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Abstract. For many diffeomorphisms of a compact manifold X, eventual conditional
hyperbolicity implies immediate conditional hyperbolicity in some (possibly new)
Finsler structures. That is, if A and B are vector bundle isomorphisms over the
mapping / of the base X, such that lim,,^ ||A"|| ||B"|| = 0 uniformly on X, then there
exist new norms for A and B such that \AX\ \BX\ < 5 < 1 uniformly on X, whenever
the mapping / satisfies the condition that there exist infinitely many JV>1 such that
any /^-invariant Borel measure is /-invariant. For example, this condition on /
holds if any one of the following conditions holds: (1) / is periodic; (2) / is periodic
on its non-wandering set; (3) / has a finite non-wandering set (for example, / is a
Morse-Smale diffeomorphism); (4) / is an almost periodic mapping of a connected
base X; (5) / is a mapping of the circle with no periodic points; or (6) / and all its
powers are uniquely ergodic. We consider various types of eventually conditionally
hyperbolic systems and describe sufficient conditions on / to have immediate condi-
tional hyperbolicity of these systems in some new Finsler structures. Thus, for a
sizable class of dynamical systems, we settle, in the affirmative, a question raised
by Hirsch, Pugh, and Shub.

0. Introduction
In [6], the results of a series of papers by the authors on the structure of hyperbolic
sets for diffeomorphisms are gathered together and presented as a unified theory.
One technical aspect of [6] concerns the definition of hyperbolicity, whether immedi-
ate normal hyperbolicity or eventual normal hyperbolicity is the primary structural
property to consider. While immediate normal hyperbolicity is simpler to use,
eventual normal hyperbolicity turned out to be all that is needed to prove the main
theorems in [6]. It was, and still is, unresolved whether these two notions are
identical, up to a change of Finslers or norms. In this paper, we study this question
in an abstract setting and prove that it is frequently the case that these two types
of hyperbolicity are the same. In fact, just knowing that certain spectral properties
hold for the base mapping / is enough to guarantee the equivalence of these two
notions for all conditionally hyperbolic systems over the base mapping /. We have
divided the presentation into three sections. In the first two sections, the abstract
problem and most of the main theorems are formulated and proved. This section
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628 J. Rosenblatt and R. Swanson

requires no real knowledge of differentiable dynamical systems and is mostly an
application of ergodic theory and topological dynamics to our main problem. The
third section contains our results for differentiable dynamical systems and for the
relationship between immediate and eventual normal hyperbolicity of sets for
diffeomorphisms. We hope that the general formulation of the problem as we present
it in § 1 will attract some people to studying this problem who might not have
otherwise considered it, and that this will lead to more complete theorems and
examples than we have been able to provide.

1. Conditionally contractive systems
Let X be a compact Hausdorff space and let £ be a continuous vector bundle over
the base X with fibres Ex isomorphic to some fixed Banach space B. Let / : X -» X
be a homeomorphism and let A: E -» E be some vector bundle isomorphisms over
/. That is, there is a continuous mapping A on X such that each Ax, xeX, is a
linear isomorphism from the fibre Ex onto the fibre Efix). As usual, for each n>0,
the composition

^Vu)^/""1!*) • • • Ax

will be denoted by A"+1.
We assume that the vector bundle is given a Finsler structure; that is, a continuous

choice of norms || • ||x on the fibres Ex is given. If ux e Ex, then \\ux\\x will usually be
denoted by \\ux\\.

(1.1) Definition. The system (/, A, \\-\\) is contractive if there exist some n a: 1 and
0 < S < 1 such that for all x e X and ux e Ex, we have

||AXNs|kl|. (D
The system (/, A,||-||) is immediately contractive if there exists 0 < 5 < 1 such that
for all xeX and uxeEx, we have

||A,MX| |£8| |IIJ. (2)

This first proposition is easy to prove.

(1.2) PROPOSITION. The following are equivalent:
(a) the system (/, A, \\ • ||) is contractive;
(b) limn_0O||A"|| = 0 uniformly on X;
(c) there exist constants C > 0, 0 < 5 < 1, such that

\\A"ux\\ =s C8"||ux|| for allxeX and ux e Ex.

This shows that whether or not a system (/, A, ||||) is contractive does not depend
on the choice of Finsler structure, while the system's being immediately contractive
in addition does depend on the Finsler structure. As was pointed out by J. Mather
[9] in the context of differentiable dynamics, given a contractive system (/, A, ||-||),
one can always choose a new Finsler | • | for which the system (/, A, \ • |) is immediately
contractive. To do this, define

rA(x) = limsup||A;||1/n for all xeX.
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Then when (/, A,||-||) is contractive as in (1.2c), we have

rA(*)<5 f o r x e X

Choose any A, S < A < 1, and define a new Finsler by

\ux\= I IIAXH/A".
n = l

Because rA s 8 < A, this series converges uniformly and defines a new Finsler on the
bundle E. Notice that A can be chosen arbitrarily close to S and that, by compactness
of X, the sums defining the new Finsler can be chosen to be finite sums.

We are primarily interested in two-variable versions of this type of renorming
problem. We assume that we have two systems (/, X, E, A, \\-\\A)

 a nd
(/, X, F, B, || • ||B) over two vector bundles E and F with the same base X. The fibres
in E and F are not necessarily isomorphic and there are different Finslers given
for the two vector bundles.

(1.3) Definition. The system (/, A, B) is conditionally contractive if there exist n ^ l
and 0 < 5 < 1 such that for all x e X and ux e Ex, vx e Fx, we have

l|A?«J|BXiNS|k||K||. (3)

The system (/, A, B) is immediately conditionally contractive if there exists 0 < S < 1
such that for all x e X and ux e Ex, vx e Fx, we have

||AIMx||||BxDx||sa||«x||||t)I||. (4)

Here again, a system (/, A, B) is conditionally contractive if and only if there exist
some constants C > 0 and 0 < S < 1 such that

\\An
x\\\\B"x\\^CS" fora l l*eX;

and this property is independent of the Finsler structures on E and F up to choosing
a different value of C. However, whether the system is immediately conditionally
contractive depends strongly on the Finslers which are used. It should be noticed
that if (/, A, B) is conditionally contractive, then it need not follow that either (/, A)
or (/, B) is contractive.

