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Abstract

In the present paper a uniform asymptotic series is derived for the probabil
ity distribution of the sum of a large number of independent random variables.
In contrast to the usual Edgeworth-type series, the uniform series gives good
accuracy throughout its entire domain. Our derivation uses the fact that the
major components of the distribution are determined by a saddle point and a
singularity at the origin. The analogous series for the probability density, due
to Daniels, depends only on the saddle point. Two illustrative examples are
presented that show excellent agreement with the exact distributions.

SADDLE POINT APPROXIMATION; SUM OF INDEPENDENT RANDOM VARIABLES;

UNIFORM ASYMPTOTIC SERIES

1. Introduction

The problem of calculating the probability QN(y) that the sum

(1)

of N independent, identically distributed, random variables will exceed y has
been extensively studied. In technical applications, where numerical values are
of prime importance, a number of methods of determining QN(y) have been
used. A common one is to use the fast Fourier transform which works well
when QN(y) is not too small or when N is not too large. Another is to evaluate
numerically the integral

1 100

QN(Y) = 21T -00 e-iUY[g(u)]N duliiu),

where the characteristic function g(u) is the Fourier transform of the probabil
ity density Pt(v) of the typical v j in (1), and the path of integration is indented
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476 ROBERT LUGANNANI AND STEPHEN RICE

(2)

downwards at the ongm. This method is capable of high accuracy but the
integral often converges slowly and a detailed study of the asymptotic behavior
of g(u) may be required.

Here we present an asymptotic series for ON(Y) that we have found u:seful in"
calculations associated with signal detection problems (see the remarks made"
by Olver on the philosophy of using asymptotic series for numerical calcula
tions [6], p. 519). Our series takes into account, in the manner of uniform
asymptotic series, the mutual effect of the pole of the integrand at u = 0 and
the 'principal saddle point' Uo on the imaginary u-axis. Although Uo does not
exist for all densities PI(u), it does exist in many cases of practical interest. The
question of existence has been studied by Daniels [5].

The saddle point Uo has been used in a number of investigations. It appears,
in effect, in the study of large deviations. See Petrov [7], Chapter 8 where work
by Cramer, Saulis and others is described. Daniels [5] has given an asymptotic
series for the probability density PN(Y) of (1) based on un' whose integration
provides an approach alternative to ours (cf. Part (d) of Section 3). Roberts [9]
has used Uo to deal with communication problems and it appears implicitly in
the Chernoff bound [4].

The series for QN(y) is described in Section 2. In Section 3 several remarks
are made about the series and the existence of Uo is discussed briefly. Section 4
gives sufficient conditions for our series to be truly asymptotic. Estimation of
the error is discussed in Section 5 and illustrated by examples in Sections 6 and
7. In Section 6 an example in which PI(v) is an exponential density is discussed
and in Section 7 the uniform density is examined. Finally, in Section 8 the
results are used to compare values of QN(y) obtained from our series with
those obtained from formulas given by Cramer and Saulis.

2. The asymptotic series for ON(y )

The integral for QN(y) can be written as

QN(y) = -.L roo eN[q,(iu)-iur] dultiu),
27T L,

where exp [<f>(iu)] = g(u) and r = yIN. Our main result is the asymptotic series

(3)

(4)

00

QN(Y)'"'-J~erfc(~-fo)+I (An-Bn),
n=O

fo = N<f>(iuo)- iuoY,

~ erfc (x) = 7T-!100

exp (-t 2
) dt = (21T)-!r exp (-t2 /2) dt,

x x~2
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Saddle point approximation 477

where An is given below by (9) for n = 0, 1, 2, and Bn is given by (8). The
series (3) is derived in the appendix. In (4) Uo is the principal saddle point of
exp [N</>(iu) - iuy] mentioned in the introduction. If this saddle point exists it
lies on the imaginary u-axis and is the root of

(5) d</>(iu) _ ir = 0
du

which becomes zero when y = y= EY.
Equation (3) is a special case of a class of 'uniform asymptotic series' for

integrals containing a large parameter (Bleistein [2], van der Waerden [11],
and Rice [8]). The large parameter is N and the uniformity is with respect to r.

In calculating An and Bn it is convenient to set to= iu., where to is the
appropriate real root of

(6)
d
dt </>(t) - r = O.

