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Abstract

We prove that every locally finite, congruence modular, minimal variety is minimal as a quasi-
variety. We also construct all finite, strictly simple algebras generating a congruence distributive
variety, such that the set of unary term operations forms a group. Lastly, these results are ap-
plied to a problem in algebraic logic to give a sufficient condition for a deductive system to be
structurally complete.
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A variety is called equationally complete if it contains no proper, non-trivial
subvarieties. In other words, if it is a minimal (non-trivial) variety. As every
variety is also a quasivariety, it seems natural to ask whether a minimal
variety is also minimal as a quasivariety. Surely one's initial impulse is to
respond "of course not", but upon reflection, one discovers that most of the
familiar minimal varieties are indeed minimal quasivarieties.

In this paper we try to bring the situation into focus. We give a simple
condition for a locally finite variety to be minimal as a quasivariety and prove
that every locally finite, congruence modular, minimal variety is minimal as
a quasivariety. We discuss examples that show that neither "local finiteness"
nor "congruence modularity" can be dropped.
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134 Clifford Bergman and Ralph McKenzie [2]

In the last section, we present an application of these results to algebraic
logic. To every so-called algebraizable deductive system, there corresponds
a quasivariety of algebras. This quasivariety is minimal if and only if the
deductive system is maximal. That is, the addition of a new rule of infer-
ence will yield a logic in which every formula is provable. Similarly, the
quasivariety generates a minimal variety if the logic is maximal with respect
to the addition of new logical axioms. Thus our main theorem implies that
these two notions of maximality coincide on those deductive systems whose
associated quasivarieties are locally finite and congruence modular.

1. Preliminaries

The variety generated by an algebra A, denoted V(A), is equal to the class
HSP(A) of all homomorphic images of subalgebras of direct powers of A.
Similarly, the quasivariety generated by A, Q(A), is equal to SPPu(A), the
class of algebras isomorphic to subalgebras of products of ultrapowers of A.
If A is finite, this latter class reduces to SP(A).

An algebra A is called strictly simple if it is simple (implying \A\ > 1) and
has no proper non-trivial subalgebras. It is obvious that every non-trivial,
locally finite variety contains a strictly simple member, (namely a non-trivial
algebra of minimal cardinality) thus every minimal, locally finite variety is
generated by a strictly simple algebra.

LEMMA 1. Let Abe a finite subdirectly irreducible algebra. Then V(A) is
a minimal quasivariety if and only if V(A) = SP(A) and for every non-trivial
B e V(A), we have A € S(B).

PROOF. Suppose that V(A) is a minimal quasivariety. Then of course
V(A) = SP(A). Also, if B e V(A) is non-trivial, then SP(B) = V(A),
implying that A e SP(B) and thus A e S(B) since A is subdirectly irreducible.
Conversely, if S is a non-trivial subquasivariety of V(A), then the condition
implies that A e S(&) = S, so V(A) = SP(A) = Q(A) C S.

COROLLARY 2. Let 'V be a locally finite variety. Then V is a minimal
quasivariety if and only if 'V has a unique subdirectly irreducible algebra A,
and A is embeddable into every non-trivial member of 'V. The algebra A, if
it exists, is finite and strictly simple.

THEOREM 3. Let A be a finite, strictly simple algebra. The variety generated
by A is a minimal quasivariety if and only if V(A) = SP(A) and A embeds
into every non-trivial subalgebra of Ax A.
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[3] Minimal varieties and quasivarieties 135

PROOF. Let y = V(A). Suppose y is a minimal quasivariety. Then by
Lemma 1, y — SP(A) and A embeds into every non-trivial member of y ,
so in particular into every non-trivial subalgebra of A x A. So we consider
the converse.

Assume y = SP(A) and A e S(D) for every D < A x A with \D\ > 1.
Let B be a non-trivial member of y . To apply Lemma 1 we need to show
that B extends A. y is generated by a finite algebra, so it is locally finite.
Therefore, we may assume that B is finite, so B < A" for some n > 0. We
prove by induction on n that B extends A. The cases n = 1 and n = 2 are
included among the assumptions.