The problem we wish to solve generally is whether, given a conditionally contrac-
tive system (/, A, B), we can choose new Finslers for E and F for which the system
is immediately conditionally contractive. This problem was first considered by Hirsch,
Pugh, and Shub in [6] where it arises when studying hyperbolic sets for diffeomorph-
isms, and they made a few remarks on this general problem; see § 3 for a discussion.

First, we look at a case that is easily handled for all base mappings /. Even so,
this takes care of many quite complicated dynamical systems.

(1.4) THEOREM. Suppose that the system (/, A, B) is conditionally contractive and
that AorB has rank one. Then there are new Finslers for E and Ffor which (/, A, B)
is immediately conditionally contractive.

Proof. Suppose the fibres Fx are one-dimensional. For each x e X, choose a vector
exeFx with ||ex|| = 1. While we might not be able to choose (ex) continuously, the
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functions

*-H|B;ex||
are continuous. Choose C > 0 and 0 < S < 1 such that

||AX
1||||BX

1||<C8" f o r a l l n a l .

Let S < A < 1. Define a new norm | • \x on E by

l«xl= I \\An
xux\\\\B

n
xex\\/K"

n = l

for all ux € £x. Since the terms in the sum are continuous, this defines a new Finsler
on E. For ux e Ex and vx e Fx, we have

|Ax«x|||Bxi;x|| = I ||A7wAx

= I ||Ar1«J||B;(x)(£xi;x)||/A'1

<A|ux|||t;x||. D

It is reasonable to try to adapt Mather's construction directly to more general
conditionally contractive systems (/, A, B). This requires a solution of the following
question.

(1.5) Problem. When do there exist continuous functions y A >0 and •yB
>0 on X

such that
(a) yA(f(x)) = yA(x),yB(f(x)) = yB(x) forxeX;
(b) T .Wy B W<l forxeX;
(c) there exists N> 1 such that ||A2||< yA(x) for all n>N,xeX;
(d) there exists JV> 1 such that ||B;||< y%(x) for all n>N, xeX?

Suppose that (a)-(d) hold. Then define new Finslers, for e > 0, by

l«xl= I \\An
xux\\/(yA(x) + eV, \vx\= I \\Bn

xvx\\/(yB(x) +s)"

for all u x e£ x , vxeFx. These series converge uniformly on X by (c), (d) and so
define Finslers for E and F. By (a), we have, for all ux 6 Ex, vx e Fx,

By (b), if e > 0 is sufficiently small, the system (/, A, B) is immediately conditionally
contractive in the new Finslers | • |.

The next proposition is an application of the technique above. We get this
proposition in § 2 also, but not by this argument.

(1.6) PROPOSITION. Suppose f is periodic and the system (/, A, B) is conditionally
contractive. Then there are new Finslers for E and F for which (/, A, B) is immediately
conditionally contractive.
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Proof. Suppose fN+i(x) = x for all x e X. Then

It is easy to see from this that

= lim\\A
k-*oo

k\\l/k

exists for all xeX. Indeed, (SA{x))N+1 is just the usual spectral radius of A*+1:
Ex -* Ex. Also, since the sequence

decreases to 8A
+1 (x) pointwise on X, the function 8A is upper semicontinuous on

X. Similarly

•8B(x) = lun)\Bk
x\\

l/k

k-»oo

is upper semicontinuous on X. Since the system (/, A, B) is conditionally contractive,
there exists C > 0 and 8 > 0 such that

for all x € X and n > 1. So

for xeX. It is an easy consequence of the compactness of X and the upper
semicontinuity of 8A and 8B that, for all e > 0, there exist continuous functions y\
and yB on X such that

SA s y ^ , S B < r L and y^(x)y},(x)<S + e

for all x € X. The functions yA and TB may not be /-invariant, so define
/N+l \

y2A(x) = ( n 7A(/"(x)) I
\n=0 /

and
Af+l

for all x e X. Then yA and y% are /-invariant. Since 8A and 5B are /-invariant, we
still have

SA^JA, &B^7B, and ylyl^S + e.

Now let -yA = y2
A + e and yB = y | + «• For e > 0 sufficiently small, yA and yB satisfy

(a) and (d) of (1.5). •

The class of periodic maps / seems to be the only one to which this argument easily
applies. But it is reasonable to hope that for some dynamical systems in which the
underlying mapping is ergodic, a technique along these lines might give renorming
theorems; however, there is a serious technical difficulty in this approach. Assume
that (i is some /-invariant Borel probability measure on X. Such measures always
exist, but not always with the support of /* being all of X. Of course, even in this
case, the mapping / may not be ergodic for fi (e.g. classical dynamical systems, see
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[1]). In any event, Kingman [7] has shown that a.e. [/A] xeX, the orbit spectral
radius lim,,_oo||A"||1/" exists. This is the reason that for any system (/, A), there
exists at least one point xeX such that limn-»ao||A"||1/n exists. If (X, /A, f) is ergodic,
then lim^collA"!!17" is also constant a.e. [/A] (see [7] and [11]). Assume that (X, fi, f)
is ergodic and that the support of /A, denoted supp (/A), is all of X. Let rA be the
constant with rA = limn_Oo||A"||1/'1a.e. [/A]. Let AA>rA and define a new norm for
ux e Ex by

l«xl= I \\A"xux\\/\A. (5)
n = l

Although | • | is defined a.e. [/A], it does not necessarily extend to a continuous Finsler
structure on E. To do this, we would need a stronger convergence property than
that given by the subadditive ergodic theorem.

(1.7) Definition. Let (X, (j., f) be ergodic with supp (/x) = X. Then the system (/, A)
has a uniform spectral radius if, for all e > 0, there exists 7V> 1 such that

\\A"\\^(rA + e)" for all n>7Vand xeX.

It is easy to see that the system (/, A) has a uniform spectral radius if and only if,
for all e > 0, there is a Finsler structure on E with |Ax\ s rA + e. By considering the
case that A has rank one, one can see that / must be uniquely ergodic in order that
every system (/, A) should have a uniform spectral radius. However, it does not
appear likely that unique ergodicity of / is enough to guarantee that every system
(/, A) has a uniform spectral radius because the counterexamples in [4] show that
there is no uniform subadditive ergodic theorem for uniquely ergodic mappings /
of the base X. At least, if / is uniquely ergodic and A is a continuous direct sum
of rank one bundles, then (/, A) does have a uniform spectral radius. Using Finslers
as in (5), the next proposition follows directly from definition 1.7.

