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Abstract

The classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an
algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad
characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding
situation over a finite field. A computer is used to study this case for suitable choices of the finite
field.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 G 99, 17 B 25, 17 B 45

Let g be the Lie algebra of a connected reductive algebraic group G defined over
an algebraically closed field k of characteristic p (0 or a prime). The classification
of nilpotent orbits in g reduces easily to the case where G is simple, and it is
known in most cases. If p is good for G (that is, not bad [20, page 178]), Springer's
correspondence [20, page 229] allows us to use the classification of unipotent
elements in G ([20], [2], [7], [13], [11], [12]). If p is bad, the following cases are
known: G classical [5], G2 [23], E6 [17], F4 when/> = 2 [18].

The remaining cases are
(a )F 4 , /» -3 ,
(b)£7,/> = 2,3,
(c) Es,p = 2,3,5.
They are dealt with in this paper.
If A; is an algebraic closure of a finite field Fq and G is defined over Fq, it should

be possible to use a computer in the study of the action of GF on QF, where F
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Ul Nilpotent orbits of exceptional Lie algebras 331

denotes the Frobenius morphisms of G and g, and this would yield much
information on the action of G on g. Let U be an F-stable maximal unipotent
subgroup of G, with Lie algebra u. Instead of looking directly at the action of GF

on g F, the computer is used in this paper to calculate the order of the stabilizer in
UF of various elements of uF. As far as programming is concerned, this has the
advantage that there are efficient algorithms for finite p-groups.

As a corollary of the classification, we get

THEOREM 1. There are only finitely many nilpotent orbits in g.

It would of course be desirable to have a unified proof, as for unipotent classes
[8].

For x e g, let Gx denote the stabilizer of x in G and let S ^ be the variety of all
Borel subgroups of G whose Lie algebra contains x.

THEOREM 2. dimG^ = 2 dim 93 J + r, where r is the rank of G.

We may assume that G is of type F4, with p = 3, or of type E7 or E%, with p
bad. We say that x £ g i s distinguished if it is nilpotent and Z°(G) is a maximal
torus of Gx (this differs slightly from the definition given in [2]). As noticed in
[15], it is sufficient to prove that the distinguished orbits can be obtained by the
process of induction [10], and this is actually how we shall get hold of them.

The theory of Springer representations can be made to work in bad characteris-
tic ([3], [9]), and Theorem 2 implies that the nilpotent orbits can be parametrized
by irreducible representations of the Weyl group.

The method used here does not give the structure of Gx (x e g nilpotent), nor
the inclusion relation between closures of nilpotent orbits. The results are
therefore weaker than those obtained for unipotent elements by Mizuno [12].

The proof proceeds along the following lines. Let Fq be a finite field of
characteristic/*. We can assume that k is an algebraic closure of F^ (this is used by
Lusztig [8] in his proof of the finiteness of the number of unipotent classes) and
that G is defined and split over F^. Let F : g -» g be the Frobenius morphism of
g. Let C be an F-stable nilpotent orbit in g, let x e C and let S be a maximal
torus of Gx. Then \CF\ is given by a polynomial in q which depends only on dimC
and the conjugacy class of S in G. The computer is used for the following two
major steps:

(i) Let C l f . . . ,Cm be the non-distinguished nilpotent orbits in g. We compute
dimC,, and hence \CF\, for 1 < / < m.

(ii) We construct distinguished orbits Cm+V... ,Cn such that 'Li<i<n\Ci
F\ = q2N

(as polynomials), where N is the number of positive roots of G. As the number of
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nilpotent elements in g F is q2N [19], this shows that Q , . . . , C„ are all the nilpotent 
orbits in g. 

The second named author is grateful to the University of Warwick for its 
hospitality, and to the Science and Engineering Research Council for financial 
support during the preparation of this paper. 

0. Notation 

In addition to that used in the introduction, we shall use the following notation. 
If H is an affine algebraic group, we write UH or RU(H) for its unipotent 

radical. 
We fix a Borel subgroup B of G, with maximal unipotent subgroup U, and a 

maximal torus T'mB. The Weyl group of G is W = NG(T)/T. More generally, if 
7/ D r is a connected subgroup of G, let WH = NH(T)/T c W. Let wH be the 
element of maximal length in WH (i.e. wH is the unique element of WH such that 
H O B DW»B c TUH). 

For the Lie algebra of an algebraic group we use the corresponding gothic 
letter, for example b, u, uH are the Lie algebras of B, U, UH respectively. We 
write g • x for Ad(gX*) (S e G, x e g). The nilpotent variety of g is denoted Jf. 

