev. change 0 0 0 0 0 0 0 0 0

Total weight Mean (cm) 10.27 7.07 8.30 9.43 5.41 6.82 10.07 8.35 3.28
Std dev. (cm) 1.58 1.56 1.45 3.51 2.32 2.69 4.53 3.67 0.64
Std dev. change −18.3% −15.2% −18.8% −30.3% −24.0% −27.8% −2.0% −1.1% −22.8%

Quality only Mean (cm) 10.39 7.17 8.39 9.46 5.47 6.87 10.38 8.59 3.34
Std dev. (cm) 1.56 1.53 1.46 3.59 2.38 2.75 4.35 3.50 0.62
Std dev. change −19.6% −16.7% −18.3% −28.6% −22.2% −26.3% −5.8% −5.5% −25.3%

Similarity only Mean (cm) 9.82 6.66 8.02 7.38 4.23 5.34 9.20 7.75 3.02
Std dev. (cm) 1.96 1.84 1.74 5.07 3.06 3.75 4.95 4.03 0.91
Std dev. change 1.1% 0 −2.3% 0.8% 0.1% 0.5% 7.1% 8.7% 9.2%

Velocity only Mean (cm) 10.26 7.05 8.28 9.05 5.25 6.57 10.41 8.73 3.24
Std dev. (cm) 1.64 1.61 1.50 4.05 2.56 3.04 3.99 3.22 0.73
Std dev. change −15.1% −12.7% −15.8% −19.5% −16.0% −18.4% −13.7% −13.2% −11.8%

Thickness only Mean (cm) 10.18 6.98 8.23 9.50 5.40 6.85 9.65 7.95 3.27
Std dev. (cm) 1.58 1.58 1.46 3.26 2.22 2.54 4.91 3.97 0.62
Std dev. change −18.2% −14.0% −18.3% −35.1% −27.2% −31.8% 6.2% 7.1% −25.1%
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Figure 8. Boxplots of the updated ISMIP6-Greenland projections in 2100 using varying weighting types including equal weights (original simulations), total weights, quality
weights alone, similarity weights alone, velocity weights alone and thickness weights alone. The original ISMIP6 projections are marked only on the first boxplot of each
experiment. The text below each boxplot shows the reduction/increase of the model spread. The types of weighting schemes are indicated by the legends at the bottom.

translate to model spread (the interquartile range). In order to
explore how much the weights modify model spreads and shift
data distributions, we use four different ways of applying themodel
weights on the ISMIP6-Greenland projections: direct approach
(Fig. 8), Monte Carlo sampling (Fig. 9), bootstrap resampling (Fig.
10) and kernel density estimation (KDE) using Gaussian kernel
(Fig. 11). For the direct approach, the sea level projections are
multiplied by the model weights in a straightforward manner, i.e.
SLEweighted = SLEoriginal ×wi, where each model weight wi is scaled
up such that ∑wi equals to the number of models (N = 21). For
the Monte Carlo sampling, we collect 2000 random samples with
each sample randomly drawn from the original sea level rise pro-
jection and set the probability of each model equal to its weight.
The statistics of both the direct approach and the Monte Carlo
approach are then summarized by the boxplots in Figs 8 and 9.
Bootstrap resampling collects 2000 samples as well, but each of
them is randomly drawn with replacements that are equal to the
size of the original samples (N = 21), in contrast to the Monte
Carlo approach which draws only one value in each sample. We
estimate the mean of sea level rise projections from the bootstrap
samples and plot the probability density functions (PDFs) in Fig.
10. Finally, KDE builds directly upon original projections cali-
brated with the model weights, because it adjusts the peak and
std dev. values of the Gaussian kernels locally around each ‘data
point’ (in this case, each ISMIP6 projection). For instance, if a
model has a larger weight, then larger confidence is implied for
this value; therefore, the Gaussian kernel of this point becomes
taller and slimmer. We show the PDFs of KDE results in Fig. 11,

and the original ISMIP6 projections are marked on the x-axis as
well.