It turns out that to is positive when y > y, negative when y < y, and zero when
y = y. In terms of to (4) becomes

(7)

where it can be shown that fo ~ 0 with equality only when to= O. The sign of
.J- fo is taken to be the same as that of to.

The term B; is the nth term in the asymptotic series for! erfc (.J - fo),

(8)

where (a)o = 1 and (o ); = a(a + 1) ... (a + n -1) when n > O. The term An is
the nth term in the asymptotic series obtained using the classical saddle point
method to expand the integral (2) for QN(y) about Uo. As (y - y)/N increases,
the distance between Uo and the pole at u = 0 increases, and the classical
asymptotic series QN(y) -..I An becomes increasingly accurate. The presence of
the complementary error function and the terms B; increase the accuracy of
(3) for small values of (y - Y)/N.

The first three values of An are

(9)

A o = 1L[21TN]-~ exp (fo),

At = - 3AoN-
t[11L

2 + 1L83 +!(58~ - 2(4 ) ] ,

A 2= 15AoN-
2 [! 1L 4 + IL 383+!IL2(78~ - 2(4 )

+llL(428~ - 288384+4(5 )

+1(2318j - 2528~84+ 568385 + 288~ - 8(6 ) ] ,
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(10)

</>(n) = [(d/dt)n</> (t)]to= [i-n(d/du)n</>(iu)]U(l'

On = </>(n)/(n![</>(2)]n/2),

IL = l/(to[ <p(2)]~).

Here </>(2) is positive and </>(n) can be interpreted as the nth cumulant of the
'associated' density (see Daniels [5], pages 639 and 640)

(11)

PI(v) = evtoPI(v )/g(uo),

g(uo) = t: eV 'opl(V) dv.

The characteristic function for PI(u),

(12)

(13)

will be used in Section 4.

3. Remarks concerning the asymptotic series for QN(y)

(a) General values of n. An can be calculated for general values of n by using
a recurrence relation for the coefficients in the classical asymptotic series. Thus,
from Equation (103) of [8], (changing n to j)

A. = A N-j ~ (_1I.)2 j- n ~ d (-2)m+ j (1) .
1 0 L. r- L, m,n 2 m +1'

n=O m=O

where dm,n is computed step by step from

(14)
1 n-m+1

dm+I,n+1 = ------1 I kOk+2dm,n-k+l,
n + k=1

O~m~n

starting from d oo = 1 and don = 0 for n > O. For m = 0 and n ~ 1 we get
dIn = 0n+2 and for m = n, ~n = (J~/n!. It is often convenient to use (!)m+j =
rem +j + !)/7T! in (13).

Daniels' series [5] for the probability density PN(Y)::::: -(d/dy )QN(y) is

(15) PN(Y)-[27TNcf>(2lrlexp(fo)[1- 2~(56~-264)+··-J.

Equation (15) can be written as PN(Y)-..rAj where

Ao = [27TN</> (2)]-! exp (fo)
(16) 2j

A- - A- N-j 'd (-2)m+i (1)
j - 0 L, m,2j 2 m+j

m=1
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Saddle point approximation 479

and dm ,2 j is given by (14). Replacing A o by Ao and setting IL = 0 in the
expression (13) for A j gives Aj • For example, Al and A2 can be obtained from
(9) by setting IL = 0 in A l and A 2 •

(b) The case Y= y. When y = y, to is zero, and An and B; are infinite, but the
limit of An - B; remains finite as y~ y. In this case a classical saddle point
analysis gives

QN(y) ----!+ (2'7TN)-![-83+ N-l(¥8~ -156384+ 3(5)
(17) - ¥N-2(3~g38~ - 2318~84 + 63638~ + 638~65

-148485-146386+2(7)+ ...J.
It can be verified that the terms in (17) agree with corresponding ones in the
Edgeworth series ([1], No. 26.2.48) for the case y = y.

(c) Another form of (3). The form (3) of the asymptotic series for QN(y) is
convenient for calculations when N is fixed and y varies. A different form,
useful in analyzing the errors, can be obtained by introducing Cn defined by

(18)

where 'Yo = 'Y(uo) = folN and

(19)

Then (3) becomes

'Y(u) = cP(iu)- iur.