(1.8) PROPOSITION. Let (/, A, B) be a conditionally contractive system and suppose
that both (/, A) and (/, B) have uniform spectral radius. Then there are new Finslers
for E and F for which (/, A, B) is immediately conditionally contractive.

There is another type of renorming problem which also appears in [6]. This type
of conditional hyperbolicity is different from the usual notion of hyperbolicity of a
diffeomorphism.

(1.9) Definition. Let (f,A,B,C) be a system of three different vector bundle
isomorphisms. The system is conditionally hyperbolic if there exists 0 < 5 < 1 and
n > 1 such that for all xeX, uxe Ex, uf-(x) e Ef-M, Vf(x) e Ff-M, and wx g Gx,

WuMiB-'tyMVr^SlluMvrwl (6)
and

x\\* S||«/"(*)||K||. (7)
The system is immediately conditionally hyperbolic if there exists 0 < 5 < 1 such that
for all xeX, uf(x)eEf(x), vfMgFf(x), and wx€ Gx,

^ ^ ^ u M v ^ l ( 8 )
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and

\\(A-%x)Ufa\\\Cxwx\\^S\\Unx)\\\\wx\\. (9)
We are again most interested in whether, given a conditionally hyperbolic system
(/, A, B, C), there exist new Finsler structures for E, F, and G which makes the
system immediately conditionally hyperbolic. This question poses even more difficul-
ties in general than the one we have been considering. For instance, we do not
know an analogue of theorem 1.4 when B and C are both rank one. In the case
that / is ergodic with respect to a probability measure //. on X having full support,
there is an analogue to proposition 1.8. We need lemma 1.10 first.

(1.10) LEMMA. Suppose f is ergodic with respect to a regular Borel probability measure
fj. with full support. Let (/, A) be a system over the base X. Then for a.e. [/i] xeX,
we have

and

Proof. We know that there are constants a, /3, and y with

im ||A;»(x)a = lim \\A"x\\
Un, p = lim \\Ax

n\\1/n and y= lim | | A ; - » | | 1 / n

n-*oc n*oo n>oo

for a.e. [n]x e X. This is seen by Kingman [7] using the isomorphisms A, A"1, and
A*. Here A and A"1 both act on the original vector bundle E while A* acts on
the dual bundle E* with fibres E*, the dual space of Ex; moreover A"1 and A*
both act over the mapping f'1 of the base X.

There must exist a compact set K ^ X, /J.(K) > 0, such that the functions (||A£||1/n:
n > 1) converge uniformly to a on K. Hence, for all e > 0, there exists iVs 1 such
that if n > N and x e K, then

Since n(K)>0 and / is ergodic, for a.e. xeX, infinitely many iterates f~m{x) are
in K. Choose such an x0 e K and an m > N. Then

This shows in particular that ye(a(l — e), a( l + e)) by letting m-»oo through a
subsequence of whole numbers depending on x0 e K as above, but an x0 which also
satisfies

lim ||A;-,Uo)||
1/n = y.

So a = y. Moreover, we have

since Ap-"(Xo)A~o
m is the identity on the fibre E^. Hence
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Since this is true for a.e. [fjL~\xoeK and infinitely many m>n depending on x0,
letting m ̂  oo for a suitable x0 shows that 1 s «(l + e)p. Letting e -> 0, we see that
l<a/3.

Remark. It may seem somewhat surprising that

X
a.e. [/*]. However, it should be realized that if fcn/n-»oo as n-»oo, then lim,,.,.*,
||A"-'-n(X)||

1/'1 does not exist a.e. [fi] in general. Take the case where E has rank one
and consider the corresponding statement as an additive statement as discussed in
[3, corollary 3.9].

(1.11) THEOREM. Suppose (X,n,f) is ergodic with supp(fi) = X. Assume that
(f,A), {f,A~l), {f,B~l) and (f,C) have uniform spectral radius. If (f,A,B,C)
is conditionally hyperbolic, then there are new Finslers for E, F, and G for which
{f, A, B, C) is immediately conditionally hyperbolic.

Proof. We assume that we have a system (/, A, B, C) which satisfies the condition:
there exist C > 0 and 0 < 5 < 1 such that for all x e X and n > 1,

||AX1 ||JB7-»(JO|| <C5", \\Ar\x)\\ | |C;||<C5". (10)

To prove the theorem we show that by increasing S slightly and using new Finsler
structures on E, F, and G, we can have (10) with the constant C = 1.

Let a, p, b, and c be constants such that a = lim,,^ ||A;||1/n, fi = lim,,^ ||AJn||1/n,
Z> = limn^oc ||BJnir/n, and c = limn^ \\C"\\1/n for all xeX0 where /t(X0) = l. By
(10), ab < 8 and )8c < S. Choose s > 0 small enough that

(a + e)(b + e)<l and

Define Finslers on E, F, and G by

l«xl= I \\A"xux\\/(a
n=0

X \\Cxwx\\/(c + e)n,
n = l n = l

for all xeX,uxe Ex, vx e Fx, and wx e G r As in theorem (1.8), these series converge
uniformly over the base X. For all xeX,

\B-x
x\*b + e, \Cx\

Also, we claim that
\Ax\sa + e and |AJ

Once this is established, we have the system (/, A, B, C) immediately conditionally
hyperbolic in the new Finslers because of the choice of e > 0 above.

Fix xeX and uxeEx. Then we see that

l)xux\\/((3 + e)n+l

n=0
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But lemma 1.10 showed (a + e)(/3 + e )>a)8>l . Hence

Similarly, if x e X and ux e Ex,
l )\ux\. D

2. Renorming and invariant measures
We turn now to a related construction of new Finsler structures from old ones that
has much greater flexibility in general and can be used in situations that we have
not treated so far. Suppose that || • || is a Finsler norm for the vector bundle E, and
let A be a vector bundle isomorphism over /. An obvious way to attach new norms
to E which are sensitive to the behaviour of ||A"|| is to choose some continuous
functions {an(x): n = 1, . . . , N} on X, 0< an(x)<oo for all xeX, n = 1, . . . , N,
and then define, for ux e Ex,

k l = I an{x)\\An
xux\\.

n = \

Since the series used in all the previous constructions of new Finslers may be taken
a posteriori to be finite sums, we see that the above definitions are direct generaliz-
ations of the previous construction. It turns out that, assuming that the underlying
homeomorphism / has certain spectral properties, then for any conditionally contrac-
tive system (/, A, B), there are suitable choices of the coefficients above such that
one has new Finslers for which the system is immediately conditionally contractive.

