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Abstract

Optimality conditions without constraint qualifications are given for the convex programming
problem:

Maximize f(x) such that g(x) e B,

where/maps A" into R and is concave, g maps A" into /Jm and is B-concave, X'\s a locally convex
topological vector space and B is a dosed.convex cone containing no line. In the case when B
is the nonnegative orthant, the results reduce to some of those obtained recently by Ben-Israel,
Ben-Tal and Zlobec.

Subject classification (Amer. Math. Soc. (MOS) 1970): 90 C 25.

1. Introduction

This paper gives both necessary and sufficient conditions of optimality without
any constraint qualification for the following convex programming problem:

(P) Maximize f(x) such that g(x) e B,

where/maps A!" into R, g maps Zinto R™, Xha. locally convex topological vector
space, B is a closed convex cone in Rm containing no hne. The function/is concave
and g is 2?-concave.

Karush-Kuhn-Tucker-type optimality conditions have been given for similar
convex programming problems over cones (see Craven (1974) and (1977)). For
B = R^., the nonnegative orthant, optimality conditions without constraint
qualification can be found in Ben-Tal et al. (1976); see also Ben-Israel et al. (1976).
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142 H61dne M. Massam [2]

Here, the problem is considered for a general closed convex cone B containing no
line, and no regularity conditions such as Slater's constraint qualification is
needed for the given characterizations of optimality.

In order to state optimality conditions without constraint qualifications, Ben-Tal
et al. (1976) introduced a particular cone, called the cone of directions of constancy
of the function g at the feasible point x. Similarly here, we pay special attention to
certain directions forming a cone called the generalized cone of constancy of g at
jc with respect to B.

In the next section, all the definitions and lemmata necessary to the study of
this cone and necessary for obtaining characterizations of optimality are presented.
In Section 3, the 'generalized cone of constancy' of g at x with respect to B is
introduced. In Section 4, two primal and one dual characterization of optimality
are given. The primal theorems state that a feasible point x is optimal if and only
if a system involving x and a direction d in the primal space X is inconsistent. The
dual theorem says that x is optimal if and only if a system expressed in terms of
multipliers in the dual space is consistent. These results are illustrated by an
example. Finally, in Section 5, the connection with the optimality conditions
given by Ben-Israel et al. (1976), when B = R%, is established.

2. Preliminary results

In this section we recall some of the definitions and lemmata that we shall need
in the proof of the characterizations of optimality in Section 4.

A subset C of X is a cone if, for any JC in C and A>0, Ax is in C. A function
/ : X-^-R"1 defined on a convex subset D of X is said to be convex with respect
to the closed convex cone B or B-convex, (see for example Craven (1974)), if for
all xltx2 in D and all A in [0,1],

/ ( A x ^ l - A ) ^ - A / K M l - \)f(x£e-B.

We shall use the classical definitions of the polar cone (see Guignard (1969)), the
tangent cone and the pseudotangent cone. The polar cone C+ to the cone C is
defined by

C+ = {x' e X' such that *'(*) > 0, for all x in Q .

Given a subset A of X and Jc in A, the tangent cone to A at x is

T(A, x) = {zeX: there exists {zJ^^A and
s u c n
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[3] Convex programming over a cone 143

The pseudotangent cone to A at x, denoted P(A,x), is the closure of the convex
hull of T(A,x). The support cone to a convex set C at x in C is denned (see Holmes
(1972)) as the closure of the union of rays issued from x and going through C.
It is denoted by S(C, x) and denned by

S(C, x) = {x+X(x - x) such that x e C).

Supporting hyperplane, relative interior and face are also concepts that we are
going to use extensively.

DEFINITION 2.1. A nonzero continuous linear functional / o n X is said to be a
supporting functional for a set A at xoeA if f(x)*sf(x0) for all xsA. The closed
hyperplane H = {x;f(x) =f(x0)} is called a supporting hyperplane to A at the
point x0. The closed halfspace determined by the supporting hyperplane containing
A is called a supporting halfspace to A at x0. The set A is said to 'lie' on one side
of the hyperplane. Note that a supporting hyperplane to a cone C at a boundary
point of C separates C from — C.

DEFINITION 2.2. A subset A of Rn is called an affine set if (1 — X)x + XyeA for
every x,y in A and A in R. The q#wie /JH// of a set 4̂ is the smallest affine set
containing A and is denoted aSA.

DEFINITION 2.3. The relative interior of a convex set C in Rn, denoted ri C, is
the interior of the set C regarded as a subset of its affine hull. The relative boundary
of C, denoted dC, is defined by dC = cl C\ri C.

Every convex set in Rn has a relative interior. This statement is not true in
abstract spaces.