(20)

The structure of An - B; shows that C, does not depend explicitly on N
although there is an implicit dependence via r.

(d) Integration of the Daniels series. An interesting question arises regarding
the accuracy of our asymptotic series for QN(y) compared with that of the
series obtained by integrating Daniels' series (15) for PN(Y). It appears difficult
to give an answer in the general case because of the complexity of the
integration. However, some insight can be obtained by examining the exponen
tial distribution discussed later in Section 6. From the results given there it can
be shown that the Daniels series is

PN(Y) ---- PN (Y)[N!/NN e-N.J2'7TN](I-_I_+_I_+ ... )
ex 12N 288N2 ,

where PNex(Y) is the exact density yN-le-YI(N -I)!, y > O. When we integrate
and take the first two terms, for example, we get

QA(2) = Qex[N!/NNe-Nv'2'ITNJ(1- 1~N)'
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480 ROBERT LUGANNANI AND STEPHEN RICE

where Qex is the exact value (38) of QN(y). QA(2) is to be compared with our

QA(2) =! erfc (~-fo)+ (Ao- Bo) + (A l- B l)

given by (45). The 'relative error' ~ of QA(2) is plotted in Figure 1 for the
case N = 5. For N = 5 the relative error of QA(2) can be shown to be
~ = -0,00016 when Y> 5. Comparison with Figure 1 shows that ~ and ~ are
of the same order of magnitude in this particular case.

This example suggests the conjecture that integration of Daniels' series and
our asymptotic series for QN(y) both give approximations to QN(y) that are in
error by the same order of magnitude.

(e) Existence of Uo' We conclude this section with some remarks regarding
the existence of Uo that are based on Daniels' work [5]. Let Pl(V) be zero
outside of a ~ v ~ b where a or b may be infinite. It can be shown that Uo exists
for every value of yiN between a and b if the integral

re'Vp1(v) dv
a

exists for all real values of t. Examples are:
(i) Finite a and b.

(ii) a=-oo, b=oo and Pl(v)~Aexp(-lvll+E)where £>0 and A is a
constant.

When the integral does not exist for all values of t, the question becomes
more complicated:

(iii) For a=O, b=oo, pl(v)=Aexp(-v l-E
) and O<£<l,uo exists when

o~ y ~ y, but not when y > y.
(iv) When a = 0, b = 00, Pl (v) = Ava

-
l (l + v)-f3 e- V and a > 0, Uo exists for

the entire range 0 ~ y ~ 00 if (3~ a + 1. When (3> a + 1, Uo exists only if
o~ ylN~ 1/((3 - a -1). In both cases Uo runs from ioo to -i as y runs over the
range for which Uo exists.

(v) When Pl(V) =! exp (-Iv\) there are two saddle points on the imaginary
axis. As y runs from -00 to +00, the principal saddle point Uo runs from +i to
-i.

4. Sufficient conditions for the series to be asymptotic

Here sufficient conditions are given for the series (3) to be asymptotic in YlN
when r = yiN is fixed. We consider only the case y > y in detail. The analysis
for the case y < y is very similar and will not be repeated. For y > y, to is
positive and Uo = -ito lies on the negative imaginary u-axis.

Suppose that Uo has been determined for some fixed value of r, and let P
denote the straight line path 1m (u - uo) = 0 joining uo±oo and passing through
uo. Let the characteristic function g(u) of Pl(V) satisfy the conditions:
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Saddle point approximation 481

(i) g(u) is analytic throughout a strip -to-£~Im(u)~£where e is some
positive constant.

(ii) Positive constants (1, Co and C1 exist such that Ig(u)1< co/lula when
lui> c, on the path P.

These conditions allow us to displace the path of integration in the integral
(2) for QN(y) down to P. After making this displacement, the expression (4) for
fo, and the relation g(u) = exp [<f>(iu)] are used to rewrite (2) as

(21) QN(y) =eXE ([0) Re rooexp {N[cP(iuo + ix) - cP(iuo)- ixr] dx/(iuo+ ix),
7T Jo

where x = u - uo. In (21)

(22) exp [<f>(iuo+ ix) - <f>(iuo)] = g(uo+ x)/g(uo),

where, from (12), the right-hand side of (22) is the characteristic function
E exp (ivx) of the associated density Pl(V). Since x is real in (21), Ig(uo+
x)/g(uo)1~ 1 with equality only at x = 0 because Pl(v) has no lattice component
(as a consequence of (ii)). Therefore in (21)

Re [<f>(iuo + ix) - <f>(iuo) - ixr] ~ 0

with equality only at x = O. Furthermore, Condition (i) shows that <f>(iuo + ix)
<f>(iuo)- ixr can be expanded in a power series in x that converges in the
neighborhood of x = O.