So suppose that the required result is true for all n < k for a certain integer
k > 2. Let B < Ak, \B\ > 1. Let Bo and Bi be the projections of B into the
product of the first A:- 1 copies of A, and into the last copy of A, respectively.
If Bo is trivial, then B = Bi and the desired conclusion follows. Assume that
Bo is non-trivial. Then by the induction assumption, there exists an algebra
C < Bo, C = A. Letting D be the subalgebra of B consisting of all elements
whose projection into A*"1 belongs to C, we have that D < B, D projects
onto C, and D e S(A2). Thus by induction (« = 2) D embeds A and we are
done.

We now focus our attention on congruence modular varieties. For an
extensive development of the structure theory of these varieties, we direct
the reader to [3]. For our purposes we require only the notion of an Abelian
algebra. An algebra A (generating a congruence modular variety) is Abelian
if there is a congruence on A2 which has the diagonal of A (i.e., the set
{(x,x): x e A }) as a congruence class. An Abelian algebra can be shown to
be polynomially equivalent to a module over a ring.

LEMMA 4. Let y be a locally finite, congruence modular, minimal variety,
and let A. be a strictly simple member of y .

(1) If A is Abelian, then y is a minimal quasivariety.
(2) If A is not Abelian, then y is congruence distributive and y is a

minimal quasivariety if and only if A can be embedded into every
subalgebra of A2.

PROOF. By minimality, "V is finitely generated, and by [3, 10.15], A is
finite; moreover, y = V(A). Suppose that A is Abelian. Then by [3, The-
orem 12.4], every algebra in y is a Boolean power of A, so y = SP(A).
Furthermore, every subalgebra of A x A will be isomorphic to either A or
A x A. Therefore, by Theorem 3, ^ is a minimal quasivariety.

Now assume that A is non-Abelian. Then by [3, Theorem 12.1] y is con-
gruence distributive. By Jonsson's version of the Birkhoff subdirect product
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theorem [5], A is, up to isomorphism, the only subdirectly irreducible mem-
ber of 'V. The result now follows from Theorem 3.

By Lemma 4, our analysis of minimal, congruence modular varieties re-
duces to the congruence distributive case. For this, we will need the well-
known Jonsson terms.

LEMMA 5 [5]. Let A be an algebra. V(A) is congruence distributive if and
only if there are ternary terms t\(x,y, z),... , tn(x,y, z) for some n > 1 in the
language of A such that these equations are true in A:

(i) tl(x,y,z)Kx;
(ii) tj(x,y,x) &xfor\<i< n;
(iii) ti{x,y,y) « ti+x{x,y,y) for all odd i < n;
(iv) ti{x,x,y) « ti+i{x,x,y) for all even i < n;
(v) tn(x,y,z)& z.

2. The monoid of unary terms

SOME DEFINITIONS. Let A be an algebra. Clo (A) denotes the set of term
operations of A, and Pol (A) the set of polynomial operations of A (that is,
operations built up from the basic and constant operations on A). For a
natural number n, Clo,, (A) and Pol,, (A) denote the sets of n-ary members of
Clo (A) and Pol (A) respectively. An element e of A is idempotent if {e} is a
subuniverse of A.

Observe that Cloi(A) is a monoid acting on the set A. We say that the
action of a monoid M on a set is regular if no non-identity element of M
has a fixed point. When no confusion will result, we simply call the monoid
regular. Our immediate goal is to characterize those A (strictly simple and
generating a congruence distributive variety) such that Cloi(A) is a group.

The next lemma is well-known.

LEMMA 6. Let A be an algebra and 8 be an equivalence relation on A. Then
6 is a congruence of A. if and only if

V/ e Poll (A) (a, b)€d^ (fa, fb) e 6.

LEMMA 7. Let S be a finite semigroup and a € S. Then for some integer
n > 0, a" = a2".