DEFINITION 2.4. A face of a convex set C is a convex subset C of C such that
every closed line segment in C with a relative interior point in C" has both end
points in C". The empty set and C itself are faces of C. If C" is the set of points
where a certain linear function h achieves its maximum over C, then C is a face
of C. A face is called exposed if it is equal to the intersection of C with a nontrivial
supporting hyperplane H to C, that is, a supporting hyperplane not containing
all of C. It is clear that an exposed face of a closed convex cone is a closed convex
cone.

We shall also need to know some properties of the cones we consider. The most
important ones are stated in the following lemmata. All of them are known
results. The proof of the first two results can be found in Massam (1977). The
other four are proved in Rockafellar (1970). The set B is a closed convex cone in
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Rm containing no line. Unless otherwise specified, y in B is assumed different from
the vertex 0 of B. Without loss of generality, we can also assume that B has
dimension m.

LEMMA 2.1. The support cone to B at y, S(B, y), is equal to the intersection of the
supporting half spaces to B at y.

LEMMA 2.2. Let yeB, then S(B, y) = T(B, y) = T(B, y) ± y and 8T(B,y) is
included in the union of supporting hyperplanes to B at y.

Note that if y = 0 is the vertex of B, then T(B, y) = S(B,y) = B and all the
above lemmata remain true.

LEMMA 2.3. Iff and F" are faces of a convex set C such that riF' and riF"
have a point in common, then actually F' = F".

LEMMA 2.4. If F is a face of a convex set C and D is a convex set such that
F^D<=C, then F is a face of D.

LEMMA 2.5. IfFis a face of F' and F' a face of C, then F is a face ofC.

LEMMA 2.6. Let C be a nonempty convex set and let U be the collection of all
relative interiors of nonempty faces of C. Then U is a partition of C, that is, the
sets in U are disjoint and their union is C. Every relatively open convex subset of C
is contained in one of the sets in U and these are the maximal relatively open convex
subsets of C.

Finally let us give a property of a 5-concave function.

LEMMA 2.7. Let g be defined on a convex set D, B-concave andFrichet-differentiable,
then g(x+<xd)-g(x)-Vg(x)(ouf)e-Bfor any a>0 such that x+otdeD.

PROOF. By definition of 5-concavity,

g(\(x+<xd)+(l - A ) * ) - Xg(x+<xd)-(l - X)g(x)eB,

that is,

g(x+\<xd)-\g(x+cxd)-(l-\)g(x)eB.

But, B being a cone,
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[5] Convex programming over a cone 145

Let A->0, then

Vg(x) (ad)-g(x+ad) +g(x) e B.

Let us note that the previous lemma and all subsequent results are still valid if
X is no longer a normed space but simply a locally convex topological vector
space and if functions defined on JSf are not Frechet but only compact-diflFerentiable
(see definition of compact-differentiability in Averbukh and Smolyanov (1968)).
The notation Vg(jc)(.) will then stand for the compact derivative of g at x.

3. The generalized cone of constancy

In this section, we give the definition of the generalized cone of constancy.
We also try to give the reader a geometric insight for the definition of this cone,
by examining a particular example.

Let & be the indexing set of all exposed faces Fk of B. We denote by &(x) the
indexing set of all exposed faces of B containing x, that is, 0>(x) = {k e@> such that
g(x)eFk}. The set A = {xeX: g(x)eB} is the feasible set of the problem (P).
Let us also define &- as ^ = = {ke0> such that xeA implies g(x)eF^ and B=

DEFINITION 3.1. Let x be a feasible solution of (P). The generalized cone of
constancy of g with respect to B is defined by

C(g,B,x) = {deX: there exists a>0 such that for all ae(0,«]

g(x) + Vg(x) (ad) 6 ri B~, g(x+ad)-g(x) - Vg(x) (ad) e-B~}.

In Section 4, two primal characterizations of optimality will be given. One involves
only one face of B, namely B= and is expressed in function of C(g, B, x). The other
involves several faces of B and is expressed in term of another cone that we shall
call the multi-face generalized cone of constancy of g at x with respect to B. Let
us define this new cone.

DEFINITION 3.2. Let x be a feasible solution of (P). The multi-face generalized
cone of constancy of g at x with respect to B is defined as the union, over all subsets

(x), of sets Cj defined as follows:

Cj(g,B,x) = {deX: there exists 5>0 such that for all ae(0,«]

Vg(x) (ad) eC\ H^ Vg(x) (ad)$r\Hi if / ' = /,
iel ier

g(x) + Vg(x)(ad)enDF* g(x+ad)-g(x)-Vg(x)(ad)e-
iel
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where H^s are the supporting hyperplanes to B at g(x). So

C(g,B,x)= (J Cj(g,B,x).

An example of the cone C(g, B, x) is now given.

