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1. Introduction. In a recent paper [5] Tits proves that a linear group over a field of
characteristic zero is either solvable-by-finite or else contains a non-cyclic free subgroup.
In this note we determine all the infinite irreducible solvable-by-finite subgroups of
GL(2, F), where F is an algebraically closed field of characteristic zero. (Every reducible
subgroup of GL(2, F) is metabelian.) In addition, we prove that an irreducible subgroup
of GL(2, F) has an irreducible solvable-by-finite subgroup if and only if it contains an
element of zero trace. , fiv

We use the flattened notation (a, /3; -y, 5) for the matrix I I. We denote the 2 x 2
\y 8/

identity matrix by I, the group {±1} by E, and the trace of a matrix x by tr x.

2. We begin by listing all the finite non-abelian subgroups of GL(2, F). Dornhoff
[2, p. 144] lists all the finite non-abelian subgroups of GL(2, C), where C is the field of
complex numbers. However, by [1, p. 81], any finite subgroup of GL(2, F) is isomorphic
to a subgroup of GL(2, C).

THEOREM 1. Let G be a finite non-abelian subgroup of GL(2, F). Then one of the
following holds.

(a) G has an abelian normal subgroup of index 2.
(b) G/Z = A4, S4 or A5, where Z (5*1) is the centre of G and consists of scalar

matrices.

From now on any group in the former category will be said to be of type (a).

COROLLARY 1. Let H be a finite non-abelian subgroup of PGL(2, F). Then either H is
of type (a) or else

H = A4,S4 or A5.

Proof. Since PGL(2, F) and PSL(2, F) are isomorphic,

H = K/E,

where K is a finite non-abelian subgroup of SL(2, F). The result now follows from
Theorem 1.

Although Corollary 1 is almost certainly well known, it does not appear to be readily
accessible in the literature. Let P denote PSL(2, F).

LEMMA 1. CP(A'4) = A'4.

Proof. By means of a suitable similarity transformation we may assume that one of the
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involutions in A'A is x0 = ±(a0,0;0, -a 0 ) , where al = -l. It is readily verified that

Cp(x0) = {±(«, 0; 0, a"1), ±(0, 0; - 0 " 1 , 0 ) : a, 0 6 F \ {0}}.

We may take generators of A4 to be x0 and y0 = ±(0, y; —y~l, 0), for some non-zero
y. It follows that

LEMMA 2. Let G fee an irreducible subgroup of GL(2, F) containing an abelian normal
subgroup N which does not consist entirely of scalar matrices. Then G is of type (a).

Proof. By means of a suitable similarity transformation we may assume that JV
consists of diagonal matrices [1, p. 26]. By the above hypothesis, N contains an element
x = (a, 0;0, 0), where a 5*0.

Let No= CG(N). Then No is a normal subgroup of G consisting of all the diagonal
matrices in G. Hence, for every y e G, we have yxy"1 € No. It follows that either y e No or
y = (0, y; S, 0), for some y, 8* 0. We conclude that (G : No) = 2.

We note that the trace of any element in G\N0 is zero.

THEOREM 2. Let G be an infinite irreducible solvable-by-finite subgroup of GL(2, F).
Then either G is of type {a) or else

A*,S4 or As,

where Z (consisting of scalar matrices) is the centre of G.

Proof. By Malcev's theorem [1, p. I l l ] , G has an abelian normal subgroup A of
finite index, which we may assume contains Z. If A# Z then G is of type (a) by Lemma 2.

If G/Z is abelian, then, by [6, p. 47], it follows that G/Z ss A'4, in which case G is of
type (a).

By Corollary 1 and Lemma 2, we may suppose from now on that G is
centre-by-finite, with G'^E, and that G/Z is of type (a), in which case G"=s£. (We note
that G'=sSL(2,F).)

(i) If G"= 1, then G is of type (a) by Lemma 2 (with N = G').
(ii) If G"-E, then G' is nilpotent of class 2. By [6, p. 47], we have

Let L = G/Z. Then L/CL(L') is a subgroup of Aut(L'). By Lemma 1, we deduce that
L/L' is an abelian subgroup (of even order) of S3. Hence |L| = 8 and |L'| = 4, which is
impossible. Thus G" * E.

The proof of the theorem is now complete.

COROLLARY 2. Let K be an infinite irreducible solvable-by-finite subgroup of SL(2, F).
Then K has an abelian normal subgroup M (containing -I) of index 2 such that, for all
xeK\M and for all y eM,

trx = 0 and
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In particular, if K = (a, b), then precisely two of a2, b2, (ab)2 are equal to -I and K/E
is the infinite dihedral group.

Proof. By considering the characteristic equation of an element z e SL(2, F), we note
that

2

Using this fact, the first part of the corollary follows from Theorem 2 and the proof of
Lemma 2.

If K = (a, b), then precisely two of a, b, ab are in K\M and hence, by Lemma 2,
have zero traces. K/E is then the infinite dihedral group since any non-trivial factor of the
latter group is finite.

Let a, beSL(2, F) with tr a = a, tr b = /3, tr ab = 7, and let FaB7 be the group
generated by a, b. It has been shown [3] that Fa0y is reducible if and only if

The following result is an immediate consequence of Corollary 2 and Tits' theorem
[5].

COROLLARY 3. Let Fa0y be infinite and irreducible.
(a) Fa p y is solvable if and only if precisely two of a, j3, y are zero.
(b) Fa0y contains a non-cyclic free subgroup if and only if at most one of a, j3, y is

zero.

THEOREM 3. Let L be an irreducible subgroup GL(2, F). Then L contains an
irreducible solvable-by-finite subgroup if and only if it contains an element x0 such that
tr x0 = 0.

Proof. If L contains an irreducible solvable-by-finite subgroup then, by Theorems 1,
2 and Lemma 2, it contains a non-scalar matrix x0 whose square is a scalar matrix. From
the characteristic equation of x0, it follows that tr x0 = 0.

Let L. contain an element x0 of zero trace. As before, we may assume that
xo = (a, 0;0, - a ) , for some a # 0 . We seek another element yoeL of zero trace for which
the group (x0, y0) is irreducible. In this case (x0, y0) is solvable since it is then, modulo its
centre, a dihedral group.

Suppose that none of the conjugates of x0 in L will suffice. Then, for all g e L, x0 and
gXog"1 have a common eigenvector, which implies that g has at least one zero entry.
Suppose further that no element of L has a zero (1,1) entry. Then since L is irreducible,
there exist x', y'eL of the form

X' = ( J3 ,Y;0 ,S ) and y' = (A,0; /x, v),

with p, y, S, A, /x, v^ 0. But the (1, 2) and (2,1) entries of x'y' are non-zero. It follows that
L contains an element yo

 = (0, e; e', p), say. By considering the entries of y2, and (x0y0)
2,

we deduce that p = 0. The irreducibility of (x0, y0) follows from a theorem of Maschke
[l.p.26].
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