Let us denote the operator of composition with / by 7}: C(X) -* C(X) given by
Tf(h) = h°f for h e C(X). We need to consider T on C(X) and also its dual on
M(X) = C(X)*, the space of regular Borel measures on X with total variation
norm. If Tf :M{X)^M{X) is the dual of 7}, then

for all Borel sets A<=X and /u.eM(X). In the remainder of this section, we will
be particularly interested in the point spectrum of Tf, a specific property of this
spectrum being that which allows us to carry out the constructions to follow. For
the sake of discussing the spectrum of 7} and Tf, complex scalars C will be used.
Recall that A e C is in the spectrum cr(5) of an operator S if A7 - S is not invertible.
Since 7}-'° 7} = I, it is easy to see that o-(Tf) = o-(Tf) is a closed subset of the unit
circle T1 = {A eC:|A| = 1}. The point spectrum o-p(S) of the operator S is the set of
eigenvalues. The residual spectrum o-r(S) consists of all A e a(S)\ap(S) for which
the range of A/ - S is not dense, and the continuous spectrum crc(S) = o-(S)\(ap(S) u

(2.1) Definition. A homeomorphism / : X - » X is cyclotomic if there exists JV>1
such that for each n>N, the point spectrum o-p(Tf) contains some n'th-root of
unity A ^ l .

In one form or the other, the negation of this spectral property is the one that we
need; the mapping / is non-cyclotomic if there exist infinitely many n such that the
only n'th-root of unity in crp( Tf) is 1. For instance, we will see that if / has periodic
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points of all orders, then / is cyclotomic. However, / can have no periodic points
and still be cyclotomic. The following proposition is worth observing here.

(2.2) PROPOSITION. For any homeomorphism / : X -»X, crp(Tf) = crp{Tf)u ar{Tf).

Proof. If Aecrp(T*)> then there exists a measure /U,GM(X) , /tt#O, such that
Tf y, = X/x. Then for all h e C(X),

1 dfi=O.

Hence, either A / - 7} is not one-to-one and A € <TP(T{), or A / - 7} is one-to-one,
but does not have dense range (because its range is annihilated by fi) and A e o>( 7}).

Conversely, if A e crr(Tf), then there exists fj. 5*0 in M(X) such that

(Afc-7}(fc)) a > = 0
x

for all h € C{X), and so A e ap(Tf). If A e ap(Tf), there exists h0 # 0 in C(X) with
Tf(h0) = A/i0. Let M c X b e a minimal closed /-invariant subset of X. Let /* be any
/-invariant measure with supp (/*) = M. Then let

v(L) = [ K
JL

for all Borel sets Lc X This gives v e M(X) satisfying Tf (v) = Kv. Also if ho(x) * 0
for some xeM, then i' ̂  0. We see then that A e o-p( Tf) or fi0 = 0on all minimal
closed /-invariant subsets of X The latter is impossible since h0 ̂  0. Indeed, for
any xeX, there exists a minimal closed /-invariant set M, yeM, and a net (na) of
whole numbers with lima/"°(;c) = y. Applying this to the equation ho°f = A7I0 shows
that

Since |A~| = 1, this forces ho(x) =0, and so ho = O. Hence, o-p(7})c crp(T* ). •

The actual usefulness of the class of non-cyclotomic mappings comes from the next
result.

(2.3) PROPOSITION. Fix N > 1. The following are equivalent:
(a) there exists 0 # fi e M(X) such that £ n = 0 T*"/A =0;
(b) tfiere e;risfs 0 ̂  /A e M(X) such fhaf T*N^p = /J. while Tfp ^ y,\
(c) there exist v ̂  0 and some (N+l)'st-root of unity A # 1 vvj'tfi T'jfi' = AP;
(d) the linear subspace (I^= o 7>(/J): heC(X)} is not dense in C(X).

(2.4) COROLLARY. 77ie mapping f is non-cyclotomic if and only if one of the following
two equivalent conditions holds:

(a) for infinitely many N > 1 , any /xeM(X), which is fN-invariant, must be
f-invariant;

(b) for infinitely many 7V> 1, the subspace {Zn=0 Tf{h): he C(X)} is dense
in C(X).
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Proof of (2.3). The equivalence of (a) and (d) is just the usual duality argument, a
subspace S^ C(X) being not dense if and only if there exists 0 ̂  /i € M(X) with
J/idM=Oforall heS.

Suppose that (a) holds. Then
N N+l

77o= I 7>V= I 77V-

So T*v+1/x = /i, but Tfn / n since /A 5* 0. So (a) implies (b). On the other hand if
0 * n 6 M(X) with T?> * fi and T*™/* # /M, then

f
' n=O

Since /* - Tffj. # 0, (b) implies (a). Assume (c). Then
N / N \

I T ; « I / = ( I A " ) p = o - p = o
n=0 \n=0 /

because A # 0 and A is an (N+ l)'st-root of unity. Hence, (c) implies (a). Conversely,
if (a) holds, then let A be any (N+l)'st-root of unity. Let

*A= I A "77-/1.
n=0

Because Z n = 0 T*nn =®> w e n a v e T*N+iv =M- Hence
N _ N

TfVk=L ^ T,»+i/i = A X A Tjr"+i/t = At\.

We claim that for some A 5* 1, the measure *\ 5*0. Indeed, suppose all vk =0. We
then have a system of N +1 linear equations in the AT +1 unknowns

(Tf-fi: n=0,...,N)

whose coefficients matrix is A = (AQ': i, 7 = 0, . . . , N) for some primitive (N +
l)'st-root of unity Ao. Because (A;

o: j = 0, . . . , N) are distinct, the van der Monde
determinant det A # 0. Hence, solving this system of linear equations would force
all Tfru = 0, n - 0, . . . , N, which is not the case. •

We describe the class of non-cyclotomic maps with examples following the next
theorem. This theorem is the main result of this section.