The preceding discussion and the fact that the contribution to ON(y) of the
region around Uo is I An (as already mentioned in connection with (9)) shows
that Conditions (i) and (ii) are sufficient to guarantee that

(23)

as N ~oo (see Olver [6], Chapter 4, Section 6). Subtracting the known
asymptotic series

(24) .
00

! erfc (~-fo) -- I e;
n=O

completes the proof that (3) is indeed an asymptotic series for QN(y) when
y > 51 and r = yIN is fixed.

5. Error analysis

Let the conditions of Section 4 be satisfied and rewrite (2) as

(25) 1 I"ON(Y) = Re 7T eN-y(u) duiiiu),
Uo
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482 ROBERT LUGANNANI AND STEPHEN RICE

where y(u) = c/>(iu) - iur. Let the right-hand branch of the steepest descent path
of exp [y(u)] from uo end at the sink u = So where y(so) = -00. Then

(26)

where l(ul' u2) denotes the integral in (25) with limits Uh U2.

The sink So occurs at a zero of the characteristic function g(u), but it may
shift from one zero to another as r = yIN changes. The path of steepest descent
from Uo is given by 1m [y(uo)- y(u)] = O. If the path cannot be determined
easily by analysis it can be traced step by step by starting at Uo+a and using

(27) UI+ 1 =Ul -\y'(u)1 a/y'(u),

where a is the step length and y'(u) = dy(u)ldu.
It is convenient to regard the right-hand side of (3) as the asymptotic

expansion of l(uo, so) and l(so, 00+ iO) as an exponentially small correction
term. This point of view is helpful in explaining the fact that an asymptotic
series may sometimes appear to be more accurate than it actually is (Olver [6],
p.95).

Let m ~ 1 and define the partial sum QA(m) by

(28)
m-l

QA(m)~!erfc(J-fo)+I (An-Bn)·
n=O

Then the error in QA(m) is

(29)
QA(m) - QN(y) = [QA(m) - I(uo, SO)] +[- l(so, 00+ iO)]

=EPm +ES,

where the principal error EPm and the exponentially small error ES are
defined by the quantities within the brackets:

(30)

1 ISOEPm ~QA(m)-Re- eN'Y(U) dultiu),
1T Uo

1 IClO

+
i O

ES ~ - Re - eN'Y(u) duliiu).
1T So

ES depends only on N. It can be zero in some cases and greater than EPm in
others. A bound for \EPm \ can be obtained by modifying Olver's error bound
([6], p. 89) for asymptotic series so as to take erfc (J - fo) into account. If
(Am - B m) is not zero it can be shown that

(31)

where U m is the supremum of a complicated function of m, rand u along the
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steepest path from Uo to so:

Urn = sup [T-tln lFrn (T)/(CrnT rn- !)I] ,
Te(O.OO)

(32) T = 1'0 -1'(u),

Fm (T) = ! (- l'oT)- !( l - Tl l'o)- t - R e (~ddU)+ mfl Cn T n-l.
lU T n=O

Here en is defined by (18) and 1'0 = I'(Uo).

6. Example-The exponential distribution

(a) Asymptotic series. The characteristic function for the one-sided density
Pt(v)=e-v

, v>O is

(33)
g(u) = f"'e i U V

-
V dv

= 1/(1- iu)

and

(34) c/>(iu) = In g(u) = -In (1- iu).

