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Abstract

For classroom teaching and learning, classifying students’ skills into more than two categories (e.g., no,
basic, and advanced masteries) is more instructionally relevant. Such classifications require polytomous
attributes, for which most existing cognitive diagnosis models (CDMs) are inapplicable. This paper
proposes the saturated polytomous cognitive diagnosis model (sp-CDM), a general model that subsumes
existing CDMs for polytomous attributes as special cases. The generalization is shown by mathematically
illustrating the relationships between the proposed and existing CDMs. Moreover, algorithms to estimate
the proposed model is proposed. A simulation study is conducted to evaluate the parameter recovery of the
sp-CDM using the proposed estimation algorithms, as well as to illustrate the consequences of improperly
fitting constrained or unnecessarily complex polytomous-attribute CDMs. A real-data example involving
polytomous attributes is presented to demonstrate the practical utility of the proposed model.

Keywords: cognitive diagnosis models; G-DINA; parameter estimation; polytomous attributes

1. Introduction

A wide variety of cognitive diagnosis models (CDMs) exist in the literature. Typically, these models
were proposed for dichotomous attributes appropriate for determining, say, skill mastery or non-
mastery. However, in many applications, classifying students into more than two categories is more
instructionally relevant. Such classifications require polytomous attributes, where the attribute levels
can be ordinal categories (e.g., no mastery, basic mastery, and advanced mastery). For example,
the proportional reasoning (PR) assessment developed to measure the PR skills for middle school
(equivalently, secondary) students (Tjoe & de la Torre, 2013, 2014) involves two three-level polytomous
attributes, namely, (a) comparing and ordering of fractions, where level 0 represents nonmastery of
the attribute, level 1 the ability to compare two fractions, and level 2 the ability to order three or more
fractions and (b) constructing ratios and proportions, where level 0 represents nonmastery, level 1 the
ability to construct a single ratio, and level 2 the ability to construct a proportion, which is made up
of two ratios. Attribute levels can also be nominal categories representing different content domains.
For example, level 1 represents the prerequisite skills (e.g., add and subtract) in the attribute hierarchy,
whereas level 2 the advanced skills (e.g., multiply and divide). In general, any M-level polytomous
attribute can be equivalently represented by M−1 dichotomous attributes that follow a linear hierarchy
(Leighton et al., 2004). In the example above, the polytomous attribute comparing/ordering fractions
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Table 1. Summary of existing cognitive diagnosis models for polytomous attributes

Model Framework Link Core assumptions

RUM-PA Constrained Log Conjunctive

cRUM-PA Constrained Log Conjunctive; equivalent distance between levels

OCAC-DINA Constrained Identity Conjunctive

f A-M Constrained Identity Additive

PDCM General Logit Monotonic

cPDCM Constrained Logit Monotonic; main effects of different levels are the same;

interaction effects across levels are the same

GDM-PA General Logit Depends on the choice of h(qk,αk)

pG-DINA General Identity; logit; log Monotonic; SALM

RAM Constrained Identity Conjunctive; monotonic

Note: RUM-PA: reparameterized unified model for polytomous attributes; cRUM-PA: constrained RUM-PA; OCAC-DINA: deterministic input,
noisy “and” gate model with ordered category attribute coding; f A-M: fully additive model for polytomous attributes; PDCM: polytomous
diagnostic classification model; cPDCM: constrained PDCM; GDM-PA: general diagnostic model for polytomous attributes; pG-DINA: polytomous
generalized DINA model; SALM: specific attribute level mastery; RAM: response accuracy model.

can be split into two dichotomous attributes, where the first deals with two fractions and the second with
three or more fractions, and the mastery of the former is a prerequisite to the mastery the latter. The
prerequisite relationship will constrain the number of possible mastery combinations to three, namely,
00, 10, and 11, which is equivalent to levels 0, 1, and 2 of the original polytomous attribute. Finally,
it is important to underscore that this paper focuses on the attributes with more than two categories
(i.e., polytomous attributes), rather than responses with more than two categories (i.e., polytomous
responses). This distinction is necessary because both CDMs for polytomous attributes and those for
polytomous responses have been referred to as polytomous CDMs in the literature.