EXAMPLE 3.1. Let

g(x1,xz) =
L - d - * i ) a J

Let B = {O^is)*: y^O^t+y^O} and let x = (1,1)* so that g(x) = (0,0fe8B.
The feasible set is A = {(x^x^p: xt = 1,x2^ 1}. The supporting hyperplanes to

5 at g(x) are Hx = {CVL^S)*: y% = 0} and H2 = {(y^y^: y±+y2 = 0}. The corre-
sponding faces are

Fi = {(yi,ydt>yi = 0,y1>0} and

If xe A, g(x)eFt so that

2 = 0} and

r o — i i r - d 2 1
= so that Vs(*)(</)= 6HlfLo o J L o J

is i?^-concave and therefore 5-concave because R+CB,

C(g, B, jc) = {(dy, <sQ*: there exists a > 0 such that for all a e (0, a]

gl(x+ad)- gi(x) - Vgl(x) (out) < 0,

= 0},

C(g, B, x) = {(dlf <4)k: there exists a > 0 such that for all a 6 (0, a]

-a2rff = 0, -ocd2>0},

C(g,B,x) = {{d1,d2f: dt = 0,
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[7] Convex programming over a cone 147

Let us now consider an example where the usual Kuhn-Tucker conditions do
not apply. This example will motivate the later theory and show why the cones
C and C have been introduced. In order to do so, we shall consider the ice-cream
cone B given in Example 2.5 of Ben-Israel (1969) and a point g(x) on the boundary
of B. The different ways in which g(x+ad) behaves when a varies from 0 to a
small <5>0 will be outlined. Finally, for the function g(.) as given in Example 2.5
of Ben-Israel (1969), we shall compute the cone C(g,B,x).

Consider the following cone

Suppose that a function g: X->R is such that, for some jc in X,

(&(*),&(*),&(*))* = (0,0,1)».

The tangent cone T(B,g(x)) to B at g(x) is the closed halfspace determined by the
supporting hyperplane H = {{y1,y2,y3)

t: yt = 0} to B at g(x), and containing B.
If for some direction d, Vg(x)(d) belongs to the interior of T(B,g{x)), as it will be
shown in the proof of Theorem 4.1, for a sufficiently small, g(x+<xd)eB. If
Vg(x)(d) does not belong to T(B,g(x)), it will also be shown that there is no a>0
such that g(x+ocd)eB for ae(0,<*]. Suppose now that Vg(x)(d)edT(B,g(x)),
then one does not know whether g(x+<xd) will be inside or outside B. However,
g(x)+Vg(x)(ouf) belongs to H for any positive a and by U-concavity of g,

g(x+ad)—g(x) — Vg(x){(xd)e—BfoT sufficiently small a.

This means that for sufficiently small a, g(x+ouf) belongs to the half-space deter-
mined by H but not containing B. It is then clear that if g(x+ad) is to belong to
B for sufficiently small a, it has to belong to H also, that is, to fin H. The direction
d will, then, have to satisfy the following condition

g(x+aui)-g(x)-Vg(.x)(,<xd)e-(BnH) = -F,

which is the second property of any direction of the multi-face generalized cone of
constancy. We noticed that g(x) + Vg(x)(otd) belongs to H. It is also geometrically
clear that if it does not belong to B, then g(x+ad) cannot be in B for sufficiently
small a > 0. So,

£(jc) + V (̂x)(out) belongs toBnH = F.

Thus, it has been roughly indicated that, if for some point Jc in Zand some direction
d in X, g(x)e8B and Vg(x)(d)e8T(B,g(x)), then g(x+<xd) belongs to B for
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148 H61£ne M. Massam

sufficiently small a only if d is such that,

, g(x+ocd)-g(x)-Vg(x)(<xd)e-F.

[8]

for a sufficiently small.
Suppose now that g(x) = g(xv xj = (0, xlf xj\ with g(x) = (0,0,1)*. The

directional derivative of g at x is

• o

1

0

o -
0

1

Vg(x)(d)=

The feasible set 4 is equal to A = {(x^xjp: xx = 0, xa>0}. So if xeA,

where y3 is nonnegative. Therefore ^ = ^ 0 and the face 2?= is

Moreover, if H is, as defined before, the supporting hyperplane to B at g{x),

so that, F= B= and F is the only face of B containing g(x). Consequently
C(g, B, x) = C(g, B, x). We can now compute the generalized cone of constancy
of g with respect to B at g(x).

C(g,B,x) = {dejR?: there exists a>0 such that for all ae(0,a]

= {deR2: there exists <5>0 such that for all ae(0,a]

4 = 0, « 4 > - l }

= {(dv 4)*: 4 = 0 ,4 arbitrary}.

Hence, in this particular example, if Vg(x)(d) belongs to H, g(x+<xd) belongs to
B for a > 0 sufficiently small only if d is such that 4 = 0, that is, only if
g(x)+Vg(x)(ouf) belongs to the positive jyaxis for a>0 sufficiently small.