The saddle point equation (6) gives Uo = -ito where to = 1- r- 1 with r = yIN.
The quantities needed to calculate An and B; are

B 1 = B o/(2 fo),

B 2 = 3Bt /(2 fo).

fo= NOn r- r+ 1), c/>(n) = (n-1)! r",

8n = lIn, IL = 1/(r -1),

and (8) and (9) give

A o = 1L(21TN)-!ef o

(36) At = AoN-t(-1L2_ 1L --b.),
A 2_= A oN-

2(31L 4 + 51L 3 + HIL 2 + f21L + 2~8)'

(35)

When y = y= N, r is 1, IL is infinite, and it is necessary to use the Edgeworth
series

The exact expression for QN(y) is

(38)
N-1

QN(y):;:: e-Y L ynlnL
n=O
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484 ROBERT LUGANNANI AND STEPHEN RICE

(b) Error analysis. An examination of the path of steepest descent of
exp[Ny(u)], where y(u)=-ln(l-iu)-iur, from Uo shows that the sink So

occurs at So = ttlr-: t», and consequently the exponentially small error ES is
zero. To illustrate the bound (31) for EPm consider the case r=yIN=2 and
m = 1. Numerical evaluation of (32) at points along the path between Uo and So

shows that the supremum occurs at T = 6·94. It has the value 0" = 0·085 and
(31) becomes

(39)

Calculations for N = 5 and y = rN = 10 show that

0 5 (10) = 0·02925 ... ,

EP1 = OA(I)- Q5(10) = -2·18(-5),

Al - B 1 = -2·58(-5).

Therefore (39) gives IEPll~2·65(-5) which is slightly larger than IEP11=
2·18(-5).

7• Example-The uniform distri~ution

The characteristic function corresponding to Pl(V) =! for -1 < v < 1 is g(u) =

sin ulu, and <f>(iu) = In g(u) = In (sin ulu). In order to calculate (3) we need the
values of

(40) <f> (t) = In (sinh tIt)

and its derivatives at the real root to of

(41) cosh t-t-1-r=0.

(42)

Equation (41) can be solved by starting with to~ 1/(1- r) and using the
Newton-Raphson method. Differentiation of (40) gives

(dldt)2<f>(t) = -csch2 t+ r?
(dldt)3<f>(t) = (2 csch' r) cosh i-ru:'

and so on. For t real we also have
00

(dldt)n<f>(t) = (_)n-l(n -I)! 2 L Re (t+ inlv "
l=1

which is useful when n is large and the recursion relation (13) is used to
calculate An. For the error calculations the exact expression

QNCY)=--J--, f C-)k(N)(N-Y-2k)N
2 N.k=o k

was used. Here K is the largest integer in (N - y)/2.

https://doi.org/10.2307/1426607 Published online by Cambridge University Press

https://doi.org/10.2307/1426607


Saddle point approximation 485

(44)

A trial calculation was made using N = 4 and Y= 3·2. In this case the
smallest term in (3) is A 3 - B 3 = -2·8(-6) and the error made in stopping with
this term is OA(4)- 0 4 (3.2) = 4·9(-6), i.e.,

(43) EP4+ES=4·9(-6).

This is small compared to the exact value 0 4 (3.2) = 1066·7(-6).

(a) The error ES. For the uniform distribution, the function y(u) appearing
in the definition (30) of ES is y(u)=ln(sinu/u)-iur. When the path of
steepest descent from Uo is calculated by using y'(u) = cot u - u- I - ir in the
step-by-step formula (27) it is found that So is one of the zeros, say l11", of
sin ulu. If r is between 0 and a number slightly larger than 0·7, l is 1. For
r = 0·8, l is 2, and for r = 0·9, l is 5. From (30) and r = yIN,

ES = 1- f.oo (sin U)N sin uy duo
11" l7T U U

For N = 4, y = 3·2 we get r = 0·8, l = 2 and the value of ES calculated from
(44) is -2·1(-6). This is an appreciable fraction of the total error 4·9(-6)
stated above for our partial sum OA(4). Incidentally, when l = 0 in (44) the
integral is equal to ON(Y).