To accommodate polytomous attributes, several CDMs have been developed in the literature, which
are summarized and shown in Table 1 according to several key features such as general or constrained,
link function, and core assumptions. For example, Templin (2004) extended the reparameterized
unified model (RUM; Hartz, 2002) for polytomous attributes (RUM-PA) and proposed a constrained
version (cRUM-PA), whereas Karelitz (2004) proposed the ordered category attribute coding (OCAC)
framework in conjunction with the deterministic input, noisy “and” gate (DINA) model (Junker &
Sijtsma, 2001) to define the mastery levels as multiple ordered categories. By defining accuracy with fast
speed as the highest level of an attribute, accuracy with slow speed as intermediate level, and nonmastery
as the lowest level, Wang and Chen (2020) extended the DINA model to be the response accuracy model
(RAM) model to measure students’ fluency in answering the test items. Recently, Yakar et al. (2021)
developed a fully additive model for polytomous attributes (f A-M), which accounts for the effects of
each attribute levels. However, these models are deemed to be not general enough mainly because the
models focused on a specific and constrained CDM.

The existing general CDMs for polytomous attributes include those proposed within the log-
linear cognitive diagnosis model (LCDM; Henson et al., 2009), that within the general diagnostic
model (GDM; von Davier, 2008), and that within the generalized deterministic input, noisy “and” gate
(G-DINA) model (de la Torre, 2011).

The polytomous diagnostic classification model (PDCM) framework (Bao, 2019) extends the mea-
surement and structural models of the LCDM to the polytomous attribute setting. Note that in the
PDCM framework, only the attribute patterns (αl) are polytomous, whereas the Q-matrix entries remain
binary. In contrast, both the attribute pattern and Q-matrix entries are polytomous, for other CDMs
in this paper, such as the OCAC framework, GDM, and the proposed framework. The probabilities
between different levels in PDCM can be varied for greater flexibility or be equal for smaller number
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of parameters. The PDCM uses the dummy coding approach in which the M levels of an attribute
are coded as (M − 1) dummy variables and the combinations of the dummy variables—representing
different knowledge states—are treated as the polytomous attribute levels. For example, for three levels
of an attribute, they are coded with two dummy variables and as (0,0), (1,0), and (1,1) to represent
nonmastery, intermediate mastery, and mastery. This coding approach might be workable when the
number of levels in attributes and the number of attributes in a test are moderate. It becomes tedious
and hard to interpret the representation of the knowledge states when the number of levels and attributes
are large.

With a proper choice of the central component function, as in, the function h(⋅) that maps the
attribute levels using the Q-matrix entries, the GDM can flexibly accommodate polytomous attributes.
For example, a useful and reasonable choice of h(⋅) is defined as h =min(qk,αk). As a result, an attribute
level that is higher than h(⋅) will not increase the probability of solving an item, whereas that is lower
than h(⋅) results in a lower success probability. In other words, while there is no distinction between
groups who possess the required attribute level and who have an even higher level, there is distinction
between groups whose attribute levels are lower than the required level. Nonetheless, the GDM for
polytomous attributes (GDM-PA) has neither been examined with simulation studies in enough details
nor applied to the real data.

With respect to the G-DINA model for polytomous attributes, namely, the pG-DINA model (Chen
& de la Torre, 2013), the model relies on a core assumption, which is referred to the specific attribute level
mastery (SALM), where each item is assumed to separate examinees into two reduced latent groups—
those who are on or above a specific attribute level, and those who are below it. With the SALM
assumption, some levels in the pG-DINA do not increase the success probability. Such a constraint
may be too stringent because attribute vectors in the same reduced latent group are very likely to have
varying levels with respect to the required attributes and thus their probabilities of success may not be
identical.

The first and primary aim of this paper is to propose a general CDM framework for polytomous
attributes, the saturated polytomous cognitive diagnosis model (sp-CDM), which is analogous to the G-
DINA model for dichotomous attributes. Specifically, the proposed model extends the pG-DINA model
by relaxing the SALM assumption and allows for the different attribute levels to contribute differentially
to the success probability. This work also aims to derive the special cases of the sp-CDM under different
constraints and show the mathematical relationships between the sp-CDM and the existing CDMs for
polytomous attributes and its special cases. Third, this work aims to address the estimation of the sp-
CDM, to examine parameter recovery using the proposed estimation algorithms, and the consequences
of fitting constrained and unnecessarily complex models across a range of conditions. Finally, the study
aims to demonstrate the application of the sp-CDM with a real data of PR assessment.

This paper contributes to the literature by developing a unified framework for polytomous attributes.
The proposed model has three unique features: (1) Compared to the existing CDMs for polytomous
attributes, where some attribute levels share identical success probabilities, the sp-CDM allows for
different attribute levels to have their unique contributions to the success probability; (2) the sp-CDM
is formulated with alternative link functions, thus, making it more general; and (3) due to the different
model formulations, the existing models can be mathematically shown to be special cases of the various
forms of the sp-CDM with appropriate constraints. Despite the similar structure of this work to that of
the G-DINA (de la Torre, 2011) or the pG-DINA (Chen & de la Torre, 2013) model, the fundamental
differences are substantial. Specifically, the formulations, the estimations, and the implications of three
models are substantially different.