Let 0 c Hom(71, G m ) be the root system of G, with $ + the set of positive roots 
and A the basis corresponding to B. For each \ e $ , let xx: G a -» G be adapted 
to X. Let t / x = xx(Ga) c G and Xx = (dxx)0(l) e g. Let also Lx be the subgroup 
of G generated by Ux and U_x. The roots are denoted as in [4]. For example, for 
F4 the highest root is 2342, and for £ 8 it is 2 4 « 5 4 3 2 . 

Except in paragraph 1, A: is an algebraic closure of a finite field F^. We assume 
that G, B, T and xx ( \ e $ ) are defined over F ? , and F denotes the Frobenius 
morphisms of G, g, etc. The conventions concerning Lang's theorem and its 
applications are the same as in [20]. For example, if T is an F-stable maximal 
torus of G corresponding to w e W, then F acts on T as wF on T. 

The classification of nilpotent orbits for E7 and E8 in bad characteristic was 
conjectured in [16], with a notation not adopted in this paper since it conflicts 
with the Bala-Carter method which we shall use constantly. 

There are several references to results concerning unipotent classes in G instead 
of nilpotent orbits in g. In most cases the demonstrations can be transposed 
easily, but some care is needed in the use of the process of induction [10]. This is 
discussed in paragraph 5. 

1. Reduction to ¥p 

For completeness we show why it is enough to consider the case of an algebraic 
closure of F ,̂. Let k0 be the algebraic closure of the prime field in k. Then G can 
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be obtained by extension of scalars from a reductive algebraic group Go defined
over k0. The nilpotent variety .y^is likewise obtained by extension of scalars from
the nilpotent variety JfQ of g0, as well as the adjoint action. Suppose that the
number of G0-orbits in g0 is finite. Let Cx,...,Cn be these orbits and let x, e C,
(1 < / < n). Let Xo be the disjoint union of n copies of GQ and let /0: Xo -> JV0 be
the morphism which sends the element g of the z'th copy to g • x,. Then f0 is
surjective. It is a general fact that if TT0: YO -» Zo is a surjective morphism of
&0-varieties, then the morphism m: Y -* Z obtained by extension of scalars to k is
also surjective. Therefore the morphism/: X -* ./Ffrom the disjoint union of n
copies of G to Jf, defined by g -> g • xt on the Ith copy, is also surjective. There
are thus at most n nilpotent orbits in g. On the other hand, the closure C, of C, in
g is G0-stable, hence G-stable since Go is dense in G, and if Xj e C, then x} is also
in the closure of C, in g0. This implies that xv...,xn form a system of
representatives for the G-orbits in g.

2. The polynomial \CF\

Let C c g be an F-stable nilpotent orbit. We want to show that \CF\ is given by
a polynomial in q of very special form.

Let x G C, let S be a maximal torus of Gx and let M = CG(S). Then M is a
Levi factor of some parabolic subgroup P of G, S — Z°(M) and x is dis-
tinguished in m [2]. The finite group WMG = NG(M)/M = NW(WM)/WM acts
on M and on m.

LEMMA 1. WM G acts trivially on the set of distinguished orbits in m.

We can assume that G is simple. Then M has at most one factor which is not of
type A. For type A the only distinguished orbit is the regular nilpotent orbit. If
there is a factor of type other than A and WM G acts by outer automorphisms on
it, then it is of type Dn (n > 4) or E6. In both cases the nilpotent orbits are
known, and the distinguished ones are stable under outer automorphisms.

LEMMA 2. In the situation above, it is possible to choose x and S both F-stable in
such a way that P is also F-stable.

We certainly can arrange to have S contained in T. Then S and P are F-stable.
Moreover Lemma 1 shows that C n m is a single distinguished orbit in m. As it is
F-stable we can find x e (C C\ xn)F.
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Let H be a connected algebraic group defined over F^, let To be an F-stable
maximal torus of H and let WH = NH(T0)/CH(T0) be the Weyl group of H. The
following formula is due to Steinberg [22]:

IZJFI
dimro-dim//

-wFi

PROPOSITION 1. Let x, S be as in Lemma 2 and let

1 -dims

_ -*- Y1 q

Let A = Gx/G°. For each a e A, let xa e CF correspond to the F-conjugacy
class of a in A. It is easily seen that

Now a e y4 is a coset of the form gG®, with g e Gx. As all maximal tori of Gx are
G^-conjugate, we can assume that g normalizes S. Let Wx = Nco(S)/Cco(S) be
the Weyl group of G° and let W'x = NG(S)/CGo(S). Then by Steinberg's formula,

-dimS-dimC,

and therefore

ir '^l = 1^ I 7 dims-dim C. V" 1
1 ' \W'\H ^ \VF\'

\vyx\ W6(C;|J I

In order to prove the proposition, it remains only to check that

1 y 1 1 y. 1

and this holds since Lemma 1 implies that the natural homomorphism W'x -» WM c

is surjective.