(2.5) THEOREM. Let f:X->X be a homeomorphism which is non-cyclotomic. If
(/, A, B) is a conditionally contractive system, then there are new Finslers for E and
F for which (/, A, B) is immediately conditionally contractive.

Proof. Let us fix some M > 2 such that

(K'||||2??||)1/N<y<l
for all xeX and N>M. Choose N > M and some functions {an: n = 1, . . . , N}
and {bn: n — l, . . . , N} in C(X). Define new Finslers on E and F by

N N

l "* l = Z flfiWII^""*!! and |Uc|= Z M*)||-B"i>x||
n = l n = l

for all x e X, uxe Ex, and vx e Fx. We look for criteria on the coefficient functions
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which allow us to have

|Axux||Bx©x|:£y|ux||ux| (11)

for all x € X, uxe Ex, and vx e Fx. Now

\Axux\ |Bxex| = I I am(f(x))bn(f(x))\\Arlux\\\\B
n

x
+1vx\\.

m = l n = \

In trying to overestimate this by y\ux\ \vx\, we match terms with the same factor
||̂ 4!T+1Wx|| | |B"+1^| | and impose on {an} and {bn} the appropriate inequalities. Those
terms with factors ||A™+Iux|| ||B"+It?x||, where one of m or n is N, are then compared
with earlier terms in the double sum representing \ux\ \vx\ in a cyclical fashion. These
comparisons give us the following system of inequalities (Ijk-; j , k = 1, . . . , N) as
criteria for (11) to hold:

In- al(f(x))b1(f(x))^ya2(x)b2(x)

I12: ai(f(x))b2(f(x)) < ya2(x)b3(x)

I1N.1:a1(f{x))bN-1(f(x))^ya2(x)bn(x)

hN:a1(f(x))bN(fM)\\B^+1vx\\sya2(x)b1(x)\\Bxvx\\.

hi- a2{f{x))bx{f{x)) < ya3(x)b2(x)

| s yax(x)b2{x)\\Axux

INN: aN{f{x))bN(f{x))\\AN
x
+lux\\ \\BN

x
+1vx\\< yaMbMWAM \\Bxvx\\.

Now let us impose the condition that an(x)bn(x) = nm a constant, where we choose
TTN = 1 and all nn, n = 1, . . . , N—l, such that

\\A7\\\\B^\\<yVl<y2^2<- • • < yN-I
1rN_1 < yNirN.

This is possible because ||A^|| ||B^||< yN uniformly on X. Also, this choice makes
the inequalities /,,, i = 1, . . . , N, hold automatically. Furthermore, the remaining
inequalities can now be expressed in terms of just {an} and {TT,,}. Notice that we
have now implicitly assumed that all of the functions an satisfy an (x) > 0 for any x e X.

Let an(x)= In (an(x)), n = l, . . . , N. Let us consider the inequalities INi,
i = 1, . . . , N— 1, in terms of {an}. Notice that

llAr^J/llA^ll^llA^II if ux*0.
Also yvi+i/iTi > 1 for i = 1,. . . , AT-1. Hence to have INh i = 1,. . . , N-1, holding
on X, it would suffice to choose

aJ V( /U))-a l ( / (x))-a1(x) + o,-+1(*) + ln \\A?(x)\\ (12)

uniformly close to zero simultaneously for i = 1, . . . , N— 1. If we do this, then

ar,(/(x)) - aN(f(x)) + a,(x) - a,-+1(x)
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is uniformly close to In ||A/Jx)||. But \\Bf[x)||/ ytrx < 1/||A#X)|| on X and so

-In ( | |2#x ) | | /ym)>In ||A#x)||.

This means that we would have

a,( /(x))-aN(f(x)) + ax(x)-al+1(x) + ln (B%x)\\/y*-,)

uniformly close to In ||A/^x)||+ln fll-ff/oo 11/y^i) which is strictly less than zero on X.
That is, in satisfying INh / = 1 , . . . , JV— 1, in this particular fashion, we automatically
get 7,N» / = 1 , . . . , N — 1 , being satisfied too.

Moreover, if expression (12) is uniformly close to zero, then taking these N — l
approximations in pairs, we would get for i, ; = 1, . . . , N — l

a,{f(x)) - «,(/(*)) - al+1(x) + aj+1(x) (13)

uniformly close to zero. Taking the exponential of this approximation, we see that
we have, for i, j = 1, . \ . , N-1,

a,(/U))ay+ 1(x)/a,(/(x))a,+i(x) (14)

uniformly close to one on X. Because yjriJrXl Tr{ > 1 for i = 1 , . . . , N — 1, this means
that all the other inequalities l{j are satisfied too.

Hence, it only remains to construct au..., aN € C(X) such that the expressions
(12) are uniformly close to zero, and then a, = exp(ai) will give the required
au...,aNe C(X), at > 0 on X, i = l,...,N. Abstractly, this is an approximation
problem of the following type: we are given a continuous function

fe(x)—ln||A#x)||

defined on X; when can we assert that the vector (h,h,..., h)e®"liC(X) is in
the uniform closure of the subset S c 0^= /C(X) which consists of all (N — 1) -tuples
of the form

(TfaN - Tfax - a, + a 2 , . . . , TfaN - TfaN^ -ax + aN)

for some a1,...,aNe C(X)? It is easy to check that S is in fact a subspace of
®nZiC{X). Also the dual space of © ^ C f X ) is @^~lM(X) with the usual
coordinate-wise pairing. By duality then, we find that a t , . . . , aN exist such that
(12) is uniformly close to zero if we have for any /JLU ..., /^JV-I e M(X),

N-l f

ifO= £ (TfaN-Tfan-ax + an+1) dfin for all au ..., aN 6 C(X),
n=l Jx (15)

then Mn = 0 foralln = l , . . . , N - l .
By collecting terms with a common an, we see that condition ( 1 5 ) o n / * i , . . . , fiN-x

becomes the conditions:

= 0, (16)

; = 0 , (17)
and

Hn-Tf»n+1 = 0, n = l,...,N-2. (18)

By (18), /*, = T*.-i/in, n = l , . . . . N - l . Hence (16) or (17) says that

; 7o. (19)
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We see then that since / is non-cyclotomic, there exists N > M such that (19) is
only satisfied for /u,, = 0. But then (18) forces fj.n = 0 for n = 1 , . . . , N-1. Therefore,
the expression (12) can be made uniformly close to zero for such values of JV. As
we have explained, this finishes the proof. •

Remarks. This construction of new Finsler structures can be modified so that if E
and F are Hilbert vector bundles to begin with, then the new Finsler structures can
also be taken as induced from inner-products. This is true in addition for all the
renorming arguments in § 1. Also, the argument shows that when ||A"|| ||B"||s CSn

for some C > 0 and 0 < S < 1, and if y > S, then there are new Finslers with
\AX\ \BX\ < y. Again this aspect of the construction above is also common to all the
other arguments.