We shall consider the general case in the next section.
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[9] Convex programming over a cone 149

4. Characterization of optimally

Three necessary and sufficient conditions of optimality for arbitrary but fixed
feasible point x are given in this section, Theorems 4.1, 4.2, and 4.3. The first one
is a primal characterization using the cone £(g, B, x). From this, a primal character-
ization using the cone C(g,B,x) can be easily deduced. It is this result that we
shall consider as the main result. Finally, using the Dubovitskii-Milyutin Theorem
of the alternative, a dual characterization of optimality is also given.

Before we give the main results, let us recall that 3P= is the indexing set of all
faces Fk such that if, g(x)eB, then g(x)eFk. If 0*= = 0, then there is a feasible x
such thatg(jc)eint.B. We shall say that Slater's constraint qualification is satisfied.
Then, when B = R%, our results are the same as those provided by the traditional
Karush-Kuhn-Tucker theory (see Kuhn and Tucker (1951), Mangasarian (1969)).
In the proof of the main theorem, Theorem 4.2, the following Lemma 4.1 is needed.
In the proof of the dual theorem, Theorem 4.3, the following Lemmata 4.2 and
4.3 are needed. Let us state and prove them.

LEMMA 4.1. Assume that £?= = 0. Then the consistency of the system

(Sx) V/(Jc)(rf)>0, Vg(x)(d)emtT(B,g(x))

is equivalent to the consistency of the system

, Vg(x)(d)eT(B,g(x)).

PROOF. If (S^ is consistent, it is obvious that (Sg) is also consistent. Assume now
that (Sj) is consistent. Then there exists de X such that

Vf(x)(d)>0, Vg(x)(d)eT(B,g(x)).

As &- = 0, there exists x feasible such that g(x)eintB. Let d = x-x, then by
5-concavity of g,

g(x)-g(x)-Vg(x)(d)e-B

that is,

Consider now d= d+ocd,

V/(x) (d) = V/(x) (d) + <xV/(jc) (d) > 0 for sufficiently small a,

and

Vg(x) {d) = Vg(x) (d) + ocVg(x) (d) e int T(B, g(x)),

so that the system (Sj) is consistent and the lemma is proved.
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LEMMA 4.2. The set M = {x: g(x) e B=} is convex and when &'~^0, the restriction
of g on M is B"-convex.

PROOF. Let xx,x2 be in M, let A be in [0,1]. By 5-concavity off,

and therefore g(Xx1+(l-X)x^eB°'+B=+B = B. But, by definition of B=, if
g(Xx1+(l-X)xJ belongs to B, it belongs to B=. So g(Xxt+(l-A^eB" and
M is convex. We also just proved that if xltx2 belong to M and A to [0,1], then
£(*i)» g(xd> -£(^*i+0 - ^)*a) belong to the supporting hyperplane H to B deter-
mined by HnB = B". Thus, for any such xx, x2, A,

B",

that is, g defined on M is U=-convex.

LEMMA 4.3. Let ^"^0. Then there exists a feasible point x such that g(x) belongs
to the relative interior of B".

PROOF. Suppose that for any x in M, g(x) belongs to the relative boundary of
B=. Then, by 5=-concavity of g on M, g(x) belongs to the intersection of B°* with
a supporting hyperplane H', not containing 5= but containing part of its boundary.
Without loss of generality, we can assume that H' is also supporting B at a boundary
point of B=. Then B= n H' is a face of B and for any x in M, g(x) belongs to B~ n H',
which is strictly included in B=. This contradicts the definition of B~. So, there
exists x feasible, that is, x in M such that g(x)eriB=.

Let us now state and prove the primal characterization of optimality expressed
in terms of the multiface generalized cone of constancy C(g, B, x).

THEOREM 4.1. Let x be a feasible solution of{P). Then x is optimal if, and only if,
the following system is inconsistent.

0, Vg(xXd)eT(B,g(x))

with Vg(x)(d)edT(B,g(x)) only if deC(g,B,x).

PROOF. Any x^x can be written JC = x+ad where deX, a>0. The feasible
point x is not a maximum if, and only if, there exist a > 0, de X such that

f(x+<xd)>f(x) for a6(0,a]
and

g(x+atd)eB forae(0,a].
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[11] Convex programming over a cone 151

The function / being concave, the first condition is equivalent to V/(jc) (d) > 0. If
g(x) e int B, by continuity of g, for any d, there exists a > 0 such that g(x+ad) e int B
for a e (0, a] and then, x is maximal, if and only if, V/(jc) (d) > 0 for all d± 0, that is,

= 0.

Let us now consider the case when g(x) e 8B. In the next several pages of proof,
we show that the direction d is feasible, that is, there exists a scalar a. > 0 such that
g(x+<xd)eB for ae(0,a], either when Vg(x)(d)eintT(B,g(x)) or when

Vg(x)(d)edT(B,g(x)) and deC(g,BiX),

but in no other cases. That will allow us to conclude that x is not a maximum if and
only if one of the following two systems is consistent:

(SO Vf(x)(d)>0, Vg(x)(d)emtT(B,g(x))

or

0, Vg(x)(d)e8T(B,g(x)), deC(g,B,x),

which is the desired result.
In order to obtain this result, we must consider three cases.

