
Proceedings of the Edinburgh Mathematical Society (1985) 28, 41-58

C*~ALGEBRAS OF INVERSE SEMIGROUPS

by J. DUNCAN and A. L. T. PATERSON

(Received 10th January 1984)

0. Introduction

There are various algebras which may be associated with a discrete group G. In
particular we may consider the complex group ring CG, the convolution Banach algebra
l^G), the enveloping C*-algebra C*(G) of l\G), and the reduced C*-algebra Cf(G)
determined by the completion of /'(G) under the left regular representation on 12(G).
There is a substantial literature on the circle of ideas associated with the embeddings

There is also a growing literature on the corresponding problems when G is replaced by
a discrete semigroup S with an involution. For an arbitrary involutive semigroup S we
may consider the embeddings

but at this generality it is not clear how we should define the left regular representation
on 12{S). There are good reasons for specialising to the case when S is an inverse
semigroup. The algebraic theory of inverse semigroups is well developed; moreover the
class of such semigroups is precisely (up to isomorphism) the class of star subsemi-
groups of the set of partial isometries on a Hilbert space. As noted by Barnes [1] the
Vagner-Preston representation of an inverse semigroup S as partial one-one mappings
on S lifts to give a (star) representation X of 5 and ll(S) on /2(S), and this is the
appropriate definition for the left regular representation. Wordingham [10] has recently
shown that X is always faithful on ^(S). Thus for any inverse semigroup S we may
consider the embeddings

as the complete analogue of the group situation.
The mapping Gi->C*(G) does not classify groups up to isomorphism (not even for

finite abelian groups); no more can the mapping Sh-*C*(S) classify inverse semigroups up
to isomorphism. Both mappings provide partial classifications as well as interesting
examples of C*-algebras. In his study of /X(S) for S an inverse semigroup, Barnes [1],
[2] provides some implicit information on C*(5) for some special classes of inverse
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semigroups. The second author [8] began an explicit study of C*(S) for the case in
which S is a Clifford semigroup. We here reconsider some of the problems discussed in
[8] and we also initiate a much fuller programme of study of C*(S).

In Section 1 we present the key definitions and some technical results in the setting of
an arbitrary inverse semigroup. We discuss the viewpoint on inverse semigroups as star
semigroups of partial isometries on a Hilbert space, and note some of the important
natural representations.

In Section 2 we specialise to the case in which S is a Clifford co-semigroup T, i.e. a
semilattice of groups in which the semilattice is (Z+, max). We identify C*(T) as a
generalized sequence algebra associated with the C*-algebras of the groups in T. For
such Clifford semigroups we show that T has weak containment (i.e. C*(T) = Cf{T)) if
and only if each group in T is amenable.

In Section 3 we consider general inverse co-semigroups Q, i.e. inverse semigroups
whose semilattice of idempotent elements is (Z + , max). We describe the (known)
structure of such inverse semigroups, and we reduce the study of C*(Q) and the problem
of weak containment for O to the case in which Q is simple (or more specially,
bisimple). This involves a detailed analysis of the Bruck-Reilly extension Q of a finite
union of groups T. For such fi we describe C*(fi) in terms of a short exact sequence

where / is the (unique) C*-tensor product of C*(T) and the compact operators on a
separable infinite dimensional Hilbert space, and where Gn is the maximal group
homomorphic image of fi. We show that Q has weak containment if and only if all its
subgroups are amenable.

In the course of obtaining structure theorems for C*(S) we often obtain structure
theorems for CS and most of the latter structure theorems may be generalised to FS, for
any field F, with isomorphism in place of star isomorphism.

1. Some general results

A semigroup S is an inverse semigroup if for each seS there exists unique s*eS with
ss*s = s, s*ss* = s*. From now on, S will always denote an inverse semigroup. A
convenient introduction to inverse semigroups may be found in Howie [4], but we
record here some facts that are fundamental to our study. The mapping si->s* is an
involution on S, i.e. s** = s and (st)* = t*s* for all sjeS. We denote by Es the set of
idempotents in S. Each idempotent of S is self-adjoint, and £s is a commutative
idempotent subsemigroup of S; in particular £s is a semilattice. An important
congruence on S is obtained by writing s~t if es = et for some eeEs. The quotient
semigroup S/~ is then a group and it is the largest group homomorphic image of S.
We write Gs for S/~, and we denote the canonical homomorphism by x'.S->Gs-
Evidently /(e) = l for all eeEs, where 1 is the identity element of Gs. S is said to be
E-unitary if /(s) = 1 implies s e Es. The structure of £-unitary inverse semigroups is well
understood (see McAlister [5] for a survey) and they are more readily analysed than the
others in the semigroup algebra setting (see e.g. [3]).

Inverse semigroups can always be viewed as semigroups of partial isometries on a
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Hilbert space. Recall that a bounded linear operator U on a Hilbert space Jf is a
partial isometry if UU*U=U. We write PI(J^T) for the set of all partial isometries on Jtf.
In the Vagner-Preston representation an element of an inverse semigroup S is
represented as a partial one-one mapping on S and hence may be represented as a
partial isometry on the Hilbert space 12(S) as follows. For seS let A(s) be the bounded
linear operator on 12(S) determined by

fst if s*st = t
Ms)t = <

[0 otherwise.