It seems difficult to identify our spectral property with a specific class of dynamical
systems. For this reason, we choose only to identify some special classes of homeo-
morphisms which are non-cyclotomic. Recall that x e X is non-wandering if for all
open sets V<= X, xe V, there exists some n > l such that / " (V)n V*0. The set
of non-wandering points of / is denoted by ilf. We say / is strongly-ergodic if each
fk, k = 1, 2, 3 , . . . , is uniquely ergodic.

(2.6) PROPOSITION. The homeomorphism f is non-cyclotomic if either of the following
two conditions hold:

(a) / is periodic when restricted to its non-wandering set;
(b) / is strongly ergodic.

Proof. For (a), let /x^O, T*N+iH=fi. Then /J. is fN+1 -invariant and hence
supp (fi) <= flf. Say fM = / on Clf. Then if AT = kM, k = 1,2,3,..., any fN+l- invariant
measure /A is also /-invariant. For (b), there is only one probability measure
/iO£ M{X) which is invariant for any (or all) fk, k = 1, 2, 3 , . . . , ; hence, any
/^-invariant measure n must be c/i0 for some scalar c. •

Remarks. From (a), any Morse-Smale diffeomorphism of a smooth compact mani-
fold is non-cyclotomic, as is any map with a finite non-wandering set. This includes
a generic set of diffeomorphisms of the unit circle; see [10]. Despite this fact and
theorem 2.5, we can not show that when X = T1, then any conditionally contractive
system (/, A, B) can be given new Finsler structures in which it is immediately
conditionally contractive.

(2.7) COROLLARY. The homeomorphism f is non-cyclotomic if either of the following
two conditions holds:

(a) X is T1 and f has no periodic points;
(b) X is connected and f is almost periodic.

Proof. For (a), in [5], it is shown that when a homeomorphism / of the circle T1

has no periodic points, then / is uniquely ergodic. For (b), if / is a homeomorphism
of a connected base X and X is the minimal /-invariant set, then X is the minimal
/^-invariant set for all fe = 1, 2, 3 , . . . . Hence, (b) follows as in [5]. •
Remark. Corollary 2.7(b) says that if X is a connected compact abelian group with
a generator g, then f(x) = gx, x e X, is non-cyclotomic. Also, the above results can
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be used when ilf is a finite union of minimal closed /-invariant sets which are either
discrete or on which / is strongly ergodic. For instance, if / is a diffeomorphism of
the two sphere which has fixed north and south poles, attracts all other points
toward the equator, and acts as irrational rotation on the equator, then / is
non-cyclotomic.

(2.8) Example. We show how theorem 2.5 can be applied to provide renorming
for a homeomorphism / which is cyclotomic but which merely decomposes into
ones that are non-cyclotomic. This example can be generalized, but we do not do
this here for brevity's sake. Consider the mapping

f(zl,z2) = (z1z2,z2)
for (zi, z2) e T2. The mapping / is an automorphism of T2 and preserves the Haar
measure on T2, but it is not ergodic because it leaves invariant every circle Tw =
{(z, w): z e T}. Indeed, on Tm f is either periodic or ergodic in the usual Lebesgue
measure on Tw, depending on whether w is a root of unity or not. Also {Tz: z e T1}
foliates T2 into circles. Now let (/, A, B) be a conditionally contractive system. For
each woe T1, there exist Finslers on the restricted bundles of E and F over each
base Tw such that the system (/, A, B) is immediately conditionally contractive over
the base Tw. Indeed, if there are constants C > 0 and 0 < 5 < 1 such that

HA;I|||B;I|S cs-
for all xeT2 then 1.6 and 2.5 show that, for each woe T1 and e>0 , there are new
Finslers such that

\Ax\\Bx\<{8 + e)n for all x e TWo.

By continuity, we can extend these Finslers to some tubular neighbourhood

T(wo,e)=\J{Tw:dist(w,wo)<e}

of the circle TWo, if e = e(w0) is sufficiently small, and still have with respect to these
new Finslers, denoted by |HI(Wo>e), for all xe Tw with dist (w, w o ) s e,

for all n > 1. Now the interiors of {T(w0, e): woe T1} cover T2; so there are a finite
number of them, say {T(wt, e,): i = 1 , . . . , m}, whose interiors cover T2. Let
{<t>j: i = 1 , . . . , m} be a partition of unity on T1 which is subordinate to the cover
given by the interiors of {w: dist (w, Wj) < e,}. Define new Finslers on E and F by

for all u(z, w) € Ei2i w), u u w) e F(2j w). It is easy to check that in these Finslers (/, A, B)
is an immediately conditionally contractive system with

for all x e T 2 and n > l .
There is another special type of conditionally contractive system for which all of

our techniques apply. Suppose (f,A,B) is conditionally contractive and (/, B) is
contractive. Can we choose new Finsler structures in which (/, A, B) is immediately
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conditionally contractive and simultaneously (/, B) is immediately contractive?
Because of the nature of our constructions, this turns out to be generally the case.
We have only to assume (or prove!) that there exists an isometry / over / for the
vector bundle E. We do not know if such an isometry always exists, but at least if
E is a Hilbert vector bundle, then / = A(A*A)~1/2 will be an isometry in the original
Finsler structure if A* is the usual adjoint on E.

(2.9) THEOREM. Suppose f is any mapping such that every conditionally contractive
system (/, A, B) can be made immediately contractive in Finsler structures for E and
F which are linear combinations of (\\A"-\\: n > l ) and (||B"-||: «> 1) respectively.
Suppose (/, A, B) is conditionally contractive with E admitting an isometry Jover F.
Then there are new Finslers for E and F in which (/, A, B) is immediately conditionally
contractive and (/, B) is immediately contractive.