REMARK. Consider cMC as a rational function of # and c^^jIG77! as a poly-
nomial in q (q = pe, e e N*). Then they don't depend on the characteristic. For
E7, E% and F4 they are therefore essentially contained in [12], [13].
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3. Non-distinguished nilpotent orbits

Let x G g be nilpotent and let C = G • x. Then all irreducible components of
C n u have the same dimension [14]. For w e W, let uw = u n wu. The following
properties are equivalent ([15], see also [21], [14]):

(1) dimG^ = 2dim 93? + dim T;
(2) dimC = 2dim(C n u);
(3) dim 93? = codimu(C n u);
(4) C contains a dense open subset of u w for some w e W.
Moreover, if w is as in (4), then B • u w is an irreducible component of C n u,

all irreducible components of C n u are of this form, and they all have the same
dimension.

Let P D B be a parabolic subgroup of G, let M D T be a Levi factor of P and
let U' = U n M. Suppose that x e m, and that M • x contains a dense open
subset of u' n wu' for some w e WM. As u' n wu' = UWGWMW, B • (u' n "V) is
an irreducible component of C n u. Therefore dim C = 2 dim(C n u)
= 2 dim B • (u' n "'u'). But 5 is the semidirect product of B n M and UP. For
any j e M • x n u' we have By = (B C\ M)y{UP)y and dim(UP)y = dim(UP)x.
Moreover, two elements y, y' of M • x n u' are in the same 5-orbit if and only if
they are in the same (B n M)-orbit. It follows that

d i m 5 ( u ' nwu ' ) = dim(B n M) -(u' n "'u') + dimUP • x.

As dim M • x = 2dim(5 n M) • (u' n "it'), we get finally.

PROPOSITION 2. Suppose that x e m is nilpotent and that dim Mx — 2 dim 93^
+ dim T. Then: dim G • x = dim M • x + 2 dim UP • x, dim Gx = dim Mx +

Assuming dim Afx known, we need therefore only to compute dim(C/P)x to get
\CF\. For this we use the following result.

PROPOSITION 3. For any x e m, (UP)X is connected.

We may assume that x e m n b and that 7 contains a maximal torus 5 of Mx.
Since A/ D C C ( S ) , it is clear that S is also a maximal torus of Gx and 5X. Any
irreducible component of Bx contains therefore an element which normalizes S,
hence centralizes S since B is solvable and connected. Hence every irreducible
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component of Bx meets CG(S) c M. But the semidirect decomposition
B = (B n M)UP gives a similar decomposition Bx = (B n A/).,.^).,.. As every
irreducible component of 5X meets M,(UP)X must be connected.

COROLLARY. Lef X e mr and let |(£/P)£| = ?d. 77ien dim(t/P)x = J.

APPLICATION. Using the Appendix with q = p, we can compute dim(f/P);c, and
hence dimG^ and \(G • x)F\ for x nilpotent non-distinguished in g, assuming of
course that the nilpotent orbits are known for Levi factors of proper parabolic
subgroups of G. For this paper, this has been done with the help of a computer
for E-, and Es. What was actually computed was |C//| and |(f/ n M)x\. The
semidirect decomposition with the help of a computer U = (U O M)UP gives
then | ( ^ ) ^ | = |t// |/ |(t/ n A/)f |.

4. The case of F4

If G is of type F4 and /> = 3, there are 12 non-distinguished nilpotent orbits, as
in characteristic 0. Let C be one of them. With the notation of the previous
paragraph, we can find P (# G), M and x e m n C i n such a way that d.w\(UP)x

can be computed very easily (by hand), with the following exception for which
some care is needed. For the class A2 + A1 (A2 short, A1 long), the computation
requires an explicit knowledge of the constants in the commutation formulae. We
can use those listed in [13]. In all cases we find that the non-distinguished orbits
have the same dimension as the corresponding orbits in characteristic 0.

In particular, with the classes we have so far it is not possible to have
dim 93 J = 0, 1, 2 or 4. But in this case we know that the number of nilpotent
orbits in g is finite [17]. Richardson orbits are therefore defined. Starting with a
parabolic subgroup having a Levi factor of type 0 , Av Ay + Ax or A2 + Ax, we
get a nilpotent orbit CP such that dim 93 J = 0, 1, 2, 4 respectively for x e CP.
This gives 4 distinguished nilpotent orbits. Comparing with the case of large
characteristic, we find that we have already q4* F-stable nilpotent elements. We
have therefore all the nilpotent orbits in g. The distinguished orbits being
Richardson orbits, we see also that theorem 2 holds for G.