Recall that there is a natural partial order on S given by s^t if s = et for some eeEs

(equivalently s = tf for some feEs). When restricted to Es this gives the natural
semilattice ordering on Es, i.e. e^f if e = ef. Note that the condition s*st = t is
equivalent to the condition tt*^s*s. A representation of S on a Hilbert space J f is a
homomorphism n:S-*PI(JT) with n(s*) = n{s)* for all seS. (In fact if ir.S^T is a
homomorphism between inverse semigroups then the condition n(s*) = n(s)* is
automatic.)

Proposition 1.1.

(i) For any inverse semigroup S, X is a faithful representation of S on 12(S), called the
left regular representation.

(ii) If Sf is any star subsemigroup of Pl(Jtf') then y is an inverse semigroup.

Proof, (i) is immediate from the Vagner-Preston theorem (see e.g. Howie [4, page
135]).

(ii) Several elementary proofs are available. For a brief proof note that a non-zero
partial isometry has norm 1 and so an idempotent partial isometry is a projection. If
P, Q are projections with PQ a partial isometry then PQ is idempotent and so PQ = QP.
Thus y is a regular semigroup with commuting idempotents and so is an inverse
semigroup (see e.g. Howie [4, page 130]).

For an arbitrary inverse semigroup there are two other natural representations which
we note now. For a group G let A denote the left regular representation of G on l\G),
i.e. \{g)h=gh. Then A°x gives a representation of S on /2(GS). The universal represen-
tation of S is obtained as the direct sum of "all" representations of S (this is made more
precise below). For certain representations of S we can realise Gs as follows.

Proposition 1.2. Let n be a representation of S on 2?, and let 3#'00 = n{n(e)3tf':eeEs}.
Then niS)*^**. Let G ^ T ^ S ) ^ .

(i) Gn is a group homomorphic image of S.
(ii) / / 7i contains A°x as a direct summand, in particular if n is the universal

representation, then GK is (isomorphic to) Gs.

Proof. Let seS, ^eJ^fm, eeEs. Since s*eseEs we have £, = n(s*es)n for neJP. Then
s)£ = K(s)7t{s*es)n = n(ss*es)n = n(ess*s)n = n{e)n(s)n, so n(
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(i) Since rc(s)|*. .^(s*)!*. are isometries it follows that n{s)\#. is unitary, as required.
(ii) Let n contain A°x as a direct summand. Evidently /2(Gs)c1?f00 and so there is a

homomorphism from Gn onto Gs; but Gs is the maximal group homomorphic image of
S.

We now consider some of the algebras associated with S. CS is a (complex linear
associative) star algebra and is a dense subalgebra of the Banach star algebra ll(S).
C*(S) is the enveloping C*-algebra of the Banach star algebra /'(S). Barnes [1] showed
that /*(S) is an A*-algebra so that the maximal B*-seminorm | |° | | on /'(S) is in fact a
norm. For technical purposes later we take another viewpoint on C*(S) where we focus
on CS rather than ^(S). There is some ambivalence in the literature as to the definition
of a representation of an arbitrary star algebra A. One may define a representation to
be a star homomorphism n: A-*BL{J>if), where BL(3f) denotes the algebra of bounded
linear operators on a Hilbert space. More generally one may define a representation of
A to be a star homomorphism n:A^L(J^0), where L(^o) denotes the algebra of linear
operators on an inner product space Jf0. Palmer [7] calls a star algebra A a BG*-
algebra when the above definitions are equivalent, i.e. when every star homomorphism
n:A->L(Jtf'o) has the property that n(A)czBL(3^'o). (Such algebras were introduced
independently by Wordingham [11] under the name of uniform admissibility algebras,
his definition being in terms of positive functionals.) Wordingham [11] notes that CS is
a J3G*-algebra. (Let 7r:CS->Lpf0) be a star homomorphism. Then n(e)^I for eeEs. For
seS, £ e #e0 we have

so that 7i(s) e BL(Jf0) and so n(CS) c BL{jf0).) The above argument also shows that
^(aJl^Hall! for aeCS, where || o [̂  denotes the /'-norm. In other words we may equally
define C*(S) to be the completion of CS with respect to || ° ||, where

||a|| = sup{|7t(a)|:7r:CS-*L(,?f0) a star homomorphism}.

This elementary observation would be of no great consequence were it not for the
following useful facts about BG*-algebras which we list without proof (see [7] and
[11]).

Let A be a BG*-algebra. Then
(1) ||a|| = sup{|7r(a)|:7i:/l—*L{3^Q) a star homomorphism} is finite for all aeA and gives

the maximal B*-seminorm on A.
(2) If / is a *-ideal of A, then / and A/I are BG*-algebras. Moreover every star

representation of / extends to a star representation of A.
(3) If B is another BG*-algebra then A®B is a BG*-algebra.
To define C*(A) for an arbitrary BG*-algebra one has to factor out the *-ideal

{a:||a|| = 0}. In our applications this *-ideal is the zero ideal in all cases, so that C*{A)
is just the completion of A with respect to ||°||. The following Proposition ([7], [11])
will be fundamental in later sections.