Case I: Vg(x)(d)^nB,g(x)),
Case II : Vg(x) (d) e int T(B, g(x)),

Case III : Vg(x)(d) e dT((B,g(x)).

CaseI.Vg(x)(d)$T(B,g(x))
The set T(B,g(x)) is a closed convex cone. Therefore its complement T°(B,g(x))

is an open cone. Then if Vg(x)(d) belongs to Tc(B,g(x)), there exists an open set
V such that Vg(Jc) (d) e F<= Tc(B,g(x)), that is, there exists an open V such that

Hence there exists S > 0 small enough, such that for any a e (0,8),

But Tc(B,g(x)) being a cone, this implies that g(x+<xd)-g(x)eTc(B,g(x)) for
ae(0,8). This can also be written g(x+ad)eg(x)+T0(B,g(x)). By Lemma 2.2,

g(x) + T<KB,g(xy) = (g(x) + T(B,g(x)))° = T°(B,g(x)).

Therefore, for <xe(0,8), g(x+ad)eTc(B,g(x))^Bc, that is, g(x+ad) does not
belong to B. So we can conclude that if Vg(x)(d)$T(B,g(x)), there is no a>0
such that g(x+ad) e B for a e (0, a].
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Case II. V#(jc) (d) e int T(B, g(x))
In this case, there exists a neighbourhood N of 0 such that

V*(JE) (d)+#<= int T(B, g(x)) = int 5(5, g(x))

= int (5(5, £(*)) -g(x)), by Lemma 2.2.

By definition of the Frechet-derivative, for any neighbourhood N of 0, there
exists a>0 small enough such that for ae(0, a],

g(x+ocd)eg(x)+Vg(x)(ad)+<xNeg(x)+mta[S(B,g(x))-g(x)]

because S(B,g(x)) is a cone.
Therefore g(x+ouf) = g(x) + a.fi(b—g{x)) for some beB and /A^O. For a small

enough, we can consider that a/x belongs to [0,1] and then, by convexity of B,

g(x + ocd) = (l-<x[i)g(x) + <xfibeB for ae(0,S].

Thus, if Vg(x)(d)eintT(B,g(x)), there exists a>0 such that g(x+<xd)eB for
a 6(0, a].

Case III. Vg(x)(d)e8T(B,g(x))
We want to prove that in this case there exists a>0 such that g(x+<xd)eB for

a e (0,5] if, and only if, deC(g,B,x). We shall prove first that if deC(g,B,x)
g(x+<xd) is feasible for ae(0,Jc] where a is some positive scalar. Let / be the*
subset of ^(Jc) such that V£(jc)(</)eni6i#» b u t ^g(pO(ad)^C\i,rHi i f 1>z>1-

= AKOieIFi. Because deC(g,B,x),

g(x+ocd)-g(x)-Vg(x)(out)e- ft
iel

for a e(0, a]. Moreover, g is Frechet-differentiable at x, and therefore, for any
neighbourhood N of 0, there exists ex = <x(N) small enough such that for a e (0, cx(N)),

(1) g(x+<xd)-g(x)-Vg(x)(<xd)eNnH.

Also, because deC(g,B,x), gi^+Vg^iou^en^jFi. Moreover, rifl^i^ is
open with respect to H and, therefore, there exists N' such that

( 2 ) g(x)+Vg(x) ( t n
iel

By (1) and (2), there exists a small enough such that, for ex e (0,5),

g{x+<xd)eg(x)+Vg(x)(<xd)+N'nHc:ri
iiel

Hence there exists &>0 such that g(x+ad)eB, for ae(0,a].
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Let us now prove the converse. Assume d$C(g,B,x). Now either condition

(3) g(x) + Vg(x) (ad) Grifl Fi, for all a e (0,«]
iel

is not satisfied or condition

(4) g(x+ad)-g(x)-Vg(x)(ocd)e-r\Fi, for all ae(0,5]
iel

is not satisfied.
Suppose then, that (4) is not satisfied, that is, that there exists no a > 0 such that

g(x + <xd)-g(x)-Vg(x)(ad)e-Ff = -(BnHt), for some 1e/, for a. e(0,a].

By 5-concavity of g,

g(x+ad) -g(x) - Vg(x) (ocd)e-B.

Therefore, if (4) is not satisfied, for some /, there exists no a>0 such that
g(x+ad)—g(x) — Vg(x)(ad)eHi for ae(0, a]. However, by definition of /,

(x) (d) e Ht and (̂Jc) always belongs to Ht, so that

Therefore there is no a>0 such that g(x+ad)eHi for <xe(0, a]. As Hj separates B
from —B, g(x+ad) belongs to the open half-space determined by Ht and containing
—(B\Fi) and not intersecting B. So if (4) is not satisfied, there is no 5>0 such
that g(x+ad)eB for a e (0, a].