8. Comparison with other approximations

Here we compare our first two partial sums

(45)
OA(l) =! erfc (.J- 10)+(Ao - B o) ,

OA(2) = OA(l) + (AI - B I ) ,

with other approximations to ON(Y). The comparison is based on the relative
error defined by

(46)
'iff: = (Oap- Oex)/Oex,

'iff: = [(1- Oap)- (1- Oex)]/(l- Oex),

y>y,
y<y,

(47)

where o; is the approximation and Oex is the exact value ON(Y).
Figure 1 shows I'iff:I for approximations to Os(Y) when the individual density

is pI(v)=exp(-v), v>O (Section 6). The sign of 'iff: is indicated by the + or
on the curve. A portion of OA(2) around Y= Y= 5 has been omitted to reduce
the clutter. The 'Edge.,' curve is calculated from an Edgeworth series ([1], No.
26.2.48) in which the last term depends on the cumulants K2 = 0'2 = 1, K3 = 2,
K4 = 6 of v and the third and fifth derivatives of exp (-x 2 /2) where

x = (y - y)/(O'.JN),

= (y - 5)/2·236, N = 5.
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I. 0 ,...---or----..,.....----r----.....,----__--.....,

15.012.5

_ QA(2)

10.0

+Cramer

7.55.0

- Cramer
~0.1 "\

-\/ \Edge2
, \+

\
0.01

0.001

0.0001
05(.5) =

0.99983
Q5(y)=·89

2.5
0.00001~----------------------------'o

~

a:oa:
a:
w
w
>

~w
a:

Figure 1
Relative error of various approximations to Qs(Y) when PI(u) = exp (-v), v> O.

For Y> Y the 'Cramer' curve is calculated from the approximation

(48)

obtained by deleting the 'order of' term in the equation for QN(y) presented in
[7], p. 219. Here 1-<I>(x) =! erfc (x/J2) and x is given by (47). A similar result
holds when y < y.

In (48) we have made use of the fact that Cramer's function A(Z) is related to
our fo by

(49) (x 3/JN)A(X/JN) = fo+!x 2
•

The 'Saulis' curve for y > y is calculated in much the same way as the
'Cramer' curve by using an expression given by Petrov ([7], p. 249) which
represents the first two terms in a general series given by Saulis [10].

Figure 2 shows I~I for approximations to Qs(Y) when Pl(Y)=!' Ivl<l, the
uniform distribution (Section 7). The Edge, curve is calculated from the same
general formulas as for the exponential distribution but now the cumulants are
K2 = 0'2 =1, K3 = 0, K4 = -is and x = y/(u IN) = y J~. It turns out that, because
K3 = 0, the two-term Saulis formula reduces to Cramer's result.

It is seen that QA(I) and QA(2) do quite well over the entire range of y.
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I. 0 ---------------....,
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/,'
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w
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I

2
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I
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Qs (y)=.50
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Figure 2
Relative error of various approximations to Qs(Y) when Pt(v) =!, Ivi < 1.

Appendix. Uniform asymptotic series for integrals

The integral (2) for QN(y) is a special case (with a change of notation) of the
integral

(50) J = f. t A - 1 g(t)exh(t) dt,
L'

where x is large and positive. Methods associated with the names of Bleistein
and Ursell for expanding (50) in a 'uniform asymptotic series' have been
discussed in [8].

(a) General comments. First assume that the term exp [xh(t)] in (50) has IL

simple saddle points (where the first derivative of h(t) vanishes but the second
does not) and that A is not a positive integer. The saddle points and the origin
lie within a relatively small 'critical' region in the t-plane through which the
path L' passes. The functions g(t) and h(t) are analytic throughout the critical
region, g(O) =1= 0, h(O) = 0 and t = 0 is not a saddle point.

In the critical region h(t) behaves like a polynomial of degree IL + 1. Let v be
a new variable such that F(v) = h(t) where F(v) is a polynomial of degree IL+1
in v, and v is nearly proportional to t in the critical region. The choice of F(t) is
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(51)

discussed in [8]. This change of variable carries (50) into

J =LvA-1!(v)exP(u) dv,

where L in the v-plane corresponds to L' in the t-plane. Let tJ, t2 , • • • ,ttJ. be
the saddle points in the t-plane and Vb V2' • . • , v..... the corresponding ones in the
v-plane. Deforming L into paths of steepest descent and considering the
separate contributions of the saddle points leads to an asymptotic expansion of
the form

(52)

(53)

1'-! Vl(X)(POl + PllX- 1 + P2lX- 2 + •. •),
l=O

where Vl(x) is regarded as a tabulated or easily computed function. It turns out
that Pnl does not depend on L' or L, and by choosing suitable paths we can get
a set of equations that can be solved for the Pnl'S.