Proposition 1.3. Let A be a BG*-algebra and let I be a *-ideal of A. In the following
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diagram, in which all mappings are the natural ones, each square is commutative and the
second row is exact.

0-> / -> A -* A/I ->0
i i i

)
The algebra C*(S) is sometimes called the full C*-algebra of S. The completion of

/X(S) (or of CS) with respect to the left regular representation norm, \X(°)\, is called the
reduced C*-algebra of S and is here denoted by C?(S). The left regular representation X
extends to a star homomorphism X:C*(S)->C?(S) and X is onto. Although X is faithful
on /'(S) it need not be faithful on C*(S). We say that S has weak containment if X is an
isomorphism.

For some purposes it is convenient to take a spatial viewpoint on C*(S) and for this
we use the universal representation. Since /'(S) need not have an identity nor even a
bounded approximate identiry (see [3]), some care is needed in defining the universal
representation. Since CS is a BG*-algebra every positive functional / on CS is
admissible, i.e. gives rise to a star representation ns on a Hilbert space 3tiff (by the usual
Gelfand-Naimark-Segal construction). Not every such / gives rise to a cyclic (i.e.
topologically cyclic) representation. The representation is cyclic if and only if / is
representable i.e. for some /c>0 \f(a)\2^icf(a*a)(aeCS). For representable / there is a
natural extension of / to a positive functional on the unitization of CS obtained via

We say that / is a state of CS if / is a positive representable functional with /(1) = 1.
The universal representation of CS, 7iu:CS->BLpfu) is the direct sum of all the star
representations nf over all states of CS, so that ^u = 'L®^Cf. The universal
representation of S is the restriction of nu to S. We note that, for a e CS,

||a|| = sup {|7i/-(a)|: / a state of CS}.

(Every star representation of CS is a direct sum of an essential representation and a
zero representation, and every essential representation is a direct sum of cyclic
representations each of which is unitarily equivalent to nf for some state / )

Any homomorphism o\S-*T is automatically a star homomorphism and extends to
star homomorphisms o:CS->CT,<r.ll(S)-+li(T), <J:C*(S)->C*(T). Unfortunately a need
not extend to a star homomorphism Cf(S)-*Cf(T), even in the case in which S,T are
groups. (For example let S = F2, the free group on two symbols, T=Z and let a be the
epimorphism obtained by mapping each of the symbols of F2 to 1 e Z). On the other
hand the extension to C?(S) is always possible for the canonical homomorphism
%:S->GS. This fact is implicit in the proof of Paterson [8, Proposition 4.1 (ii)=>(iii)] and
we list it for later reference.

Proposition 1.4. The canonical homomorphism x'-S-*Gs extends to a star homomorph-
ismX:Ct(S)-+Cr(Gs).
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2. Clifford co-semigroups

A Clifford semigroup is an inverse semigroup T which is a (disjoint) union of groups,
or, equivalently, an inverse semigroup on which each idempotent is central. Any
semilattice may act as the semilattice ET of a Clifford semigroup, but we shall here
confine our attention to the case in which ET is (isomorphic to) co where co = (Z + , v)
with

m v n = max{m,n}.

A semigroup S with Es = a> is called an co-semigroup. Some, but by no means all, of the
results which we present for Clifford co-semigroups have appropriate analogues for
arbitrary Clifford semigroups. We confine our attention to co-semigroups for two
reasons. The special case provides a useful introduction to the much more complicated
general case, and it is precisely the case which we need for the next section when we
consider arbitrary inverse co-semigroups. A discussion of C* -algebras of arbitrary
Clifford semigroups will appear elsewhere.

Throughout this section T denotes a Clifford co-semigroup. Thus T is a (disjoint)
union of groups, T = u{Gn:neZ + } and ET = {en:neZ+} where en is the identity element
of Gn. Note that the semilattice order on ET is the reverse of the usual order on Z + , i.e.
em ^ en if and only if m ̂  n. Throughout the paper, for m, n e 2. +, m ̂  n always denotes the
usual order, i.e. m —n^O. The product in T is described by a family of group
homomorphisms. For m^.n there is a homomorphism Qmn'Gn-*Gm, and {Qmn:m^n} is
a coherent family, i.e.

(i) Qnn is the identity mapping on Gn,
(") QmnQnk = Qmk for m^

For gmeGm,g'ne Gn we have

gmg'n=(Qjmgm)(Qjng'n)

where j = m v n and the product on the right takes place in Gj. The homomorphism
Qmn has an internal description in T by Qmngn = emgn=gnem. We note that e0 is the
identity element of T.

Our first aim is to identify C*(T) as a sequence algebra determined by the family
{C*(Gn):neZ+}. We recall from Section 1 that each Qmn extends to a (norm-decreasing)
star homomorphism {?mn:C*(Gn)-»C*(GJ.