5. Induction for nilpotent orbits

Induction for nilpotent orbits is the following operation. Let P be a parabolic
subgroup of G and let M be a Levi factor of P. Let x e m be nilpotent and let
C = M • x. Assume that dim Mx = 2 dim 23^ + dim T. The induced orbit in g is
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the nilpotent orbit C which contains a dense open subset of C + u P. If x = 0, C
is the Richardson orbit defined by P. In [10] the corresponding situation for
unipotent elements is investigated, and the finiteness of the number of unipotent
classes implies the existence of the induced class. We cannot use this argument
here, but we still have:

(1) If C exists, then all the properties described in [10] hold. In particular, if
jc G (x + uP) n C, then Px c MXUP, G? = P? and dimGj = dim Mx = 2 dim 33?
+ dimT.

(2) If there exists x e x + u ? such that dim Px < dim Mx, then the induced
orbit C exists and x e C.

If G is an exceptional group, induction can be computed explicitely as follows.
We assume that Levi factors of proper parabolic subgroups of G have only
finitely many nilpotent orbits, that these orbits are known, and that induction
inside their Lie algebras is known.

Let 5 be a maximal torus of Mx and let L = CG(S). If C exists, there is an
element x e. (x + uP) n C such that 5 contains a maximal torus S of Gx. Let
G = CC(S), P = Pr\G,M = MDG. Then P is a parabolic subgroup of G, M is
a Levi factor of P and the unipotent radical Up of P is UP n G. Now x e (x +
UP)C\Q = X + UP. Therefore C contains a dense open subset of x + uP. As
C n g is a single G-orbit, G • x must be the orbit of g induced from M • x c m.

There are only finitely many subgroups H of G which contain L and are Levi
factors of proper parabolic subgroups of G. For each of them, let xH be an
element in the orbit in I) induced from the orbit (M n H) • x c m n i). If
dim Gx = dim Mx for some H, then C = G • xH. If no such H exists, the induced
orbit is distinguished or does not exist.

We shall use this information to find the distinguished orbits in g. There will
only be a finite number of them, and induced orbits will therefore exist.
Moreover, it will turn out that with one exception, for each d e N there is at most
one distinguished orbit of codimension d in g (G exceptional). If we are not in this
special case we can then clearly find the induced orbit.

The exception occurs with Es when p = 2 and d = 22. We have then two
distinguished orbits. As they will both be obtained by induction, the correspond-
ing representations of W in Springer's parametrization can be determined [10],
and this allows to compute induction in the remaining cases where dim Mx = 22.

REMARK. The method described above works also for unipotent classes of
exceptional groups, with the advantage that the difficulty with E%, p = 2, d = 22
doesn't occur. This method seems to be more systematic than those devised so far
(see e.g. [15]).
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6. Construction of distinguished orbits

For E7 and E% in bad characteristic we don't know yet that the number of
nilpotent orbits is finite.

Let C1,...,Cm be the non-distinguished nilpotent orbits in g. The number
£ls.i<m\Ct

F\ can be viewed as a polynomial in q. The results obtained so far allow
to compute it for E7, and also for Es once we have representatives for the
distinguished nilpotent orbits in the case of E7. If the number of nilpotent orbits
is finite and Cm+x,..., Cn are the distinguished ones, let x, e C, and dt = dim Gx

(m < i < n). Thanks to a result of Springer [19], we have

where N = |<E>+|. This gives n — m and dm+l,.. .,dn (up to permutation).
Let Z», = \ (dt — dim T). We shall obtain the distinguished orbits by the

process of induction, and this will ensure that dimC?x = 2 dim 99 £ + dim T
(m < i < n), so that ft, = dim 99 J..

If the characteristic is 0 and C is a distinguished orbit, there exist a parabolic
subgroup P of G such that C contains a dense open subset of u P (that is C is a
Richardson orbit). Moreover there is a canonical choice for P, up to conjugation
[2]. In bad characteristic we can take the corresponding class of parabolic
subgroups and the associated Richardson orbit. This orbit, the existence of which
is not obvious at this stage, turns out to be distinguished. We call such orbits
standard distinguished orbits. The corresponding values of bt are all distinct (for
exceptional groups). For E7 and E% they are

£7: 0,1,2,3,5,7;

£8: 0,1,2,3,4,5,6,7,8,10,16.

In bad characteristic we expect the following additional values:

E7,p = 2:6;
E7,p = 3: none;
Eg, p = 2: 7,9,13 (notice that 7 is repeated);
£„,/>=-3: 11;
EB,p = 5: none.

Comparing with characteristic 0, we find that for some non-distinguished
nilpotent orbits dimGx is larger than expected. For example, if G is of type E7

and p = 2, the orbits A3 + A2 and A6 give stabilizers of dimension 37 and 21
respectively, instead of 35, 19. For A3 + A2 the difference (in the number of
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F-stable nilpotent elements) is made up by an extra distinguished orbit in D6, and
the extra distinguished orbit in g (with b{ = 6) should make up for A6. In
characteristic 0 the orbit A6 is the Richardson orbit corresponding to the
parabolic subgroups with Levi factors of type A2 + 3AV In characteristic 2 the
extra distinguished orbit should be the corresponding Richardson orbit in g.