Suppose now that (4) is satisfied but (3) is not satisfied, that is,

g(x+ad)-g(x)-Vg(x)(ad)e- C\Ft, for ae(0,5],
iel

but there is no a > 0 for which

g(x) + VgW (<*d) e " PI Fit for a 6 (0,5].
iel

We shall first note that Dte/^i 1S the smallest face containing g(x) + Vg(x)(ad).
Indeed, assume that there exists an Fo such that 0 ^ / and g(x) + Vg(x)(ad)eF0.
Let HQ be the supporting hyperplane to B at g(x) such that Fo = BnHQ, then
Wg(x)(ad)eH0 but this contradicts the fact that Vg(x)(ad)$ C\iei

Hiif Iz>1- S o

diejFi is the smallest face containing g(x)+Vg(x)(ad). Thus, if there is no
a>0 for which (3) is satisfied, there is no a'>0 for which

g(x) + Vg(x) (ad)er\Fi for a 6 (0, a'].
iel
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We shall accept this assertion for the moment and prove it as Lemma 4.4 after the
proof of this theorem is completed. Then, in this case, as gityeFi for any iel,
g(x+cxd)^f\ieIFi. Otherwise, by relation (4),

iel iel iel

and this would contradict the fact that (3) is not satisfied. However,

n
iel

and, as (4) is satisfied and Ft = BnHt,

g(x+ocd)-g(x)-Vg(.x)(ccd)e r\Ht
iel

so that g(x+otd) e (")t eI Ht. Therefore, there exists no a such that g(x+ad)ef)ieIFi
v/hile g(x+<xd)ef)ieIHi for ae(0,S] . This implies that there is no a > 0 such that
for ae(0 ,d] , g(x+ocd)eB. Thus if (3) is not satisfied, there is no <5>0 such that
g(x+<xd)eB for ae (0 ,a ] . We can now conclude that deCjfaByX) for some /,
that is, deC(g,B,x) if, and only if, there exists a > 0 such that g(x+ad)eB for

We have thus proved that if jc is optimal, there is no d such that (§) is satisfied.
Cases I, II and III exhaust all the possible alternatives for Vg(x)(d), so that the
reciprocal statement is true and Theorem 4.1 is proved.

Let us now prove Lemma 4.4 that was needed in the previous theorem to show
that if (3) is not satisfied, there is no 5'>0 such that g(Jc)+Vg(jc)(arf)en<6i-F<
for ae(0,a'].

LEMMA 4.4. Let the notation and assumptions be the same as in Case III of
Theorem 4.1. Then, if there is no a>0 for which

g(x)+Vg(x) (ad) e ri PI Ft for <x e (0, a]
iel

then, there is no a>0for which

g(x) + Vg(x) (out) 6 n Fi for a 6 (0, fi'].
iel

PROOF. Indeed, let us assume that there exists an a > 0 such that

g(x) + Vg{x) (<xd)enFi for « e (0,5]
iel

but that there is no S > 0 such that

g(x)+Vg(x) (oaOeriDFi for a e (0, a].
iel
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As g(x) belongs to 8 f | i s j Fit that implies that

g(x)+Vg(x) (out) e 8 fl Fi for a e (0,«].
iel

Let J'uJ'z be the following points in C\ieJ
Fi

where ax and oj are fixed scalars in (0, a].
There exists a relatively open convex subset D of flie/^i containing both y1

and y2 if and only if there is a line segment in f)ieIFi having both yx,y% in its
relative interior. The line segment L joining g{x) and g(x)+Vg(x)(otd) lies in
Oiei^t ^ assumption. The points y1 and y2 are in riL. So, there exists a relatively
open convex subset D of C\iei

Fi containing both these points and therefore
containing all points g(x)+Vg(x)(<xd) for 0 < a < 5 . By Lemma 2.6, this relatively
open subset must be contained in the relative interior of a non-empty face F of
fi<6j.Ft- By Lemma 2.3, F is either equal to ri flieJ^i o r included in df)ieIFt.
But we assumed that

g(x)+Vg(jc) {ad) e 8 0 Ft for a e (0,5].

So .F<= 8 Dte/^i- It is therefore a proper face of C\iei
Fi a n d a l s o a f a c e o f B b v

Lemma 2.5. This contradicts the fact that f\ieI Ft is the smallest face of B containing
g(x)+Vg(x)(oui) for 1x6(0,0], as was shown in the previous theorem. Therefore,
we proved that if there is no <*>0 such that

g(.x) + Vs(jc) (<xd) e ri 0 Fi for <x e (0,5],

there exists an /e/such that there is no a>0 satisfying

g(x)+Vg(x) (ad) e Ft for <x e (0,«].