(b) The one-saddle-point case. For illustration consider the case IL =1. A
treatment of this case which differs somewhat from the following one is given
in Appendix F of [8], and entirely different treatments are given by Bleistein in
Sections 6 and 7 of [2] and by van der Waerden [11]. See also the excellent
discussion of uniform asymptotic expansions given in Chapter 9 of Bleistein
and Handelsman [3]. We seek an expansion of the form (52) with IL = 1 when
Vo(x) and V1(x) are given by (53) in which F(v) is a second-degree polyno
mial. A convenient choice is

(54)

(55)

Let L'1 be the path of steepest descent that has t1 as its highest point. A
classical saddle-point expansion about t1 gives

11 = f. t A - 1 g(t)exh(t) dt
L;

00

'- exp [xh(t1) ] I lXlnX-n-!,
n=O

where the aln'S can be calculated from the derivatives of g(t) and h(t) at t1
(see, for example, (103) of [8]). Similarly, from (52) and (53), J 1 can also be
expressed as

(56)
1

II '- I [Vl(X)]I(POl+ PllX- 1 + · · .),
l=O
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(57)

[V,(X)]t = r v1H-1exF(v) dv
JL 1

00

-- exp [XF(V1)] I f3llmX-m-~,
m=O

where L 1 is the path that has VI as its highest point.
Putting (57) in (56), equating coefficients of x-n-~ in (55) to those in (56),

and using

(58)

(60)

gives a set of relations, the nth of which is

PnO a1n 1 nfl
(59) Pn1 = --+r;---r;-- L, (131,O,n-kPkO+ f31,I,n-kPkl),

VI ,...,110 ,...,110 k=O

where the summation is omitted when n is O.
Another set of relations can be obtained by treating the singularity at the

origin in somewhat the same way as the saddle point. If the singularity is a
branch point we take Loand Lo to be loops enclosing the branch cuts running
out from the origins. If the singularity is a pole we take Loand Lo to be small
circles around the origins. In any case

10 = r, r:' g(t)eXh(t) dt - f (XOnx-n-\
JL o n=O

(61) [V,(x)]O = i v'H-lexF(v) dv - f (3Olmx - rn- 1- A..

L o m=O

Equating the two asymptotic series for 10 leads to

(62) 1 n-l= aOn __ , (fJ. + a )PnO a a L, ,...,O,O,n-kPkO ,...,O,I,n-kPk I .
,...,000 ,...,000 k = 0

Equations (59) and (62) can be used to calculate PnO and Pn1 step by step,
starting with POO = aoo/f3ooo from (62).

(c) Application to QN(y). For QN(y) we consider the special case in which
A ;::: 0, g(t) = 1, IL = 1, t1 is real, and L' runs from -ioo to +ioo with an
indentation to the right at t = 0 (see Section 9 of [8] and Bleistein [2]). When
F(v) is defined by (54), (53) gives

(63) Vo(x) = i7T erfc (vIx!), VI(x) = i(7T/x)~ exp (-xvi).

If Loand Lo are taken to be small circles about the origin,

10 = 27Ti, [VO(x)]O = 27Ti, [VI (x)]o = 0,

and consequently all of the aOn, f3oom, 1301m are zero except aOO = 21Ti and
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(3000 = 271"i. The recurrence relation (62) then gives

(64) POO = 1, PnO = 0, n~l.

The CX 1n 's are defined by

(65) f t-le x h ( , ) dt ~ ex h (, . ) I alnx-n- l ,
L; n=O

where L'1 runs upward through t 1 • Taking L 1 to run from -ioo to +ioo through
VI makes [VZ(X)]1= Vz(x), 1=0, 1. Noting that the asymptotic series for V 1(x)
consists of only the leading term shows that (311m in (57) is 0 except for
(3110 = i71"!. Similarly, the asymptotic series for Vo(x) leads to

(66) m =0, 1,2···.

Note that (3110 = Vl(3100 as it should according to (58). The recurrence relation
(59) then gives

(67)

Inserting the values of PnO and P« 1 in the series (52) leads to

(68) Lt-1e x h (, ) dt r- i7T eric (vlx!)+exp (-xvi) nt(aln - (3l0n)X-n- l .

Since h(t1) = F(v 1) = -vi this series has essentially the same form as the series

(3) for QN(y).
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