PROOF. Since 5 is finite, there is an integer k such that ak = ak+" =
ak+in _ . . . fOT s o m e n > o. Thus we may assume that ak = ak+" and n > k.
Then a" = ak • a"~k = ak+" • an~k = a2n.
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[5] Minimal varieties and quasivarieties 137

THEOREM 8. Let A. be a finite strictly simple algebra generating a congru-
ence distributive variety, and let M be the monoid Cloi (A). Then M is a group
if and only if it is regular.

PROOF. Suppose that M fails to be a group. Then M contains an operation
a which is not a permutation of A. By Lemma 7, there exists an n such that
a" = a2". Then for any a e A, an(a) is a fixed point of a", but a" is a
non-identity element of M.

Now assume that M is a group. If M is a trivial group, then there is
nothing to prove, so assume M is non-trivial. Therefore there is an element
a e A which is not idempotent. Choose any b e A. Since A is strictly
simple, b lies in the subalgebra generated by a, so for some aGM, b = a(a),
whence a = a~l(b). Since M is a group, a"1 e M. Therefore b is not
idempotent either, and we conclude that A contains no idempotent elements.
Furthermore, M acts transitively on A.

Now, for any subset X of A, we put

F i x * = {a € M : a(x) = x for all x e X}.

Let X be the collection of all sets X c A such that |FixX| > 1, and let
U\,..., U/c be a list of the distinct maximal members of Z. Then define

d = Fix Ut for 1 < i < k.

Observe that each G, is a subgroup of M and, for any a € M and 1 < i < k,
there is j < k such that a o G , o a " ' = Gj and a(C/,) = Uj. Finally, define T
to be the subgroup of M generated by (J*=1 Gi-

CLAIM. For every y&T, y ([/,-) = £/,-, for i = 1 , . . . , k.

PROOF. Clearly it suffices to check the claim for the generators of T. If
y e Gj then y(Uj) = C, since y e Fix £/,. So assume y € Gj, j ^ i. Pick any
a e Uj - Uj. Then y{a) = a. Suppose y(Ut) ^ £/,. Then there is c e U\ such
that b = y~l(c) $ £/,-. Let 8 € G, - {id}. Then from the maximality of [/, it
follows that b ^ 8{b) = d and d $ Uj as 8 permutes £/,.

Let t\,...,tn be Jonsson terms for A. We proceed to show that for every
1 < / < n we have tt(b,c,d) — ti+\(b,c,d). Then from Lemma 5 it will
follow that b = d. This is the contradiction that will establish the claim.
First assume that / is odd, so that we have

for all x,y e A. Then define

a{x) = tj (x, 8y(x), 8(x)) and

= ti+l(x,8y(x),8(x)).
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Notice that a(x) = P(x) = x for all x e Ut by Lemma 5(ii). Also, a(a) = P(a)
by 5(iii). Thus the function fi~l o a e M fixes all points of C/, U {a}. Since
Ui is maximal in Z, it follows that a = p. In particular we have

U(b,c,d) = a(b) = P(b) = ti+l(b,c,d).

Now assume that i is even. In this case put

a{x) = tt (x, y{x), S(x)) and

P(x) = ti+1{x,y(x),S(x)).

It follows from Lemma 5 (ii) and (iv) that a and /? agree on the set (7, U {a}.
Thus, just as above, we conclude that a — p and

This concludes the proof of the claim.
Let 0 be the equivalence relation on A whose classes are the orbits under

the action of T. Then 0 is a congruence on A. To show this, by Lemma 6, it
is enough to prove that if (a, b) € 0 and / € Poli(A) then {f(a),f(b)) e 0.
Furthermore, by the definition of T, we may assume that b = y{a) for some
y e Gt and 1 < / < k.

There is a term * e Clo(A) and ci,C2,...,cn e A such that f(x) =
s(x, ci,...,cn). Then by the transitivity of M, f(x) = h(x, a) for some binary
term h. We define two members of M:

a{x) = h(x,x) and 0(x) - h(y(x),x).