Definition 2.1. For neZ+ let An be a C*-algebra with norm |° | n . Let
{Qmn:An->Am:m^n} be a coherent family of star homomorphisms. We denote by
^{An} the C*-algebra of all bounded sequences {xn}, where xneAn(neZ+), with
pointwise operations and supremum norm

We denote by ^{An} the C*-subalgebra of ^{An} consisting of all sequences {xn} such
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that
lim sup\xm-Qmnxn\m = 0.

n-* oo m £n

For each jeZ+ there is a natural (isometric) star monomorphism of Aj into
defined by ai->{xn} where

0 otherwise.

For T = u { G n : n e Z + } we apply the above construction with An = C*(Gn), the norm in
C*(Gn) being denoted by | | ° | | n . We regard CGm as embedded in C*(Gm) and hence in
#{C*(GJ} via the above monomorphism. Let T:CT->'£'{C*(Gn)} be the linear extension
of all the embeddings CGm->#{C*(Gn)}. We denote the norm in C*{T) by ||° and we
regard CT as embedded in C*(T). For aeCGm we must distinguish, a priori, a\\m and
||a||; fortunately these norms coincide.

Lemma 2.2. For aeCGm we have ||a|| = ||a||m.

Proof. The natural injection a: Gm -> T extends to a star homomorphism
a:C*(Gm)-+C*(r). Let /?:CT->CGm be the linear mapping determined by

mng" i f m-n

\ 0 otherwise.

For m^ivjwe have

Qmi vjgigj=(Qmigi)(Qmjgj)

and hence P(gigj) = P(gi)P(gj)- It follows that P is a star homomorphism and so extends
to a star homomorphism /?:C*(T)->C*(Gm). But P(<x(gm))=gm, so that a is one-one and
therefore isometric, as required.

Lemma 2.3 v.CT-*<£{C*(Gn)} is a star homomorphism with dense range.

Proof. Clearly x{a*) = x{a)* for aeCT. To show that T is a homomorphism it is
enough to show that

For n^.j v k we have

*(gjgk)n=Qnjvkgjgk

= (Qnjgj)(Qnkgk)
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and otherwise

Therefore T is a star homomorphism, and so is continuous.

Let {xn}enC*(Gn)}. Then

k

{*„} = T(X0) +

where

fO
V "— *

[xn-QnkXk n>k'

By the definition of #{C*(Gn)} we have IK l̂JIoo-̂ O as fc->oo. Since CGj is dense in
C*(Gj) it follows that T(CT) is dense in <<?{C*(Gn)}.

It is immediate from Lemma 2.3 that T extends to a star epimorphism
T:C*(T)-><£'{C*(G,1)}. We show now that T is an isomorphism; of the two proofs known
to us both involve some degree of computation.

Theorem 2.4. Let T be the Clifford co-semigroup {Gn:neZ + }. Then v. C*(T)-*^{C*(Gn)}
is a star isomorphism.

Proof. In view of Lemma 2.3 it is enough to prove that ||/i]|^||'^('')||c» f°r heCT,
h* = h, or equivalently that ^ ( ^ ^ ^ ( / J ) ! ^ for any star representation a of CT. Let
h = Ylj = ohj where hjECGj,hf = hj. Since ojCG. is a star representation we note that
^(a^fgllfljl^ for CG

We show that limB-,00|ff(/i
II)|1/1I^||T(/!)||a)-

 J n the expansion of h" the terms are
partitioned amongst CG0,CG1,...,CGk. By adding and subtracting terms we obtain the
following "homogeneous" expression for h", viz

whence

| o ( / i " ) | ^ | | / i o | | " o + t {\\Qjoho+ •- +hj\\j +\\Qj0h0+ ••• +Qjj-lhJ-1\\
t}.

J = I

Therefore

^ max
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\\Qkoh0+ ••• +**|UI&o*o+ •

This completes the proof.

Remark. Suppose that T is commutative, so that each group Gn is abelian. Let TA

denote the set of semicharacters of T. Then C*(T) is star isomorphic to C(TA), TA

being compact under the topology of pointwise convergence. The space TA is rather
intricate, but Theorem 2.4 gives a star isomorphism T : C * ( T ) - > ^ { C * ( G J } = <^{C(G1

A)} in
terms of sequences of continuous functions on simpler spaces.

We record here for later use some easy variants of Theorem 2.4. With the obvious
modification Theorem 2.4 holds for Clifford semigroups T for which ET is a finite
subsemilattice of a> (i.e. ET is a finite chain); for this case <^{C*(Gn)} consists of all finite
sequences. The concept of Clifford semigroup, i.e. semilattice of groups, may be
generalised to that of a semilattice of inverse semigroups. We restrict attention to the
case in which the semilattice is a>. Even for the co-case there are two possible concepts.
In the usual definition (see [4], page 89) one takes S = u{S n :«£Z + } , the union being
disjoint, where the Sn are inverse semigroups and SmSncSm vn. For our purposes we use
the more restricted concept that S = v{Sn:neZ+) with multiplication determined by a
coherent family of homomorphisms {Qmn'-Sn—>Sm:m^n}. The two concepts coincide
when each Sn has identity element, say un, and {un:neZ + } is a subsemigroup; for then
we may take Qmnsn = umsn, noting that each um is central since

umsn = um{umsn) = (umsn)um = um{snum) = (snujum = snum,

and also that QpmQmn = Qpn for pj>m^n since upumun = upun = un for p^m^n. Theorem
2.4 generalises as listed below, the construction and proof proceeding exactly as before
with Gn replaced by Sn. We remark that Theorem 2.5 holds when a> is replaced by a
finite chain, and this fact will be used in Section 3.