Proof. Consider the vector bundle isomorphism A 0 J on the vector bundle £ 0 E .
Then the system (/, A0J , B) is conditionally contractive. So there exist new Finsler
structures on £ 0 £ and F in which (/, A 0 / , B) is immediately conditionally
contractive. Moreover, these new Finslers are linear combinations of
(|| AMI 01 | JM|: n > 1) and || BM|. By dividing the first new Finsler by the sum of its
coefficients, and multiplying the second by this same sum, we have new Finslers on

and F such that for some S, 0 < S < 1,

for all u\, u\ eEx and vxeFx. By choosing u\ or u\ to be zero, we see that in
these new Finslers (/, A, B) and (/, B) are immediately conditionally contractive.

•
It is reasonable to ask what the techniques of theorem 2.5 do for conditionally
hyperbolic systems (/, A, B, C). We have computed these with as much generality
as possible and found that there appears to be an essential breakdown in the
technique. Because our results are so partial for this question, we will state what
we found without giving a proof.

(2.10) THEOREM. Suppose that for all m > l , any /x e M(X) which is f2"-invariant
must also be f-invariant. Then if (f,A, B, C) is a conditionally hyperbolic system,
there exist new Finsler structures on E, F, and G such that (/, A, B, C) is immediately
conditionally hyperbolic.

It is still not clear to us what the general resolution of the renorming problem will
be. While our positive results provide some hope that every conditionally contractive
system is immediately conditionally contractive in some Finsler structure, there are
many natural mappings not included in the ones to which our techniques apply.
The difficulty in constructing a counter-example is in finding some way to tie the
constant C, in the estimate

| | A ; | | | | B ; | | S C « " f o r n > l ,

to some aspect of the system (/, A, B) which is intrinsic to it and not just an artefact
of the Finsler structure. Finally, it should also be remarked in looking for a
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counter-example that the class of homeomorphisms which admit a renorming
theorem are closed under continuous conjugate equivalence. Moreover, the spectral
property that we use for theorem 2.5 is preserved under just Borel conjugate
equivalence. Therefore, a homeomorphism may at first appear to be quite unlike
any we have handled, and yet be suitably conjugate to some simpler mapping.

3. Immediate normal hyperbolicity at invariant manifolds
The renorming problem addressed in the preceding sections was first raised in the
context of differentiable dynamics by Hirsch, Pugh, and Shub [6]. Specifically, from
the consideration of familiar notions of stability for fixed points and periodic orbits,
those authors were led to formulate various types of hyperbolic behaviour at an
invariant compact manifold. In that same source, the reader will also find a similar
treatment of flows and, more generally, foliations. It is clear that much of the
material of §§ 1 and 2 can be extended to flows, but we have not done that here.
In this section, we consider only discrete dynamical systems or diffeomorphisms.
Instead of considering arbitrary Finslers on the bundles as in the last section, here
we restrict our attention to Riemannian structures. Before contrasting the different
ways in which normal hyperbolicity can be expressed, we shall briefly discuss the
general problem of seeking 'adapted' metrics which display immediate hyperbolicity.

Let A c M denote a hyperbolic set for the self-diffeomorphism f:M^M. That
is, A is compact, /(A) = A, and for any Riemannian metric M, there are constants
C > 0 and 0 < A < 1, and there is a continuous vector bundle splitting TAM =
£ + © £ " of the tangent bundle of M restricted to A such that for all n > 0,

||T/"t;||<CA"H itveE+, (20)

||r/""u||<CA"||t)|| ift>e£". (21)

In the special case that A = M, we say that / is Anosov. Various authors have noted
that while the constant A is intrinsic (i.e. there is a smallest usable A independent
of the metric), the constant C is not intrinsic. Then, for Anosov diffeomorphisms
/, Mather [9] proved that one could always find an adapted metric for which C - 1,
but with a possibly larger A still less than 1. Thus, for some Riemannian metric | • |,
one could always assume that there was a constant A, 0 < A < 1, such that

\Tfv
\Tf—i.

ifveE+, (22)

iiveE-, (23)

in place of (20) and (21) above. Mather's proof can be simplified greatly by analyzing
the natural action of / on the Riemannian metrics. Denote the original metric by

r; so

yx(vx, vx) = \\vx\\
2 for all vx e E+

x.

Then we have,

(/*?)*(«!, v2) = ynx)(TfVl, Tfv2)

is a linear action on the metrics. Conditions (20) and (21) imply that for someJV> 1,

f%y(v, v)<y(v, v) foralli>££+.
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That is, y — f%y is a positive-definite symmetric tensor on E+. But

k=0

and therefore, y+ = Zfc=0 /£y is a metric on E+ with

y+(Tfv, Tfv) < y+(v, v) for all v e E+.

A similar argument with /^ ' in place of f^ yields a metric y~ on E~ with

y~(Tfv, Tfv) < y~(v, v) for all v e E~.

The adapted metric we want is y = y+0y~. This proof generalizes to any hyperbolic
set Ac M. Also, obviously y+©y~ can be continuously extended off A to all of M.

If a hyperbolic set A is to enjoy any kind of stability under perturbation of /,
conditions (20) and (21) are not strong enough. A more vigorous type of hyperbolic-
ity is required; the set A must be normally hyperbolic. We will assume that A = P
is a compact smooth submanifold of M in the sequel. Now suppose that f:M->M
is a C1 diffeomorphism and there is a Tf- invariant bundle splitting which is con-
tinuous,

TPM = TP®NSP@NUP,

of TM over P such that TP is the usual tangent bundle of P and the normal bundle
splits r/-invariantly as the sum of the bundle NSP and N"P. As in [6], we adopt
the useful notation Pf = Tf\TP, Nsf=Tf\N*P, and N"f = Tf\N»P.