Thus we need to show that (a(a),P(a)) e 0.
Since y eG, , a and /? agree on f/,. Thus p oa~l €Gj, some j < k. Since

(P o a-l)(a(a)) = P(a), it follows that (a(a),P(a)) e 0 as desired.
Now the group T is in all events a group of more than one element, since

there is at least one set U, (which may, conceivably, be the empty set). Thus
0 ^ 0A. Therefore by the simplicity of A, 0 = \A, equivalently, T acts
transitively. Then by the Claim, each set [/, must be either empty or identical
to A. As the definition of [/, precludes its equality with A, we must have k = 1
and U\ = 0 . That is, M is regular.

The referee has offered an alternate proof of Theorem 8. As it is equally
interesting, (and markedly different) we sketch the argument. Assume that
M is a group and A has no idempotent elements. M is a subuniverse of A4.
Let F denote the subalgebra of A with universe M. For any subset Z of A,
let r\z be the projection congruence on F corresponding to Z. Observe that
(a,P) Srjz <*a-lop<= FixZ, and t]z = f]zeZ r\z.

For a,b e A, write a ~ b iff r\a = t\b. This is clearly an equivalence
relation on A, and as A is strictly simple and has no idempotents, a •/• b <*
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[7] Minimal varieties and quasivarieties 139

r\a V r\b = lp. Let X be any subset of A which is a union of —classes and
Y = A - X. We claim that X is a subuniverse of A. By the distributivity
of ConF, t\x v r\Y = lp. Hence, by taking a Maltsev chain, we see that the
group M is generated by the subset Fix X u Fix Y. Since the elements of
Fix Y preserve X, (and the elements of Fix X certainly preserve X) X is a
subuniverse of A.

Finally, since A has no proper subalgebras, we conclude that either \A\ — 2,
or any two elements of A are equivalent modulo ~. In either case, M is
regular.

It is possible to construct all of the algebras satisfying the conditions of
Theorem 8. In [7], [8] and [9], A. Szendrei analyzes the clones of strictly sim-
ple algebras. We can apply those results to characterize, up to term equiva-
lence, all finite, strictly simple algebras A generating a congruence distributive
variety, and whose clone of unary terms forms a group.

Let A be a non-empty set. An n-ary operation / on A is called idempotent
if

f{a,a,...,a) = a for all a e A.

An algebra A is idempotent if every term function of A is idempotent.
Now, for any a e A define

n ,ih

X% = \J(AxAx-x{a}xAx---xA), n>2,
/=i

(each summand contains n factors) and let ^k
a denote the clone of idempo-

tent operations on A preserving X%. Put &£ = f\k=2^k"- If G is a group
acting on the set A, let dlA{G) denote the clone of operations f on A such
that

f(xi,x2,...,xn)g = f(xig,x2g,...,xng) for every geG, and xt€ A

and let J^(G) denote the idempotent members of &lA

THEOREM 9 (Szendrei). Let A be a finite, strictly simple algebra with \A\ >
2. If A is idempotent, then A is term equivalent to one of the following algebras:

(1) {A, J^(G)) for a group G acting on A such that every non-identity
member of G has at most one fixed point;

(2) the full idempotent reduct of the module {A, +, End* B) for some vector
space B = (A, +, K) over a field K;

(3) (A, SA{G) n ^ ° > for some k (2 < k < of), some element 0 e A, and
a group G acting on A such that 0 is the unique fixed point of every
non-identity member of G.
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If A has no idempotent elements, and if Aut(A) acts transitively on A, then
A is term equivalent to one of the following:

(4) {A, &A(G)), for a transitive and regular group G of permutations of
A;

(5) an algebra as in (2), above
(6) (A, G), where \A\ is prime and G is a regular, transitive (hence cyclic)

permutation group on A.