Theorem 2.5 Let Sn be an inverse semigroup for each neZ+ and let S = u { S n : n e Z + }
be the inverse semigroup determined by a coherent family of homomorphisms {Qmn:m^n}.
Then T:C*(S)^<g'{C*(SJ} is a star isomorphism.

We turn now to the weak containment problem for T.

Theorem 2.6. Let T be the Clifford co-semigroup u{G n :neZ + }. Then T has weak
containment is and only if each Gn is amenable.

Proof. This follows directly from [8, Proposition 3.7(ii)] or by a straightforward
application of Theorem 2.4.

Similarly we obtain the following result.
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Theorem 2.7. Let S be as in Theorem 2.5. Then S has weak containment if and only if
each Sn has weak containment.

We remark that Theorems 2.6, 2.7 hold when co is replaced by a finite chain.

3. Inverse co-semigroups

Throughout this section Q will denote an inverse co-semigroup, i.e. an inverse
semigroup Q with £ n = co. As in Section 2 we write En = {en:n = 0,1,2,...} and we have

eo>et>e2> •••

and also that e0 is the identity element of Q. The most important example of an inverse
co-semigroup which is not a Clifford co-semigroup is provided by the bicyclic semigroup
which we here denote by (€. Recall that <€ may be regarded as the semigroup generated
by p,q subject to the relation qp = l. Thus

<# = {p'"q":m,n = 0,l,2,...} and Ev={pnq":n = 0,l,2,...}.

We note that {pmq")* —p"qm. When it is convenient we denote pmq" as (m,ri); the
multiplication in ^ is then given by

(m, n)(i,j) =(m-n + max (n, i),j - i + max (n, i)).

There is a complete classification of inverse co-semigroups in terms of appropriate
building blocks (see Munn [6]). We approach the classification from a slightly different
viewpoint from Munn, and so we give a brief sketch of the preliminary analysis
although the arguments are implicit in [6]. Even this brief sketch shows how critical to
the argument is the structure of the semilattice co. The key definition for the
classification is the following.

Definition 3.1. Idempotents e, f of an inverse semigroup S are ^-equivalent, written
e3>f if there exists xeS such that xx*=e, x*x = f

Let Q be an inverse co-semigroup such that eo3e±. Let eo = vu, e± = uv with v = u*.
Clearly uv>u2v2. If uv>e2>u2v2 then vuvu>ve2u>vu2v2u, i.e. eo>ve2u>ely which is
impossible. Thus u2v2 = e2, and more generally u"vn = en. Since vnu" = e0, it follows that
all idempotents of Q are ^-equivalent, so that Q is a bisimple inverse co-semigroup.

Let Q be an inverse co-semigroup such that eo@>ed where d (^2) is minimal. Let
eo = vu, ed = uv with v = u*. An elaboration of the above argument shows that uekv = ed+k

for k=l,2,...,d, and thence that ekS>eni+k for «=1,2 ,3 , Thus Q is a simple inverse
co-semigroup.

Suppose now that Q is an inverse co-semigroup such that eo@ed is false for all rf^O.
There are two cases. If no two idempotents of Q are ^-equivalent then x*x = xx* for all
x 6 £2, so that Q is a union of groups and so fi is a Clifford co-semigroup. Alternatively
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we may choose k and d to be minimal with ek3>ek+d. Then Q is a finite chain of inverse
semigroups of the form Go u G: u • • • u Gk _! u Qk where each G, is a group and Qft is a
simple (bisimple if rf = 1) inverse ro-semigroup. The first two cases above may be
included in this latter case if we adopt the convention that k = 0 denotes that no groups
are present.

The above provides a complete classification of inverse co-semigroups (modulo the
structure of the bisimple and simple cases which we discuss below). Recall that the
analogues of Theorems 2.5 and 2.7 hold for finite subsemilattices of co, and note that,
for O^/^fc—1, ejek = ek where ek is the identity element of Qk (else Q would not be an
co-semigroup). Thus we have the following theorem.

Theorem 3.2. Let Q be an inverse co-semigroup which is not a Clifford co-semigroup, so
that Q is a finite chain of the form Go u Gx u - - - u Gk-t uQk where Clk is simple (or
bisimple).

(i) C*(Q) is star isomorphic to the finite sequence algebra determined by C*(Gt)

i = 0 , l , . . . , f c - l andC*(Qk).
(ii) Q has weak containment if and only if G; is amenable for i — 0, l,...,k— 1 and Qk

has weak containment.