In a similar way we find that for E%, p = 2, the extra distinguished orbits in g
should take the place of D1 (bt = 7), D7(ax) (Z>, = 9) and D5 + A2 (bi = 13). For
Es, p = 3, the extra distinguished orbit should take the place of An.

As in paragraph 3 we shall use the computer to calculate \UZ
F\ for various

elements z e uF, in view to find dimUz. As Uz can now be disconnected, we get
only the following

Test. Let d e N. If \UZ
F\ < qd+\ then dim(/2 < d.

On the other hand it is clear that if dimf/2 = d, then \UZ
F\ < qd+1 if q is large

enough. In this paper it will be enough to take q < 5 to get the required results.

We describe now how to get distinguished orbits.
Choose a parabolic subgroup P of G, a Levi factor M of P and a nilpotent orbit

C in m in such a way that in characteristic 0 the induced orbit would be the
expected one. We can take P maximal, P 3 B, M 3 T, and we choose x e CF

such that B and T contain respectively a Borel subgroup and a maximal torus of
Mx.

Let H = MJJp. We find a suitable subset £ C { \ E $ | ^ £ U J , } such that
V = Y-xeE^Xx is H-stable (see however the remark at the end of the paragraph).
Then H acts on Y = (x + uP)/V. This action should be easy to work with. For
y e x + uP, let? = y + F e Y. Then Py c Hy We are interested in the follow-
ing special cases.

Case 1. We can find y e x + u£ such that H° <z U and dimt/,, «S dim Afx.
Then the induced orbit C exists, it is distinguished, y e C and G^ c t/.

Case 2. We can findy e x + Up such that
(i) the orbit ofy is dense in Y.
(ii) Let /iT = H-. Then A"°/R«(^°) is either a torus or is of type Av

(iii) B, 7" contain respectively a Borel subgroup and a maximal torus of K.
Using the method described in paragraph 5, we check first that the induced

orbit, if it exists, is distinguished. This shows that there exists a dense open subset
ofy + V consisting of distinguished elements. Let d = dim Mx.

(a) If K°/RU(K°) is a torus, it is enough to find z e y + VF such that
dimUz < d. Indeed, by semicontinuity the set Vo— {v e V\dimUy+v < d) is
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then open dense in V. There exists therefore a distinguished element x e y + Vo.
Then K? c G? O B c U. Therefore dim K-x = dim Ux < d, as required.

(b) If K°/RU(K°) is of type Ax, we show first that there exists z e y + VF

such that dim U2 < d - 1. Then Fo = { v e F|dim Uy+V ^ d — 1} is open dense in
V. If jc G _y + Fo is distinguished, then ^ is unipotent, and therefore dim Kx <
dim Ux + 1 < d, as required.

(c) If # °/.Ru(A"0) is simple of type Ax, we proceed as in (b). Let e = dim V and
let Co = K- x. Then |C0

F| = (?2 - l)qe~2. For z ' 6 ) i + 7 , z ' « Co, we must
therefore have dim Kz. > d + 2, and also dim t/r, > d. This shows that z e G • Jc.

Notice that in cases 1 and 2(c) we get an explicit representative for the
distinguished orbit, but not in cases 2(a) and 2(b).

It will be convenient to write E = {X e ^*|̂ x G UP a nd X € E}.

EXAMPLE. If C is a distinguished orbit in m, let a be the unique element of A
such that Xa e u^. We take E = {a}. We are in case 1, with y = x + Xa. The
corresponding situation for unipotent elements is discussed in [10].

This gives already standard distinguished orbits for the following values of 2>,:
E,: 0,1,2,3;
is8: 0,1,2,3,5,7 (assuming that the case of En has been successfully dealt with).

REMARK. If E' 3 E and V = T.XeE-kX\ n a v e properties similar to those of E
and V, we can choose y' e x + u£ in the same way as y is chosen in case 2, and
then restrict our attention to the action of K' = Hy ony' + V and (y' + V)/V,
where y' = y' + V. In particular it is sufficient now for V to be ^'-stable. We
write also E' = (A e <b\Xx e u,, and A € E'}.