(3.1) Definition. The system (/, M, P) is immediately normally hyperbolic if for some
Riemannian metric || • \\x on TM, one has for all xeP,

(a) llNi/IMKPjnr";
(b) \\PJ\\k<\\(N"xf)-

l\\-1.
The criterion (a) on the system (/, M, P) says that the normal derivative Nsf is so
contractive that its growth rate along any given orbit is dominated by the minimal
rate of growth of the tangential map Pf along that orbit. A similar interpretation
can be made of (b). More picturesquely, in a moving coordinate system along an
orbit in P, one would observe points near to the orbit either approaching or receding
at exponential rates.

(3.2) Definition. The system (/, M, P) is {eventually) normally hyperbolic if for some
N > 1, the system (fN, M, P) is immediately normally hyperbolic.

The goal of this section is to prove that these two possible notions of normal
hyperbolicity are equivalent in a variety of rather general dynamical systems, by
using the results of the foregoing sections.

(3.3) Remarks. It should be emphasized that, save for the possible inequivalence
of eventual and immediate normal hyperbolicity, no weaker definition can be given
without destroying the stability of P under perturbations of the diffeomorphism /.
This is because of the persistence theorem of R. Mane [8]. Also a very strong version
of normal hyperbolicity, called 'absolute' normal hyperbolicity, is described in [6],
and has the property that 'eventual' implies 'immediate' in all cases. The reader
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should also bear in mind that the present question concerns, to some extent, a
topological invariant, as suggested in the remarks at the end of § 2. Finally, in [6],
the broader notion of an r- normally hyperbolic system is defined to handle the
stability of Cr-invariant submanifolds. In this section, we confine our attention to
the C1 case (which presents problems enough!).

(3.4) Definition. We call the invariant manifold P a sink if NUP = O, a source if
NSP = 0, and a saddle if NUP # 0 and NSP * 0.

(3.5) THEOREM. Suppose that (/, M, P) is normally hyperbolic and P is a sink or a
source such that any of the following is satisfied:

(a) codim P = 1;
(b) the systems (/, P/*1), (/, Nsf) and (/, N"f~') have uniform spectral radius; or
(c) f\P is non-cyclotomic.

Then (/, M, P) is immediately normally hyperbolic.

Proof. The cases (a), (b), and (c) were all discussed in the last section as situations
in which a system (/, A, B) can be rendered immediately contractive by a suitable
renorming. This proof proceeds by casting normal hyperbolicity as a contractive
hypothesis.

We first need to construct an appropriate contractive system. Assume that P is
a sink manifold, the proof for source manifolds being much the same. Pick some
Riemannian metric on TM with TP orthogonal to NP. Let E be given the product
metric. With respect to the given Riemannian structure on TP, we form the dual
bundle T*P in the dual Finsler structure. Then let E = T*PQ>TP in the product
metric. The isomorphism Pf~l induces a dual isomorphism P*f~x on T*P over the
base mapping / ; in the dual norm on T*P, P*f~" has the same norm as Pxf~

n. We
also need some isometry / of TP. It is easy to generate such an isometry. Let
T:TP->TPbe an isomorphism which covers /. Let T* be the adjoint of T as usual
for the Hilbertian Finsler structures. Then I =T(T*T)J is an isometry in the
original Finsler structure on E. Let A = P*/"1©/. Finally, let F = NSP and B = Nsf.
It is now easy to see that normal hyperbolicity means exactly that the system
(/, A, B) is conditionally contractive.

Now applying (a), (b), or (c) and the results of §§ 1 and 2, there exist new
Riemannian structures in which (/, A, B) is immediately conditionally contractive.
Indeed, we know that there is a Riemannian structure on F and a product Rieman-
nian structure on E, say with

|(H,i;)r = M? + |i;|?
for all (u, V) in T*P®TP, such that for all (ux, vx)eEx,

(\P*f-lux\i + \Ixvx\
2)\Bx\

2<\(ux,vx)\
2.

Moreover, by adjusting norms by the sum of the coefficients in each of the cases
(a), (b), and (c), as in theorem 2.9, we may assume |/xt;x| = |t;x| for all vxeTPx.
Setting vx = 0, we see that for all ux e T*P,
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Let | • | be the Riemannian metric on TP which is dual to | • |i on T*P. Then we have

\Ptf~1\\Bx\<l forallxeX.

Hence, for all xeX,

\Nj\<\pxr
ir.

Finally, letting ux = 0 above shows |B^|<1 because Ix is an isometry. These
conditions together give immediate normal hyperbolicity in the new Riemannian
metrics. •

Remarks. If dim P = 1, then in some new Riemannian structures,

But we do not seem to be able also to guarantee \Ns
xf\ < 1.

(3.6) THEOREM. Suppose that Pis a saddle and that (/, M, P) is normally hyperbolic.
Assume that one of the following holds:

(a) the systems (/, Pf±x), (/, Nsf), and (/, N"f~x) have uniform spectral radius;
(b) for every m > l , any {ftp)2™-invariant Borel measure on P is f\P-invariant.

Then (/, M, P) is immediately normally hyperbolic.

Proof. We use theorem 1.11 and theorem 2.10 as in the proof of theorem 3.5.

Remark. It should be noticed that this theorem applies to any mapping / which is
strongly ergodic on P. This includes any irrational rotation of a torus T". Also, f\P

could be a Morse-Smale diff eomorphism of P which has no periodic points of period
2m, m > 1. It does not seem likely that this extra restriction will prove to be really
necessary; it is only that dyadic periodic points are precluded by the hypothesis of
theorem 2.10.

One final remark about the uniform spectral radius condition would be appropriate.
Suppose (/, M) is a smooth dynamical system which preserves an underlying Borel
probability measure /A on M. Assume (f,M,fj.) is ergodic. In considering the
behaviour of Tf on the tangent bundle, the operator (T/)# on continuous vector
fields T(7M) has been studied by several authors. For background see [2]. The
question discussed in § 1 of which systems (/, A) have a uniform spectral radius,
becomes in this context the following problem: there is a number rA = lim^ooll Tf" ||1/n

which is the same for a.e. [/x] xeM; when is rA equal to the spectral radius of
T/#? Here we can show that Tf* has a spectral radius which is

sup{limsup||r/;| |1 /n:xGX}.
n-*oo

So our question is just this: for which diffeomorphisms is rA at least as large as
lim sup^o, || 772H1/n for all x e XI The answer to this problem would be very helpful
for proving renorming theorems as in this paper. It seems that one needs to know
much more about exceptional characteristics than is currently known in order to
answer this question.
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