2. The generalized cognitive diagnosis model framework for polytomous attributes

The generalized CDM framework for polytomous attributes can be expressed as three saturated models
under different link functions. Let J be the number of items, K the number of attributes, and Mk the
number of levels of attribute k. For notational convenience, but without loss of generality, it can be
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assumed that Mk =M, indicating the number of levels is identical for all attributes. Thus, there will be
a total of∏K

k=1 Mk =MK attribute patterns or latent classes. Let K∗j = ∑K
k=1 I(qjk > 0) be the number of

required attributes for the item j, j=1, . . ., J. Again, for notational convenience, let the first K∗j attributes
be the required attributes for item j. We use qj = (q1, . . . qK∗j ,0)1×K to denote the required levels in the
K∗j attributes to answer the item j correctly, and α∗l = (α1, . . . ,αk, . . . ,α∗K∗j )1×K∗j the lth reduced attribute
pattern or latent group. As can be seen from above, the entries in both the q and α∗ can have more than
two categories.

To illustrate, consider K = 3, M = 3, and q = (1,2,0), which indicates that the first level of α1 and the
second level of α2 are required for the item, hence, K∗j = 2. For this example, there are MK = 27 latent
classes, which will be partitioned into MK∗j = 9 latent groups. Specifically, for this item, the latent classes
αl and αl′ are classified in the same latent group when αl1 = αl′1 and αl2 = αl′2. For example, the latent
classes 000, 001, and 002 all belong to the latent group 00.

The item response function (IRF) of the proposed model using the identity link function is given by

Pj(α∗l ) = δj0+
K∗j
∑
k=1

M−1
∑
m=1

δjkmI[αlk =m]+
K∗j
∑
k′>k

K∗j −1

∑
k=1

M−1
∑
m=1

M−1
∑

m′=1
δjkmk′m′ I[αlk =m]I[αlk′ =m′]

+⋯+
M−1
∑

m1=1

M−1
∑

m2=1
. . .

M−1
∑

mK∗j
=1

δj1m12m2...K∗j mK∗j

K∗j
∏
k=1

I[αlk =mk], (1)

where δj0 is the intercept, δjkm is the main effect of the mth level of attribute k, δjkmk′m′ is the two-way
interaction effect of the mth level of attribute k and the m′th level of attribute k′, and δj1m12m2...K∗j mK∗j

is

the K∗j -way interaction effect of the m1th level of the α1, m2th level of the α2, up to the mK∗j th level
of αK∗j . It can be further noted that the subscript m of δjkm indicates that each attribute level in αk

contributes differentially to the success probability, as in, the steps between adjacent levels vary (e.g.,
the step between “no mastery” and “basic mastery” is different from that between “basic mastery” and
“advanced mastery”). To reduce the number of parameters and, hence, model complexity, it can be
assumed that the steps between levels within αk are identical, which reduces δjkm to δjk.

In addition to the identity link function, the sp-CDM can also be formulated with the logit and log
links. Despite the similar forms, the models using different link functions are essentially different in
terms of the values and interpretations of the parameters. For this reason, different notations are used
for parameters under formulations with logit and log link functions.

For the logit link,

logit[Pj(α∗l )] = λj0+
K∗j
∑
k=1

M−1
∑
m=1

λjkmI[αlk =m]+
K∗j
∑
k′>k

K∗j −1

∑
k=1

M−1
∑
m=1

M−1
∑

m′=1
λjkmk′m′ I[αlk =m]I[αlk′ =m′]

+⋯+
M−1
∑

m1=1

M−1
∑

m2=1
. . .

M−1
∑

mK∗j
=1

λj1m12m2...K∗j mK∗j

K∗j
∏
k=1

I[αlk =mk]. (2)

For the log link,

log[Pj(α∗l )] = νj0+
K∗j
∑
k=1

M−1
∑
m=1

νjkmI[αlk =m]+
K∗j
∑
k′>k

K∗j −1

∑
k=1

M−1
∑
m=1

M−1
∑

m′=1
νjkmk′m′ I[αlk =m]I[αlk′ =m′]

+⋯+
M−1
∑

m1=1

M−1
∑

m2=1
. . .