7. Standard distinguished orbits

Let G be a group of type E6 and consider the following elements of g:

x(1) =

x(2) =

x<3> =

x(4) _

Y 4-^10000 T

0

+ -^00011
0

^11000 "*•
0

+ ^00110

0

0

+ X0OUl

-^00001 "*"
0

+ ^00100

0

~*~ ^00111
0

0

0

"*" ^01210

-^11000
0

"*" ^01110
0

-^01100

A00111 "*" ^01210

-^11100
1
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Their orbits are respectively E6(a3), A4 + Ax, D^{a{) and 2A2 + Av Let
x = JC<() (1 < / < 4). Then B, T contain respectively a Borel subgroup and a
maximal torus of Gx. Let u = nx>o*x(cx)- Suppose that u e Gx. Then:

(a) if i = 2,
cooooi = 0 => CQQOH = 0 .

o0 0

(b) if / = 3,
C00001 = C00100 = C00110 = C00111 = "•

0 0 0 0

Moreover, if / = 1, then Gx° c U. If / = 4, then G?/RU(G°) is simple of type
Alt and

(LoioooLoooioLooooo) i s a subgroup of Gx of type Ax.
V 0 0 1 ' x

These statements follow easily from results in [17] and the commutation
formulae.

If now G is of type E7 or Es, we consider the elements above as elements of g in
the obvious manner.

We have already constructed some standard distinguished orbits in the previous
paragraph. The remaining ones correspond to bt = 5,1 for E7, and bt = 4, 6, 8,
10,16 for Es. The characteristic is assumed to be bad.

(A) For E7 we must find representatives to be able to carry on with Eg. In both
cases we take M of type £6 and

w, _ / 0 0 0 0 0 1 \ v ' - Y + y

(the notation is the same as in paragraph 6).
b, = 5. Let x = x(2),

F _ F/ , ,/000011 000111 \
t ~ t u \ o ' o /•

Taking

y = y' + ^oooin,
0

we are in case 1 of paragraph 6, as can be seen in particular from the remarks at
the beginning of this paragraph. The inequality dim Uy < dim Mx is obtained with
q = p. Thus the induced class C exists, y e C and G® c U.

b, = 1. Let x = x°\

F _ w M / 0 0 0 0 1 1 0° 0 1 1 1 001111 \
b~E u \ o ' o ' o /•

T a k i n g

w e a r e in c a s e 1. W e c a n u s e q = p. T h u s C exis ts , j e C a n d G ° c U.

y — y + AQQQQJJ + A o o l l l l ,
o o
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It follows that B contains a Borel subgroup of Mx and MX/RU(MX) is of type
3J4X. An easy computation with the commutation formulae shows that if u =
n A > o*x(c A )e Mx, then

C0010000 = C0000000 = c0010000 = 0 -
: O i l

/ / follows that we can take

=[0000001 0000011 00001110001111 0011111 0011111 \
\ 0 ' 0 ' 0 ' 0 ' 0 ' 1 /•

We are then in case 2(a). We use

y = x + oomi ooi
o o

z=y, q=p.

8. Non-standard distinguished orbits

For E-j it remains to construct one non-standard distinguished orbit if p = 2;
for Eg, three non-standard distinguished orbits if p = 2, and one if p = 3.

In each case the proof that B, T contain respectively a Borel subgroup and a
maximal torus of Mx is omitted. One can use arguments similar to those invoked
in the case of the standard distinguished orbit in Es for which b{ = 16.

(A) For E-j, we take M of type D5 + Av with

x ~ -*111000 ~*~ -*011100 "*" -^011000 "*" -*001100'
0 0 1 10

in the orbit (A2 + 2AX\ 0 ) . Let L be the subgroup of M generated by

•^100000' -^oioooc -^oooioo a n d -^oooooo-
0 0 0 1

Then Lx is simple of type Av We also have

•^000001 C ™x>
0

and M?/RU(M?) is of type 2AV Let

000010 000110 000011 000111 \
0 ' 0 ' 0 ' 0 / '

y — x + Xooouo + Ar
000011,

o o

We are then in case 2(c). We can use

y = x + .

z=y + X00UU, q = 2.
o

Thus C exists and z e C.
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(B) Suppose now that G is of type E% and/? = 2.
bt = 7. Let M be of type D7 and let

x ~ -^0110000 "*" ^0011100 + ^0001110 + ^0111000 "*" ^0011000 "*• ^0000111'
1 0 0 0 1 0

in the orbit 2A3. Then

( ^0010000-^0000010 )V 0 0 'x

is of type^j, and M°/RU(M°) is of type^x. We can take

£ = 11000000 \

We are in case 2(c). We can use

y - x + Xl0OO0OO,
o

y + XU22100, q = 2.
I

Thus C exists and z G C.
bt = 9. Let M be of type D5 + A2 and let

X ^1111000 "*" ̂ 1110000 "*" ̂ 0121000 + ^0000011'
0 1 1 0

in the orbit (3^4^ Ax). Then

(-̂ oooiooo-̂ ooooooo I
V 0 1 '

is of type Ax,

ioo
o

and M°/RU(M?) is of type 2AV We can take

F _ / 0000100 0001100 \
E-\ o ' o /•

We are in case 2(b). We use

y — x + Xooonoo,
o

z — y + -XQOOOHO 4- Ar
0011111 +

o o i

q = 2.