In Figs 8 and 9, we simply define the model spread as the
interquartile range (i.e. the middle 50 percentiles), which is the
length of the box. The outliers are the models that deviate more
than 1.5 times the interquartile range from the ensemblemean, and
these are marked as red crosses. The changes in model spreads are
shown by the text near each box, measured as a percentage of the
original model spread. Note that the y-axes have different scales so
that they align with the total range of their original ISMIP6 simu-
lations in Fig. 9. For the direct approach, although themulti-model
means have minor shifts, it gives much larger model spreads after
applying the model weights as the original sea level rise projec-
tions are scaled either up or down by multiplying the weights. This
increase is around two times larger for all weighting types except
for the similarity weighting only. In contrast, the Monte Carlo
approach givesmostly a reduction of themodel spread.We observe
that, by using total weights, most experiments have a decrease in
the model spread, with the magnitude of reduction ranging from
zero (e.g. CSIRO-Mk3.6 Medium RCP8.5) to moderate (−19.19%
for MIROC5 Low RCP8.5) values. The quality weights mostly have
similar effects as the total weights. Under similar weighting only,
the model spreads are moderately increased for some experiments,
which can also be observed in Table 2 due to the same reason-
ing above. We explore the impacts of univariate weighting as well.
We find that the velocity weighting reduces model spreads for all
experiments, while the effects of ice thickness on weighted ensem-
ble are rather diverse among experiments. Ice thickness weighting
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Figure 9. Boxplots of the updated ISMIP6-Greenland projections in 2100 using varying weighting types including equal weights (original simulations), total weights, quality
weights alone, similarity weights alone, velocity weights alone and thickness weights alone. Figure 9 is similar to Fig. 8 but uses the Monte Carlo sampling approach. The
original ISMIP6 projections are marked only on the first boxplot of each experiment. The text below each boxplot shows the reduction/increase of the model spread. The
types of weighting schemes are indicated by the legends at the bottom.

alone does not always reduce the model spreads for all experi-
ments, and a large increase in spread (39.58%) is observed for
the CSIRO-Mk3.6 Medium RCP8.5 experiment. This increase is
due to three models that received high weights (BGC_BICICLES,
LSCE_GRISLI2 andUAF_PISM2), each of which generated lower-
end sea level rise projections. This indicates the choice of using ice
velocity alone to assignmodel weights based on present-day obser-
vation might be more optimal compared to univariate thickness
weighting. Bootstrap resampling is used to estimate the distribu-
tion of sample means and the results are shown in Fig. 10. Note
that this is not the distribution of sea level rise projections, but the
estimation of the multi-model means. All weighting types except
the similarity weighting scheme can reduce the variance of the
distribution, which is similar to the results presented in Fig. 9.
Finally, we use KDE to construct the distribution of sea level pro-
jections with weights (Fig. 11). The black thick curve shows the
distribution of sea level rise projections, and all other curves show
distributions with model weights. We observe that the distribu-
tion spreads are reduced for all Tier-1 core experiments including
exp05, exp06, exp08 (the three experiments in the first row), exp09,
exp10, and exp07 (the three experiments in the last row). In con-
trast, the Tier-2 experiments are less influenced by the choices of
model weights.

In general, we conclude that the application of our model
weights reduces the model spreads from minor to moderate lev-
els depending on experiments, although it does not have major
impacts on the multi-model mean. Finally, we note that the model
spreads shown in Figs 8–11 are not directly comparable to the std
dev. values in Table 2, as they are different metrics.

4. Conclusions and discussion

In this study, we have used the ClimWIP model weighting strategy
to assignweights to ISMIP6-Greenland ice-sheetmodels to explore
the influence on the sea level projections under model weights in
contrast to the ‘one model one vote’ strategy, which was previ-
ously practiced in ISMIP6 literature.Thismodel weighting strategy
considers both model performance compared to observation and
model inter-dependence among the ensemble model participants.
We chose ice velocity and thickness of the initial ice-sheet state,
which are the same diagnostics as in Goelzer and others (2020), to
measure the model performance against observation. In contrast,
we use as many ice-sheet model variables as we can to assign the
independence weights. Furthermore, we consider both the initial
states and future projections tomeasure the independenceweights.
The motivation is that the models having similar initial states and
multiple submissions (such as UAF_PISM) may respond differ-
ently to climate forcing based on their implementation of ice-ocean
interaction and other modeling options.