M−1
∑

mK∗j
=1

νj1m12m2...K∗j mK∗j

K∗j
∏
k=1

I[αlk =mk]. (3)
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Equations (1), (2), and (3) are referred to as the saturated polytomous cognitive diagnosis model (sp-
CDM) under the identity, logit, and log link functions, respectively. The number of parameters for item
j for the three models is equal to the number of latent groups (i.e., MK∗j ). Thus, the models offer much
greater generality compared to the existing CDMs for polytomous attributes. Although flexible, the
large number of parameters in these models can make their estimation challenging. Therefore, simpler
and more interpretable models with fewer parameters are sometimes warranted. Note that the number
of parameters for the saturated models does not take into account the required attribute levels—it is
computed as the product of the maximum levels of the required attributes. Thus, in the example above, in
addition to (1,2,0), the q-vectors (1,1,0), (2,1,0), and (2,2,0)will result in the same saturated models.

3. Special cases

This section introduces several simplified CDMs for polytomous attributes with different assumptions,
namely, the conjunctive, disjunctive, and additive assumptions, and how they can be derived from the
sp-CDM by imposing appropriate constraints.

The conjunctive version of the sp-CDM
In the conjunctive version of the sp-CDM (conj-sp-CDM), it is assumed that examinees should

possess levels that are equal to or higher than the required levels in all the required attributes are
expected to answer the item correctly. Alternatively, persons who lack at least one of the required
attributes, or possess levels lower than those required in at least one of the required attributes, are
expected to answer the item incorrectly. Hence, the IRF of the conj-sp-CDM can be expressed as

Pj(α∗l ) = {
gj if I[{α∗l ≥ qj}] ≺ 1K∗j ,

1− sj otherwise,
(4)

where the symbol {} insides I[⋅] indicates that the operation be carried out attribute by attribute and
I[⋅] = 1 if α∗l ≥ qj and 0 otherwise. 1K∗j is a vector of ones and of length K∗j . The ≺ symbol indicates with
respect to K∗j required attributes, which is a partially order set of K attributes, at least one of the elements
in the results of I[⋅] is less than 1. As shown in Equation (4), the conj-sp-CDM has two parameters for
item j.

On the surface, the formulation of the conj-sp-CDM is similar to that of the DINA model. However,
the parameters in Equation (4) require more complicated interpretations. For example, the gj in the
equation is the probability of correctly answering item j for individuals who lack at least one of the
prescribed attributes, or who possess the required attributes, but with levels lower than required levels
in the prescribed attributes; the 1− sj represents the probability of individuals who have attribute levels
that are all at least equal to the required levels answering the item incorrectly. Thus, in the conj-sp-CDM
model, the MK∗j attribute vectors are classified into two latent groups—attribute vectors that jointly
satisfy the required levels prescribed for item are classified in one group and the rest of the attribute
vectors in the other group.

The conj-sp-CDM model can be derived from the identity sp-CDM (i.e., Equation (1)) by imposing
the following three constraints:

(1) All the (M − 1)K∗j main effects are equal to zero, as in, δjkm = 0 for k = 1, . . . ,K∗j and
m = 1, . . . ,M−1;

(2) All the ∏
K∗j
k=1(M − qk) interaction terms involving attribute levels at least equal to the required

attribute levels are identical, as in, δj1m(+)1 2m(+)2 ...K∗j m(+)
K∗j

= δj1q12q2...K∗j qK∗j
, where m(+)k = qk, . . . ,M−1; and

(3) The remaining MK∗j −(M − 1)K∗j −∏
K∗j
k=1(M − qk)− 1 interaction effects involving at least one

attribute level below the required level are all equal to zero.
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With the conjunctive assumptions imposed on the identity sp-CDM, the IRF of the conj-sp-CDM
can also be expressed as

Pj(α∗l ) = δj0+δj1q12q2...K∗j qK∗j

K∗j
∏
k=1

I[αlk ≥ qjk]. (5)

The disjunctive version of the sp-CDM
In the disjunctive version of the sp-CDM (disj-sp-CDM), the IRF is given by

Pj(α∗l ) = {
1− s′j if I[{α∗l ≥ qj}] ≻ 0K∗j ,

g′j otherwise,
(6)

where 1− s′j is the probability of not slipping for persons who possess levels that are equal to or higher
than the required levels in at least one required attribute, and g′j is the success probability that persons
who possess none of required attributes, or possess at least one of the required attributes, but all of
which have levels that are lower than the required levels. As such, the disj-sp-CDM has two parameters
for each item.