So, there is certainly no a' > 0 such that

g(x)+Vg(x)HefiFj for ae(0,a'],
iel

and Lemma 4.4 is proved.

This completes the proof of the optimality conditions using all the possible
intersections of faces of B. It will be shown now that we need consider only one
face, namely B=. And so, the following characterization of optimality is expressed
in terms of the generalized cone of constancy C(g, B, x).
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THEOREM 4.2. Let x be a feasible solution of(P). Then x is optimal if, and only if,
the following system is inconsistent.

(S) Vf(x)(d)>0, Vg(x)(d)eT(B,g(x))

with •Vg(x)(d)e8T(B,g(x)) only ifdeC(g,B,x).

PROOF. By Theorem 4.1, if x is optimal, there is no d belonging to any of the
Cz{g,B,x), where / is any subset of ^(x), such that, also Vf(x)(d)>0 and
Vg(x)(d)eT(B,g(x)). In particular, there is no such d belonging to C,.(g,B,x).
But, as can be proved easily, C9Jg,B,x) = C(g,B,x). So, by Theorem 4.1, if
x is optimal, there is no d satisfying (S)-and the necessary condition is proved.

Suppose now that Jc is not optimal. We shall show that (S) is consistent. By
Theorem 4.1, either &- = 0 and

(SO

is consistent, o r^=?£0 and

(SO V/(x)(rf)>0, Vg(x)(d)e8T(B,g(x)), deC(g,B,x)

is consistent.
If (SO is consistent, there is nothing to prove. If (SO is consistent, there exists a

feasible direction d such that g(x+ouf)eB for ae(0, a]. By definition of &~,
g(x+ad)eB= for ae(0,a]. Also, for any feasible direction d,

a-»0

belongs to the hyperplane H" determining B*°, that is, the supporting hyperplane
to B at #(Jc) such that B= = BnH=. So there exist a>0 and d such that, for
a 6(0, a]

Vf(x)(J)>0, g(x)+Vg(x)(<xd)eB=, g(x+cJ)-gix)-Vg(x)(.ad)e-B-.

By Lemma 4.3, there exists x such that g(x) e ri B", so that if we denote d — x—x,
for a sufiiciently small,

ri5= and g(x

Let dx = \d+(\ - A) d with Ae(0,1). Then

g{x) + Vg(x)(ocdi)eriB" for ae(0, a'],

for some positive scalar a', and by 5-concavity of g
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Hence, dxeC(g,B,x) for ae(0,a']. This implies that Vg(x)(d^edT(B,g(x)).
Indeed, by Lemma 2.2, T(B,g(x)) = T(B,g(x))+g(x). So to prove that Vg(x)(dd
or Vgixyiadi), for a>0, belongs to 8T(B,g(x)) is equivalent to prove that

i belongs to 8T(B,g(x)). But, as dxeC(g,B,x),

which certainly belongs to the boundary of the smallest cone with vertex g(x)
containing B, that is, 8T(B,g(x)). So Vg(x) {d^e8T{B,g{x)).

Moreover,

/(x), for sufficiently small A.

Therefore dx is such that

V/(x)(rfA)>0, Vg{x){d^edT{B,g{x)), dxeC(g,B,x).

The system (S) is consistent and the theorem is proved.

By the Dubovitskii-Milyutin Theorem and the Minkowski-Farkas Lemma (see
Girsanov (1970)), the dual characterization of optimality, Theorem 4.3, follows
quite directly from Theorem 4.2. The cones to be considered in the proof of the
dual theorem are:

K2 = {d: Vg(x)(d)eintT(B,g(x))},

K3 = C(g,B,x).

THEOREM 4.3. Let x be a feasible solution of(P). Then x is optimal if, and only if,
there exists (ieT+(B,g(x)) such that

= 0, if^= = 0

or

Let us illustrate Theorems 4.2 and 4.3 by an example.

EXAMPLE 4.1. Consider the following problem:

Maximize f(xlt x^) = —x±+x2

such that g(x1,x2)= \ (
L ~ \ i~x i ) J
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where B = {(y^y^*-: y2>0, yx+y^O}. We already considered the constraint
g(xltx^)eB in Section 3. Let us recall that the feasible set is

A = {(xx.Xjj)*: xx = l,x2sS 1}.

The faces of B are

= 0}.

Let x = (1,1)*. Then g(jc) = (0,0)*, T(B,g(x)) = 5 and if xeA, g(x)eFlf so that
B= = FX. We saw in Example 2.1, that C(g,B,x) = {(a\,d$: dx = 0,<4<0}.
Moreover V/(x)(</) = - 2 ^ + ^ , and

r o - l l r dx 1 r -<4 I
= =

Lo o J L ^ J L o J
such that <4<0. The point x is optimal and Theorems 4.2 and 4.3 are verified.