We also demonstrate the challenges of finding appropriate
parameters involved in the model weighting scheme and how
the choices of radius of quality (Dq) and similarity (Du) can best
facilitate the weighting.We selectDu as 0.5 times themean of inter-
model distance to effectively distinguishmodel differences, and we
choose Dq as equal to the mean of inter-model distances so that
the weighted ensemble shows decreased bias for both the present-
day and future projections. For quality weighting, we found that
the same model can have different performances when differ-
ent diagnostics are used, which confirms the reasoning for using

Downloaded from https://www.cambridge.org/core. 28 Jul 2025 at 05:07:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 Xiao Luo and Sophie Nowicki

Figure 10. Distributions of bootstrap mean of ISMIP6-Greenland projections in 2100 using varying weighting types including equal weights (original simulations), total weights,
quality weights alone, similarity weights alone, velocity weights alone and thickness weights alone. The types of weighting schemes are indicated by the legends at the bottom.

more than one single diagnostic. For example, UAF_PISM1 and
PISM2 perform differently when only one variable is used (Fig.
7a and 7b), and the combined weights provide more balanced
scores than the single variable scores. In the final model weight-
ing results (Fig. 7c), most models receive weights ranging from 0.3
to 0.5.

The model weights are then utilized to update the projections
of the six Tier-1 experiments plus three Tier-2 experiments. We
do not observe large shifts of multi-model ensemble mean (mostly
within ±1cm), but the model spreads are indeed reduced to vary-
ing extents depending on the experiments.The simpleweighted std
dev. values indicate around 10–30% ofmodel spread reduction.We
also explore four different ways to apply the model weights on the
projections, including the direct approach, Monte Carlo approach,
Bootstrap mean approach and KDE approach, to find the impacts
on the distribution of projections. With the exception of the direct
approach, which increases all model spreads, the other approaches
generally reduce model spreads, yet the magnitude of reduction
varies considerably among experiments and types ofmodelweights
applied.

One limitation of this study is that we do not perform the
tests regarding the choice of observation and correlation of diag-
nostics of ice-sheet models with sea level rise projections and
explore the influences of the types of diagnostics. As an exploratory
study of assigning model weights on ISMIP6-Greeland models,
we limit our focus merely to the same metrics used in Goelzer

and others (2020). The Bayesian calibrations by using velocity
change, dynamic ice thickness change and mass change observa-
tions show very different posterior sea level rise distributions in
Felikson and others (2023). Also, this study focuses on ISMIP6-
Greenland model weighting, and the same practice may be used
on ISMIP6-Antarctica (Seroussi and others, 2020) and ISMIP6-
Antarctica-2300 in future research.

Another limitation arises from not exploring other model
weighting schemes. For similarity weighting, the ClimWIP scheme
stands on a data-driven point of view, that is, whether a pair of
models are considered similar is judged by their initial states and
simulation results. Other methods may be used to sort the models,
such as developing familymodel genealogy as recently practiced in
the climate modeling community for CMIP6 models (Kuma and
others, 2023).

We also note that the refinement of the updated sea level distri-
bution is not as considerable as the ones shown in the Bayesian cal-
ibration studies. However, they are not comparable due to the size
of the ensemble. The size of the ensemble considered in Bayesian
calibration tends to bemuch bigger (from several hundred to thou-
sands) in contrast to ISMIP6-Greenland models (21 models). This
is because the ISMIP6-Greenland models generally submitted one
realization (at most three realizations) for the same model. In con-
trast, the Bayesian calibration studies were designed to explore the
uncertainties involved in the whole parameter space, resulting in
a large number of perturbed ensemble members branching from
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Figure 11. Distributions of ISMIP6-Greenland projections in 2100 KDE using varying weighting types including equal weights (original simulations), total weights, quality
weights alone, similarity weights alone, velocity weights alone and thickness weights alone. The types of weighting schemes are indicated by the legends at the bottom. The
original ISMIP6 projections are marked on the x-axis as well.

the same model. This makes their prior distributions of probabilis-
tic sea level rise (before Bayesian updating) relatively flat and the
posterior much sharper.

In conclusion, we show in this study that the ClimWIP scheme
is skillful in producing model weights that effectively and reason-
ably quantify the model performance and inter-dependency. The
resulting projections show mild to medium levels of decreased
model spreads compared to the unweighted ensemble, although
themulti-model means do not show considerable shifts.This high-
lights the potential of applying model weights to reduce ensemble
spreads for ice-sheet intercomparison projects, given that the next
phase, i.e. ISMIP7, may include a bigger size of model submissions
and experiments that can lead to larger ensemble uncertainties.
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