It remains to analyse in detail the bisimple and simple cases. We begin by describing
the structure of the semigroups and then consider their C*-algebras.

Definition 3.3. Let T be an inverse semigroup with identity element and let a be a
homomorphism from T to its group of units (i.e. the maximal subgroup of T whose
identity is the identity element of T). Let BR{T,a) = Tx'£ with multiplication defined by

(s, m, n)(t, i,j) = ((a*" "s)(a* -it),m-n + k,j-i + k)

where k — max(n,i) and where cc° is the identity mapping on T. BR(T,a) is called the
Bruck-Reilly extension of T determined by a.

For any inverse semigroup T and any a, BR(T,a) is a simple inverse semigroup. Now
let T be a group G and let a be an endomorphism of G. Then BR(G,a) is a bisimple
inverse CD-semigroup; conversely any bisimple inverse tu-semigroup is isomorphic to
some BR(G,(x). Now let T be a Clifford semigroup whose semilattice is a finite chain.
Then BR(T,cc) is a simple inverse co-semigroup; conversely any simple inverse <u-
semigroup is isomorphic to some BR(T,a) for such a T. These results are all
conveniently expounded in Howie [4, Chapter V] who also notes the following
alternative formulation of the simple case. Let T = G o u G 1 u - - - u G d _ 1 and let the
coherent family of group homomorphisms be determined by compositions of the
homomorphisms

Let yd_1.Gd_1->G0 be a homomorphism. Then in the representation BR(T,a) for a
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simple inverse co-semigroup the homomorphism a: T^G0 takes the form

It is central to our analysis of C*(Q) to have a detailed description of the canonical
homomorphism %:Q->Gn. The congruence ~ is described in the following elementary
lemma whose proof we omit. It is well known that G$ = Z with %(m, n) = m — n.

Lemma 3.4. Let S = BR(T,<x)for some inverse semigroup T.

(i) Es = ETxE^.
(ii) (t,m,n)~(u,i,j) in S if and only if{m,ri)~(i,j) in %> (i.e. m — n = i—j) and fak~mt =

fcck~'ufor some feET and some integer k^max (m,i).

Remark 1. Let Q = BR(T,ot) with T=\jiZhGi and associated homomorphisms y;

(i = 0, \,...,d — 1). It follows easily from Lemma 3.4 that Q is £-unitary if and only if
each y, is one-one. In particular, BR(G, a) is E-unitary if and only if a is one-one.

Remark 2. We take this opportunity to present some folklore concerning BR(G,cc)
when a e Aut G, i.e. a is an automorphism of G. For this case, BR(G, a) may be described
in the more familiar language of crossed products. Let G, H be groups and let
/?: H->Aut G be a homomorphism. The crossed product G x fH is the group
{g®h:geG,heH} with multiplication

(gi®h1)(g2<S)h2)=giP(h1){g2)®h1h2.

Now let K be an inverse semigroup and let /?:.£-• Aut G be a homomorphism. Since
Aut G is a group, fi must factor through GK, so that (I induces a homomorphism
ft: GK->Aut G by Rx{k)) = fi{k). We may define the crossed product Gx fiK analogously to
the group case. Then S = Gx pK becomes an inverse semigroup with

It is elementary to verify that Es = {l®e:eeEK}, that Gs is isomorphic to Gx^GK, and
that S is £-unitary if and only if K is £-unitary. We now record the link between
BR(G, a) and crossed products.

Proposition 3.5. Let Q = BR(G,oc) with oceAutG and let fS-.W^-AulG be given by
(c)=oT*(c).

(i) BR(G, a) is isomorphic to Gx £€.
(ii) Ga is isomorphic to Gx ^Z, and so is amenable if and only if G is amenable.

Proof, (i) The mapping G x ft>^>BR(G, a) given by

g®ch->(g,eo)(l®c)

provides the required isomorphism.
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(ii) This follows from (i), the above remarks, and the well known properties of
amenable groups.

Part (i) of Proposition 3.5 does not seem to generalise but there is a complete
generalisation of part (ii) that describes Gn for an arbitrary simple inverse co-semigroup
Q. The proof makes key use of a construction whereby a monomorphism a:G->G is
extended to an automorphism a of a group Ga which is a countable union of subgroups
each isomorphic to G.

Proposition 3.6. Let £l = BR(T,a) with T=\J'jz^Gi and associated homomorphisms yt

(i = 0 , l , . . . ,d - l ) .

(i) There is a group W and a homomorphism /?:Z->Aut W such that Gn is isomorphic
to Wx fZ.

(ii) Gn is amenable if some Gt is amenable (equivalently all Gt are amenable).
(iii) / / Q is E-unitary, then all G; are amenable if Gn is amenable.

Proof. We write zt for the identity element of the group G,, so that z0 is the identity
element of the semigroup T. We write [t, m, n] for the ~ -equivalence class of (t, m, n) in
Q. Let p[t,m,ri]=m—n, so that p:Gn-*Z is a homomorphism. Let W = kerp, so that W
is a normal subgroup of Gn and

W = {[t,k,k]:teT,keZ + }.