bt = 13. Let M be of type E1 and let
X = ^1111100 + ^0111110 •*" ^1111000

0 0 1

"*" ^0111100 "*" ^0011110 + ^0121000'
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in the orbit A 3 + A 2 + A v Let L' z> T h e a Levi factor of the parabolic subgroup
of G generated by B and

^1110000-

A direct computation shows that

o I
0 ' x

is of type Ax, and M°/RU(M°) is also of type Av We can take

P_/0000001 0000011 0000111 \
\ 0 ' 0 ' 0 /

We are then in case 1 with

y — X + -^0000011 + ^0000111-
0 0

The required inequality is obtained with q = 2.
(C) Let now G be of type Es with p = 3. We must find a distinguished orbit

with bt = 11. We take M of type D5 + A2 and
X ~ ^1111000 + -^1110000 + ^0121000'

0 1 1

in the orbit (7>AX; 0) . Then M°/RU(M°) is of type A2 + 2AX and the factors Ax

are given by

^0100000
0

and

\ ^0000000^0001000 I •V 1 0 ' x

We take first

P>=(0000100 0001100 0000110 000111 0000111 0001111 \
\ 0 ' 0 ' 0 ' O ' O ' 0 / '

with

y — x + Agoomo + -A ooo
o o

We can take

w, . . / 0 0 1 1 1 0 0 0111100 0011100\
= E u \ o ' o ' i /

and we are in case 2(c). We use

y = y' + ^0111100 + ^0011100' Z = y + ^0011111' 9 = 3 .
0 1 0

Thus C exists and z € C.

REMARK. In the case of Es,p = 2, it remains to show that the two distinguished
orbits C, C" we have constructed for bt = 7 are distinct.
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Let M be of type E7 and let C1 c m be the distinguished M-orbit for which
b{ = 7. In paragraph 6 we have constructed a distinguished orbit C in g by
inducing C1 from m to g. Since G/P is complete, C = G • (C1 + uP). The
elements in Cx + uP are all contained in C or in the closure of the distinguished
orbit in g for which bt = 8 (this follows from results in [10] and the way this orbit
is obtained in paragraph 7). If the orbit D7 is contained in C, it must then be
induced from an orbit C2 c Cx with C2 of codimension 2 in Cv The only
possibilities for C2 are D6(a2) and E6(a3), and they cannot give D-, by induction.

The orbit Z>7 of G is therefore not contained in C. But it is obviously in the

closure of the distinguished orbit C constructed in this paragraph. Thus C # C.

9. The classification of nilpotent orbits

In paragraph 6 we have defined standard distinguished orbits. More generally,
for x e / , let S be a maximal torus of Gx and let M = CG(S). We say that the
orbit of x in g is standard if M • x is a standard distinguished orbit in g. Let
dx = dimGx. If x is standard, we can also define d° to be the dimension of the
centralizer of a corresponding element in characteristic 0.

We have proved

THEOREM 3. Let G be of type E-, or Eg and let x e J/~. As above let S be a
maximal torus of Gx and let M = CG(S). Then:

(a) If G • x is standard, then dx = dx, except for the orbit D4 + A2if G is of type
Es and p = 2, in which case dx = dx + 6, and in the following cases where

dx = d°x + 2:

E7, p = 2:A3 + A2, A6;

E8, p = 2:A3 + A2, A6, D5 + A2, Z>7, ^ ( a j ;

Es, p = 3: A7.

(b) If G • x is non-standard, we are in one of the following cases.
(i) p = 2, M is of type D6, dx = 37 (resp. 72) if G is of type E1 (resp. £„) and

M • x is the only non-standard distinguished orbit in m.
(ii) p = 2, M is of type E7, dx = 19 (resp. 40) if G is of type E7 (resp. £g) and

M • x is the only non-standard distinguished orbit in m.
(iii) p = 2, M is of type D7, dx = 56 and M • x is the only non-standard

distinguished orbit in m.
(iv) p = 2, M = G is of type Es and G • x is one of the three non-standard

distinguished orbits in g. Moreover the possible values for dx are 22, 26, 34.
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(v) p = 3, M = G is of type 2s8, dx = 30 and G • x is the only non-standard
distinguished orbit in g.

REMARK. In [16] a different approach is used, and the orbits listed in part (a) of
the theorem appear as the 'new' orbits, and those in part (b) as corresponding to
orbits existing in characteristic 0.

We have proved also

THEOREM 4. Let G be of type F4, with p = 3. Then all nilpotent orbits in g are
standard, and dx = d® for all x e J/~.