These results, Theorems 4.2 and 4.3, also find an immediate application in the
computing algorithm called MELP developed in Ben-Tal and Zlobec (1975).
The MELP is a feasible direction method used for solving differentiable convex
programs with nonlinear concave constraints of the type:

(C) Max/V) such that fk(x)>0, ke0> = {l,2 p}.

This method is based on the following theorem (Ben-Tal and Zlobec (1975)),
requiring the solution of a program with cone-constraints.

THEOREM. Let fk: ke{0}L>^, be differentiable concave functions: Rn-+R and
x be a feasible solution of problem (C). For a given subset Q of ^(x), let the
(n + l)-tuple (X(Cl),d(Q)) be an optimal solution of the linear program over a cone

(C, Q) Maximize A such that

JfceQ;

Then
(a) x is an optimal solution of (C) if, and only if, for every Q<=^(Jc), A(Q) = 0;
(b) a vector de Rn is a feasible direction of descent at x if, and only if, there

exist a subset U of ^(x) and A>0 such that (\,d) is a feasible solution of

The sets Dj°k(x) are the cone of directions of constancy of the function fk at x
introduced in Ben-Tal et al. (1976) (the definition of Djpc) is recalled in the next
section). Hence in order to use the previous theorem, one must solve convex
programs (C, Q) over a cone and our theory could then be applied.
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Let us mention, to finish this section, that a saddle point characterization of
optimality can also be given, without constraint qualification, for problem (P).
Of course, such characterization does not make use of the generalized cone of
constancy. Such results can be found in Massam (1977).

5. Redaction to the classical results

Consider the classical problem

(C) Maximize/(x) such that

where /and gi,i=\,...,m, are concave and Frechet-differentiable. The functions
/and giti= \,...,m, map Rn into R. So in this case B = R%. Let A be the feasible
set. Let x be feasible, that is,

where

or gj(x) > 0, for./ = 1, ...,p,...,m.

This last case represents an unconstrained case and therefore is of no interest.
Let us consider the first case. The point g(x) belongs to the supporting hyperplanes
H) = {yeR™: y} = 0,je^{x)}, with the following notation

& = {1,2,...,/>,...,m}, ^(*) = {1,...,/>},

>: xeA implies gp) = 0}.

The corresponding faces are Fj = {yeRm: y} = 0, y^O for ie&>, i=£j}. Further,
T{B,g(x)) = {yeRm: yi>0, ...,yp>0; yp+1,...,ym arbitrary},

8T(B, g(x))= U iy e R™: yt = 0, y}> 0 for j * i and j <=0>(x),
i

yx arbitrary for

B-= n Fj = {yeR™: yj = 0 i

and

riB= = {yeR™: y, = 0 forje&>=, yt>0 foTj$&>=}.
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Then

C{g,B,x) = {deRn: there exists a > 0 such that for ae (0 , a]

g&)+Vgtf)(pul) = O,je0>-,

ftOO+VftCf) (ad) > 0,; e W " ,

-gj(x) - Vgtf) {ad) = 0, j

, that is, ^(Jc)>0, the previous conditions impose no constraint on
or gjx+ad). So,

C(g,B,x) = {deR?t: there exists a > 0 such that for ae(0 ,S]

Therefore

C(g,B,x) = {deRn: there exists <S>0 such that for ae(0,a]

= fl D-(x)n{deRn:Vg}{x)(d)>O,je<?(xW-},

where D^fx) is the cone of directions of constancy for the function gt at x as
introduced in Ben-Tal et al. (1976). Theorems 4.3 and 4.4 reduce to the following
characterizations of optimality.

THEOREM 5.1. Let x be a feasible solution of (C), x is optimal if, and only if,
either (I) or (II) is verified:

(I) The system

V/(x)(rf

)(d) = 0 only if de f\_
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is inconsistent, where

- ° ^ ) = {deRn: there exists a > 0 such that g£x+otd) = g}{x) for a e (0, a]}.

(II) There exists fi^O, ie&ix), not all zero, such that

e-( fl D$d)\ if

These conditions are exactly the primal and dual 'single / characterization' of
optimality given by Ben-Tal et al. (1976). A connection with their results is clearly
established. W h e n ^ = # 0 , Slater's condition is satisfied and the results obtained
are the classical Karush-Kuhn-Tucker results.

REMARKS. 1. In problem (C), the condition gt(x) = 0 only means that g(x)
belongs to the face Ft of the cone B — R% and therefore the notion of face is just
as important in the study of (C) as in the study of (P).

2. Before giving the characterizations involving only one subset of 0>, namely
the subset ̂ = , Ben-Tal et al. (1976) gave characterizations where every subset / of
^(x) was involved. This primal and therefore also dual characterization could be
directly deduced from Theorem 4.2 given in terms of the cone C(g, B, x).
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