The proof of [8, Theorem 1] shows that the algebras of type (1), (3) and (4)
generate congruence distributive varieties. In fact, those of type (1) and (4)
are quasi-primal. The algebras of type (2) (and (5)) all generate congruence
modular, abelian varieties. Those of type (6) are essentially unary, and do
not generate a congruence modular variety.

COROLLARY 10. Let A be a finite, strictly simple algebra generating a con-
gruence distributive variety and such that Cloi (A) is a group.

(1) If A has an idempotent, then A is an idempotent algebra and, if\A \ > 2
then A is term-equivalent to an algebra as described in Theorem 9(1)
or (3) above.

(2) If A has no idempotents, then A is term equivalent to the algebra
(A, £lA(G)), where G is the automorphism group of A.

PROOF. Suppose first that A has an idempotent. Then that element is a
fixed point of every member of Cloi(A). By Theorem 8, Cloi(A) is regular,
so must be trivial. Therefore every member of A is idempotent. If \A\ > 2,
then we can apply Theorem 9. Case 9(2) cannot occur here, since it implies
that A is Abelian.

Assume now that A has no idempotent elements. For any element (a, b)
of A2, the subalgebra of A2 generated by (a, b) is equal to

{(a(a),a(b)): a eClOi(A)},

which by Theorem 8 is isomorphic to A under each of the coordinate pro-
jections. Thus it is the graph of an automorphism of A. It follows that
Aut(A) acts transitively on A. Furthermore, the set of fixed points of an
automorphism is a subalgebra of A. Therefore, the action is regular as well.

Applying Theorem 9, A is term equivalent to one of the algebras in cat-
egories (4)-(6). However as noted above, only those of type (4) generate a
congruence distributive variety. Thus A is term equivalent to {A, <<%A(G)) for
some group G acting on A in a transitive, regular manner.

By transitivity and regularity, we have \G\ = \A\ = | Aut(A)|. Furthermore,
since the action of G preserves every operation of A, there is a natural group
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[9] Minimal varieties and quasivarieties 141

embedding of G into Aut(A). It follows that we may take G equal to Aut(A)
in the Corollary.

3. The main theorem

LEMMA 11 (Folklore). Let A be a finite, strictly simple algebra, and let B
be a subalgebra of &. Then B = A if and only if either B is the graph of an
automorphism of A, or B = {e} x A or B = A x {e} for some idempotent
element e of A.

PROOF. Let B s A, where B < A2. Let B, (/ = 0,1) be the projections
of B into A at the two coordinates. Since B, is a subalgebra of A, we have
Bt = A or Bt = {e}, a 1-element subuniverse. Our claim is clearly true if
\Bt\ = 1 for / = 0 or i = 1. Assume that Bo = A = B\. Then cardinality
considerations imply that for every x € A there are unique elements y, z € A
such that (x,y) e B and (z,x) e B; i.e., B is the graph of a permutation of
A. Since B is a subuniverse of A2, the permutation is an automorphism of A.

THEOREM 12. Let 'V be a minimal, locally finite, congruence distributive
variety. Then If is a minimal quasivariety.

PROOF. Let A be a strictly simple algebra generating the variety 2^. By
Lemma 4(2), we must show that A can be embedded into every non-trivial
subalgebra of A2. Let us assume that this is false and derive a contradiction.
Without loss of generality, we may assume that A is a counterexample of
minimal cardinality. That is

A is a strictly simple algebra generating a congruence distributive
variety; there is a minimal, non-trivial subalgebra R of A2 such

(*) that A £ S(R); and for every strictly simple algebra B generating
a congruence distributive variety (of any type), if \B\ < \A\ then
every non-trivial subalgebra of B2 extends B.

Observe that R is non-trivial and is not of the form {e} x A or A x {e}
(since R ^ A), so R must be a subdirect square of A. Furthermore, it can
not be the graph of a function, since then it would be an automorphism of
A, and we would have R = A again. Therefore

(t) there are pairs (a, b), {a, c) e R with b ^ c.