Appendix

The Computation of Centralizers in Finite/^-groups

The computational problem encountered above was the following. We are given
a finite /7-group G of order q", where q is a power oip, which acts in a prescribed
manner on an elementary abelian /?-group N, also of order q", and we want to
calculate the order of the centralizer in G of various elements of N. In fact G is a
unipotent subgroup of one of the finite Chevalley groups E7(q) and Eg(q), in
which case n is 63 or 120 respectively, and N is the underlying vector space of the
corresponding Lie Algebra. The relevant values of q are 2, 4, 3 and 5. Equiva-
lently, we are asking for the centralizer of an element of N in the semidirect
product GN, and so we can consider this problem as a special case of the problem
of computing centralizers of elements in finite ^-groups. An efficient algorithm
for doing this and for computing conjugacy classes in /^-groups is described by
Felsch and Neubuser in [6]. In fact, we used a somewhat simpler method, which
would probably be slower in general, but was adequate for these particular
examples. We shall now give a brief description of this method.

It is convenient to define our p-group P by means of a power-commutator
presentation. This means that we have generators xv x2,...,xn of P, where
\P\= p", such that

1 c (Xl) c (Xl, x2) c • • • c (Xl, x2,...,xn) = P

is a central series for P, and we are given the values of the commutators [*,, Xj]
(i <j) and the powers xf. Then every element x e P has a unique expression of
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the form

(0 < < , < / > ) >X = X'

which we call the normal form of x. We assume that the commutators and powers
are given in their normal form. Then these commutators and powers can be used
in the so-called collection process (see, for example, [24]) to put an arbitrary word
in the x( into normal form. This collection process can be carried out very
efficiently on a machine, and it forms the basis of most computer algorithms for
dealing with nilpotent groups. In the normal form for x given above, we will call
x'j the leading term of x, where j is maximal such that ij ¥= 0. Note that the
leading term of an element is not changed when we replace the element by a
conjugate.

In our specific example, P = GN, the generators of G and N are in one-one
correspondence with the positive roots of the Lie Algebra En or Eg. If g and h are
generators of G corresponding to roots <j> and if/ respectively, then [g, h] # 1 if
and only if <j> + \p is also a root, in which case [g, h] = k ± 1, where k corresponds
to the root <f> + 41- The same rule applies to the action of G on TV. Furthermore,
the /7 th powers of all of the generators are trivial. This, together with the fact that
all commutators have length 0 or 1, renders the collection process particularly
easy in this case. (Of course, in the case q = 4, the number of power-commutator
generators of G is really twice the number of roots, and commutators may have
length 2 in these generators.) The chief difficulty pertaining to the input of this
data was the sign in the expression [g, h] = k ±1, which is only a problem when/?
is odd. The essential condition to be fulfilled here is that the relations in the
presentation should be consistent, which means in effect that the associative law
(xtXj)xk = Xt(xjXk) should be valid for all i,j and k. Values for these signs were
originally taken from Table 12, at the end of Mizuno's paper [12]. The computer
was then used to check consistency, and about six errors were found and
corrected.

Now suppose that we wish to find generators of the centralizer of an element t
in P. We assume that, at the ith step of the computation (1 < / < « ) , we have
already found generators of the centralizer of t in (xl,... ,JC,-_1^, and we want to
find out whether or not there exists xtw e C(t), for some w e (xl,... ,*,•_!). If
so, then [xt, t] and [w1, t] will have the same leading term, and so we will keep a
record of the leading terms that can occur as commutators with /, at each stage.
At the /th stage, we either find an element xtw e C(t), or we find a commutator
[x,w, t] for which the leading term generator has not occurred previously, and we
record this commutator. We shall now write down this algorithm more precisely.
C will be the set of generators of C(t), and, for 1 < / < n, b[i] will be an element
of P with [b[i], t] = c[i], where c[i] has some power of xt as its leading term.
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Begin Set C = 0 andc[i] = 1 for 1 < / < «;
For i = 1 to n do
Begin Put y = x,;

Loo/?: P u / z = [ j , f ] ;

If z = 1 then replace C by C U { y} e&e

Begin Let x" be the leading term of z;

Ifc[j] = 1 then put c[j] = z and b[j] = y else

Begin Let xj1 be the leading term of c [ j ];

Put I = -n/m (mod p) and replacey by yb[j]1;
Goto Loop;

End;
End;

End;
End.

Using an implementation of this algorithm written in Burroughs Algol on the
B6700 machine at Warwick University, a typical process time for the computation
of the centralizer of an element in the case E%, with q = 3 or 4 was 10 seconds. It
was rather longer than this in a few bad cases in which the elements b[j] and c[j]
grew unusually long, but, owing to the simple nature of the power-commutator
presentation, this did not happen very often. The Felsch-Neubuser method is
completely different, and works downwards through the successive factor groups
in the central series for P, rather than upwards through the subgroups, as we are
doing here. We suspect that the downwards method would be ultimately more
efficient if more complex presentations were involved.
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