Let Z = {[z0,m,ri]:(m,ri)e'&}. Then Z is a subgroup of Gn and Z is isomorphic to Z.
Note in fact (from Lemma 3.4) that [zo,m,ri] = [zo,i,f] if and only if (m,n)~(i,j) in % so
that [zo,r,r~] is the identity element of Gn (for any reZ+). It follows (again by Lemma
3.4) that WnZ is the trivial subgroup of Ga. Since {t,m,n) = {t,m,m)(zo,m,n) we have

{t, m, ri] = it, m, m] [z0, m, n]

and so Ga—WZ. We have now established that Gn is a split extension of W by Z. This
proves (i). In fact we readily identify the mapping that implements the crossed product.
By the well known link between split extensions and crossed products we have

Identify Z with Z and we find by a routine computation that /?(n) = a~"(neZ) where

ait, k, k] = [at, k, fc].

It is now clear that Gn is amenable if and only if W is amenable. To establish (ii) and
(iii) we need to see how W is determined by T and a. It is convenient to begin with the
case T = G. [In this case W=\imnGn, where Gn = G for all n and each homomorphism
Gn^Gn + l is given by a].

Let T = G and suppose a is onto. Then W = {[t,0,0]:£eG}. Since (t, 0,0) ~(f, 0,0) if
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and only if oerr = aY for some r e Z + it follows that W is isomorphic to G/N" where
N°t = u{kera":neZ + }. (If a is one-one then W is isomorphic to G, as in Proposition 3.5).
In fact the W for BR(G,cc) is isomorphic to the corresponding W for BR(G/N",d) where
<*([#]) = [«#]> so that a is one-one. Thus, for T = G it is now enough to analyse the case
in which a is one-one. For this case we let

Then Wn is a subgroup of W. Define an:G-*Wn by an(t) = \t,n,ri]. Then on is a homo-
morphism, an is one-one since a is one-one, and an is onto since \_t, k, k~\ = [a" ~kt, n, ri]. Thus
W is the increasing union of the groups Wn, each of which is isomorphic to G.

Now let T= (J?I<5 Gj. For each i we obtain an endomorphism a,: G,->G; by following
round all the yit i.e.

With t,t'eG,, we readily verify that {t,k,k)~(t',k,k) if and only if a;t = a;t' for some
r e Z + . As above we write JV°" = u{kera":neZ + }. Since yiN"' czN"i + i we get an induced
monomorphism yi:Gi/N

c"^>-Gi + JN'" + 1. To determine W we may thus replace G; and y{

by GJNai and y;. In other words we are reduced to analysing the case in which each y{

is one-one. For this case note that (gi:k,k)~(gi+r,k,k) means that gi+r = zrgi. Let

Wn = {[t,k,k]:teT, fc = 0, l , . . . ,n}

so that W = vj{Wn:neZ+}. By the above fact

and Wn is isomorphic to Gd_1; as in the group case above.
Parts (ii) and (iii) follow from the above analysis of W. The fact that each G; is

amenable if and only if some G; is amenable follows from the fact that each Gt may be
mapped homomorphically into any other G,. Evidently, the condition that Q be E-
unitary cannot be omitted in (iii).

We turn now to the description of C*(Q) for the simple (and bisimple) case. For the
case £! = '£, the canonical homomorphism ^:^->Z extends to %: C*(^)->C*(Z). (It is well
known that C*(Z) = C(T) where T is the circle group). The kernel of x in C*(f) is star
isomorphic to JT, the C*-algebra of compact operators on the Hilbert space I2. This last
fact has several proofs but it will follow in particular as a special case of Theorem 3.9
below. For the general case Q = BR{T,OL) we let J be the kernel of x:<CQ->CGn.
Proposition 1.3 then gives us a short exact sequence

The structure of Ga is described in Proposition 3.6, and so it remains to identify J and
C*(J). (We might equally have considered the homomorphism ^^(QJ-W^Gn) but the
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kernel of this mapping does not have a pleasant description). We omit the elementary
proof of the following lemma.

Lemma 3.7. Let v.S->T be a semigroup homomorphism with linear extension
v.CS->CT. Then the kernel oft in CS is the linear span of {s-s':s,s' eS,T(s) = i(s')}.

We denote by Jt the algebra of all complex matrices indexed by Z + which are row
finite and column finite. Thus Ji is just the linear span of {£(J-: i j e Z + } where Eu is the
usual elementary matrix with 1 in position (i,j) and 0 elsewhere. We remark that the
lemma below may be generalised to any field F.

Lemma 3.8. Let Q = BR(T,oi) be a simple inverse co-semigroup and let x:Cfi->CGn.
Then ker# is star isomorphic to CT®Jl.