Let E = {e e A:e is an idempotent of A }. Then

V{x,y)€R xeE&yeE;
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for if, say x e E and y £ E, then Sg^ ({(x,y)}) (the subuniverse of A2

generated by (x,y)) must be identical with {x} x A which is impossible. Let
T = R~' o R, the relation product of R with its inverse relation. Then T is a
diagonal subuniverse of A2, i.e., T contains the identity relation. Hence the
equivalence relation 8 generated by T is a congruence of A. Now since A is
simple we have either 6 = 0A (the identity relation) or 6 — \A (= Ax A).

If 6 = 0A, then T = 0A, which is false since (c, b) e T and c ^ b. Therefore
6 = lA. Now using the fact that d = T U (T o T) U {T o T o T) U • • • and the
remarks above, for any x,y e A, x € E -o- y € E. In other words, E = 0 or
E = A. But by (t), if a were idempotent, then {a}xA = SgA2({(a, b), (a, c)}) C
R, contradicting A £ S(R). Thus E = 0 , i.e., A has no idempotents.

Let M = Cloi (A). Since A has no idempotents and R is a minimal subalge-
bra, R is generated by any one of its elements. Therefore, M acts transitively
on R, and of course, on A. Furthermore, R is irreflexive, since {x,x) e R
implies A = SgR({(.x,;c)}) = R, a contradiction.

Suppose that M were a group. Then by Theorem 8, the action of M
would be regular. Since M acts transitively on R, there is a e M with
(aa,ab) = {a,c) by (t). But then by regularity, a must be the identity map,
contradicting the fact that b ^ c.

Since M is not a group, there is a e M such that a(A) ^ A. By Lemma 7,
we can assume that a = ao a. Let B = a(A). Observe that B = {x e A:
ax = x}. We define an algebra B = (B,F) by taking F to be the set of all
operations (a o g)\B where g e Clo(A). We define S = RnB2; then it is
clear that 5 is a subuniverse of the algebra B2. We shall finish the proof
of the theorem by showing that B is a strictly simple algebra, that V(B) is
congruence distributive, and that S is a non-trivial subalgebra of B2 which
does not embed B—thus we will have contradicted our assumption (*).

First, note that B is non-trivial; if B = {x} for some x e A, then choosing
any (M, V) e R we have that (x, x) = (aw, av) e R, contradicting the irreflexiv-
ity of R. Moreover, V(B) is congruence distributive by Lemma 5: ift\,...,tn

are Jonsson terms for A, and if we choose a term s(x) so that a = sA, then
s(ti(x,y,z)),...,s(tn(x,y,z)) are Jonsson terms for B. Next, B is the only
non-void subuniverse of B: for if x,y € B, there exists /? e Cloi(A) with
fix = y and then aop\B = g t F and g{x) = y.

To see that B is simple, suppose that 6 is a congruence of B. Define

V = { (x,y) 6 A2 : ( V / e P o l , (A) ) (af(x), af(y)) e d } .

By Lemma 6, i// is a congruence on A. We claim that 6 = y/C\B2.
Clearly y/C\B2 c 0. To see the converse, let (u, v) e 0, and let / € Poll (A).

We need (af(u), af(v)) e 6. Using the same argument we employed in
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Theorem 8, there is h e Clo2(A) such that f(x) - h(x, u), for all x e A. Since
(a o h) \B € F, (a o / ) \B is a polynomial operation of B, so we indeed have
af{u) = af(v) (mod 6). Now the simplicity of A implies that y/ € {0^, 1^},
so 6 G {OB, IB}- We conclude that B is strictly simple.