Proof. Let <f>\CT®J{^>CQ. be the linear mapping determined by

Evidently <j) has range in ker %. To see that <p is one-one, suppose that

Since aT<=G0 we must have £tij = 0 for teT\G0. Order Z + x Z + lexicographically, and
let (m,n) be minimal amongst the (i,j) with £ ( 1 J=0, teG0. We must surely have £,„,„ = ()
for any teG0, and so it follows that all £tiJ = 0, i.e. <j) is one-one. To show that ker# is
the range of <j> it is enough to show that s — s' e im <p whenever s,s'eQ with #(s) = #(s').
By Lemma 3.4(ii) we may suppose that s = (u,m,n), s' = (v,m + k,n + k) where arv = ak+ru
for some r e Z + . (The idempotent / in Lemma 3.4(ii) may here be replaced by a/, if
necessary). Then

Jc+r- l r - l
s-s'= £ 4>(a'u(g)£m +,„ + , ) - X <t)(ctJv®Em+k+jn+k+j).

i=0 j=0

Note that

= (cp(t®EiJ))*.

To complete the proof it is enough to show that <p is multiplicative on the basic tensors
t®Eu.
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The multiplication in CT®J{ is determined by

= juv®Ein if j = i

For j = m we have

= (uv, i, n)— (oaiav, i+l,n + l) — (auav, i+ l,n+ l) + (auav,

= (uv, i, n) — (<x(uv), i + 1, n +1).

For j = m + r, r e N we have

= 0

and similarly we obtain zero product in the remaining case. The proof is complete.

Since Jf is a type I C*-algebra there is a unique C*-tensor product of C*(T) with X.
We shall denote the product by C*(T)®JT, since we shall never need to consider the
pure algebraic tensor product of C*-algebras.

Theorem 3.9. Let Q = BR(T,tx) be a simple inverse co-semigroup. Then there is a short

exact sequence

Proof. All that remains to prove is that C*(CT®^) = C*(T)®Jf; this is a
straightforward exercise, for example by using the fact that Jf is the direct limit of a
chain of finite dimensional matrix algebras. Alternatively one may use fact (3) for BG*-
algebras, the easy fact that J ' is a Z?G*-algebra and the fact that C*{A®B) =
C*(A)®maxC*(B) for BG*-algebras (see e.g. [11]).

Our discussion of the weak containment problem for BR(T,tx) hinges on the following
diagram.

U2 (t)
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In the diagram <f> is the extension of the monomorphism given in Lemma 3.8, Xu X2 are
respectively the left regular representations of T, Gn, i is the identity mapping and / is
the extension of x guaranteed by Proposition 1.4. We show below that the closure of
£,T®J{ in C,*(Q) can be identified with Cf{T)®34T and hence we obtain the mapping
$. The commutativity of the diagram and the exactness of the top row enables us to
characterise weak containment for Q.

Theorem 3.10. Let Q = BR(T,a) with T=(J?=o G,. Then Q has weak containment if
and only if some G,- is amenable (equivalently all Gt are amenable).

Proof. We employ notation as in Lemma 3.8. Let a = <j>(t®Eij). We identify the
action of X(a) on I2(£i). In Q we have

(t, i, j)*(t, i, j) ̂  (u, m, n){u, m, n)*

o(t*t, j , j) ;> (uu*, m, m).

For m=j + r, reN this holds for all u; for m=j this holds if and only if t*t^.uu* in T.
For such (u, m, n) we have

X(t, i, j)(u, m, n) = ((am ~Jt)u, i —j + m, ri)

and this gives the only non-zero action of X(t, ij). Since at e Go we have

f((am~(-' + 1)at)w, i—j + m,n) if m = j + r, r s H
(<u,i + l,j+l)(u,m,n) = < ,, .

( 0 otherwise

Therefore

\tu,i,n) if m=j,t*t^.uu*
0 otherwise

This means that for aekerx the action of X(a) on /2(Q) is equivalent to Xt®i((j)~l(a)) on
l2(T)(g)l2. This gives the mapping $ and the commutativity of the left hand square in
(f). The right hand square is clearly commutative.

Suppose that Q has weak containment. Then X is one-one and so Ax®i is one-one, Xv

is one-one. Thus T has weak containment and so each G, is amenable (by the finite
analogue of Theorem 2.7).

Suppose that some G, is amenable, and hence all G; are amenable. Then Gn is
amenable by Proposition 3.6(ii) and so X2 is one-one. Also T has weak containment so
that Xi is one-one. By Sakai [9, Proposition 1.22.9] Aj®i is one-one. Since the top row
of (t) is exact it follows that X is one-one, i.e. fi has weak containment.

Remark. Theorem 3.9 provides a short exact sequence for C*(Q) that highlights the
canonical homomorphism ^:Q->Gn. By the methods of this section one readily provides
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corresponding short exact sequences for any inverse a>-semigroup, viz.

0->/->CQ-»CGn->0.

When fi is as in Theorem 3.2, with £lk = BR{T,a), we have

When Q is a Clifford semigroup, Q = u{Gn:«eZ + } we have

©
/=£CGn.

The key observation in each case is that for i ^j

(gi ~ e,- + igi)(gj ~ e} + igj) = 0.

The algebraic short exact sequences extend in the obvious way to C*-algebra short
exact sequences.
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