Finally we consider the relation S. Clearly 5 is non-empty. Since B is
non-trivial and has no idempotents, S must have more than one element.
Let (x,y) and (u, v) be elements of S. Then by the transitivity of M,
(u,v) = {fix, fiy) = (afix, apy) e Sg*\{(x,y)}) for some 0 e M, thus
S is a minimal, non-trivial subuniverse of B2. Suppose S = B. Since B
has no idempotents, S must be, by Lemma 11, the graph of an automor-
phism of B. Now if (x,y), {x,z) e R then (ax, ay), (ax, az) e S, and so
ay = az. Thus R~l o R C ker(a). But as we saw earlier, the equivalence
relation on A generated by R~l o R is a congruence on A, and must be lA.
Thus ker(a) = 1^. But then \B\ = 1, which we have already established to be
false. So we conclude that S ^ B. Thus we have a contradiction to (*).

Combining the theorem with Lemma 4, we have

COROLLARY 13. Every locally finite, congruence modular, minimal variety
is a minimal quasivariety.

4. Examples

EXAMPLE 14. There is a finite algebra that generates a minimal variety that
is not minimal as a quasivariety.

PROOF. Let A = ({0,1,2}, •, / , g, 0, i , 2) be the algebra of type (2,1,1,0,
0,0) in which

_ f 0, i fx = 0,
y~\y, ifx^O,

and 0,1,2 are names for the corresponding elements of A.
Let *V be the variety generated by A. To see that 'V is a minimal variety,

let C be any non-trivial member of 'V. It suffices to show that A < C. It is
easy to check that A is simple. Since W — HSP(A), C is a homomorphic
image of an algebra B < A7 for some set / . The elements 0B, iB ,2B are the
constant functions of A1, and form a subuniverse of B isomorphic to A. Thus
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there is a homomorphism s:A —* C taking 0,1,2 to 0 c , I c , 2 c respectively.
If s is trivial, then 0 c = l c . But the equations 0 • x « 0 and I • x » x are
true in A, hence in y . Therefore, for every c e C, 0 c = 0 c • c = l c • c =
c, contradicting the non-triviality of C. Thus 5 is an embedding, so y is
equationally complete.

There is a congruence 6 on A x A with one non-trivial equivalence class:
Z = {(0,0),(0, l),(0,2),(l,0),(2,0)}. This follows because Z is an ideal of
A2, i.e., for every z eZ and a e A2, za,a- z, f(z) and g(z) always lie in Z.

Now let B = A2/0. Then B fails to satisfy the quasi-identity

(Vx)( / (*)«*(*) ^XKO)

(since f[(l,2)/d] = g[(l,2)/0] = (O,O)/0) which holds in A. Therefore,
y is not a minimal quasivariety. (Alternately, show that B is subdirectly
irreducible, and use Corollary 2.)

The variety y in this example is locally finite, since it is generated by
a finite member. But of course it is not congruence modular. Our second
example shows that the assumption of local finiteness is necessary in Corol-
lary 13. In fact, the variety in this example will be arithmetical, that is,
both congruence distributive and permutable. It was provided to us by H.
Andreka and I. Nemeti, who have kindly allowed us to include it here. We
only outline the proof.

EXAMPLE 15 (Andreka-Nemeti). There is a minimal, arithmetical variety
that is not minimal as a quasivariety.

PROOF. Let C be the full to-dimensional cylindric set algebra on a 3-
element base. (See [4] for the relevant definitions.) Let y = V(C). Then y
is the desired example, y is arithmetical, since every cylindric algebra is an
expansion of a boolean algebra. The minimality of y as a variety is proved
in [6, Corollary 3.15].

Let M be the subalgebra of C generated by 0 . M is a non-trivial algebra
since C contains infinitely many distinct diagonal elements, each of which has
a name in the language. Then it turns out that M satisfies the quasi-identity

(Vx,y, z)(xAy«JcAz«yA2Ri0 & CQX « coy « CQZ « 1 -» 0« l )

while C does not. Therefore this quasi-identity defines a proper, non-trivial
subquasivariety of y .
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5. An application to algebraic logic

In order to apply our results to algebraic logic, we need to outline some of
the basic notions of that subject. We follow the treatment in [2]. We direct
the reader to that monograph for additional references.

A deductive system is a pair S? = (L, C), in which L is a prepositional lan-
guage {i.e., a set of prepositional connectives) and C is an algebraic, structural
closure operator on the set Fm of formulas of L in the prepositional variables
Po,P\,P2, That is, for all sets F, A of L-formulas:

r c c(T),
r c i = > C(T) C C(A),

cc(r) c c(r),
C(T) c \J { C(V): V is a finite subset of T } ,

o(C(T)) C C(a(T)) for all substitutions a.

(By a substitution, we mean a mapping a:{po,Pi,...} -* Fm. a(T) is the
set of all formulas obtained by replacing /?, by a [pi) in each y e Y, for all
/ e to.) C is called the consequence operator oiS?, and C[F) is the ^-theory
generated by T.

Let 5? = (L, C) and &" = (L, C) be two deductive systems in the same
language L. We define

^ < &" «• (vr c Fm) C(T) c C'(T)

and call S"' an extension of S". Also, define

S" =0 ^ ' <*• C(0) = C'(0).

'=o' is an equivalence relation on the set of deductive systems over a fixed
language. C(0) can be thought of as the set of tautologies of S?.

The main results in [2] are directed towards developing the notion of an
algebraizable deductive system. The definition is too involved to reproduce
here. Intuitively, a deductive system S? is algebraizable if and only if it can be
associated with a quasivariety 5^ of algebras whose basic operation symbols
are those of L. Under this association, the tautologies of S? correspond
to the identities of &**, and the rules of inference to the quasi-identities.
Furthermore, if both S? and &" are algebraizable, then & < <9" <*• 5^ 2
c5*'Q. Not every deductive system is algebraizable. But from [2, Corollary
4.9] we have that every extension of an algebraizable deductive system is
algebraizable.

For a fixed language L, let A denote the set of all algebraizable deductive
systems over L, and write A for the poset (A, <). By a maximal (respectively,
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0-maximal) element of A, we mean a system S" e A such that, for every non-
trivial S" e A, S? < 3" => 5? = S" (respectively, & < 3" => 3> =0 S").
((L, C) is trivial if C(0) = Fm.) In other treatments of this subject, these
two notions have been called "maximal" and "weakly maximal", respectively.
See, for example [1].

Gathering all of this terminology together, we have the following corollary.

COROLLARY 16. Let 5? be an algebraizable deductive system such that <5*Q

is congruence modular and locally finite. ifS' is 0-maximal in A, then S? is
maximal in A.

PROOF. Let 2^ = H(5^Q) be the variety generated by S^. It is easy to see
that 'V inherits both local finiteness and congruence modularity from 5^.

We claim that ^ is a minimal variety. For suppose that W is a proper,
non-trivial subvariety of 'V. Define a deductive system &' = (L, C) by
C'(T) = C ( r U 0(3T)). Here, G{W) is the set of L-formulas corresponding
to the identities of W. 5"' is clearly an extension of S?, i.e., 3" > S", so
S" e A. But &"$of since C'(0) = C(S(W)) D &{W) D G{T) = C(0).
This contradicts the O-maximality of S?.

Therefore, by Corollary 13, 'V is minimal as a quasivariety. Since "V D
S"*t we conclude that "V = <9**. Suppose that &" > &. Then S" is
algebraizable, and ^ ' Q C &**. Now it follows from the minimality of &**
that either <9"Q is trivial, in which case &" is trivial, or else J?" = S?.

This last corollary may seem far less natural than our original problem.
However, the fact of the matter is that our investigation of minimal varieties
was motivated by a more general problem of algebraic logic (which happens
to sound more natural than its universal algebraic equivalent). A deduc-
tive system S? is structurally complete if, for every system S"', J/" < S?' =>
5? ^o &'• (Intuitively: every new rule of inference yields new tautologies.)
Seen in this light, Corollary 16 is a sufficient condition for structural com-
pleteness, and it was the study of the following algebraic equivalent that led us
to the problem considered in this paper: we call a quasivariety & structurally
complete if and only if for every quasivariety S', <§' C & =>• V(S') C
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