The disj-sp-CDM can be derived from the identity sp-CDM with the following constraints:
(1) The main effects δjkm(−) = 0 and δjkm(+) = δjkqk , where m(−)k = 1, . . . ,qk − 1 represents levels of

attribute k that are lower than the required level qk, and m(+)k is as defined as above.
(3) The remaining interaction effects (i.e., those involving at least one m(−)k ) are of equal to zero.
With these assumptions, the identity sp-CDM can be reduced to be the disj-sp-CDM as

Pj(α∗l ) = δj0+
K∗j
∑
k=1

δjkqk I[αlk ≥ qk]+
K∗j
∑
k′>k

K∗j
∑
k=1

δjkqkk′qk′ I[αlk ≥ qk]I[αlk′ ≥ qk′]+

⋅ ⋅ ⋅+δj1q12q2...K∗j qK∗j
I[αl1 ≥ q1]I[αl2 ≥ q2]. . . I[αlK∗j ≥ qK∗j ]. (7)

The fully additive model for polytomous attributes
The fully additive model for polytomous attributes (f A-M; Yakar et al., 2021) assumes that mastering

level m of required attribute k increases the success probability on item j by δjkm, and its contribution is
independent of the contributions of the levels of the other attributes. By retaining only the main effects
in Equation (1), the f A-M can be obtained, which has the following IRF:

Pj(α∗l ) = δj0+
K∗j
∑
k=1

M−1
∑
m=1

δjkmI[αlk =m]. (8)

The f A-M has K∗j (M − 1)+ 1 parameters for item j. As with the saturated models, the number of
parameters of the f A-M does not depend on the required levels, only the maximum levels of the required
attributes. Using the required level qk as a cutoff value, two simplified and interpretable models can be
obtained from the f A-M. Specifically, in the first simplified f A-M, mastering an attribute level that is
higher than qk will contribute to higher probability of answering an item correctly, whereas mastering
those that are lower than qk will have equal success probability. Hence, qk serves as a minimum bar and
will be denoted as min-f A-M. The IRF for the min-f A-M can be expressed as

Pj(α∗l ) = δj0+
K∗j
∑
k=1
(δjk1k I[αlk < qjk]+δjkmI[αlk ≥ qjk]), (9)

where δjk1k represents the main effect of m = 1 in attribute k. The number of parameters for item j in the

min-f A-M reduces to∑
K∗j
k (M−qk+1)+1.
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In contrast to the min-f A-M, the second simplified f A-M assumes qk is a maximum requirement
and will be denoted as max-f A-M. The model is similar to the GDM in that the success probabilities
for attribute levels that are higher than qk are equal to each other in both models, which equal to the
probability of level qk. However, those of levels that are lower than qk are different. The lower the level,
the lower the success probability. The IRF for the max-f A-M can be expressed as

Pj(α∗l ) = δj0+
K∗j
∑
k=1
(δjkmI[αlk < qk]+δjkqk I[αlk ≥ qk]), (10)

where δjkqk is the main effect of level m = qk in attribute k. The max-f A-M has∑
K∗j
k qk+1 parameters for

item j.

4. The connections between the sp-CDM and the existing models

This section shows, both mathematically and graphically, the connections between the sp-CDM and the
existing models. Specifically, the existing CDMs for polytomous attributes can be formulated as special
cases of the sp-CDM using different functions. A diagram (i.e., Figure 1) and a table (i.e., Table 2) help
illustrate the connections between the sp-CDM and the existing models and those among the existing
models.

4.1. The identity model: pG-DINA and fA-M
The pG-DINA model can be obtained from the sp-CDM by replacing I[αl⋅⋅ =m] with I[αl⋅ ≥ qjk]. With
respect to the f A-M, as shown in Equation (8), it is the identity sp-CDM that retains the main effects
only.

Figure 1. The generalized cognitive diagnosis model framework for polytomous attributes.
Note: sp-CDM: saturated polytomous cognitive diagnosis model; f A-M: fully additive model for polytomous attributes; pG-DINA: generalized
deterministic input, noisy “and” gate model for polytomous attributes with the specific attribute level mastery (SALM) assumption; PDCM:
saturated polytomous-attribute diagnostic classification model; RUM-PA: reparameterized unified model for polytomous attributes; min-f A-
M: f A-M using qk as a minimum requirement; max-f A-M: f A-M using qk as a maximum requirement; cPDCM: constrained PDCM; GDM-PA:
general diagnostic model for polytomous attributes; cRUM-PA: constrained RUM-PA; pA-CDM: additive model for polytomous attributes; pDINA:
deterministic input, noisy “and” gate model for polytomous attributes; pDINO: deterministic input, noisy “or” gate model for polytomous
attributes; conj-sp-CDM: conjunctive version of sp-CDM; disj-sp-CDM: disjunctive version of sp-CDM; OCAC: ordered category attribute coding
framework. The colors orange, blue and green can be interpreted as the number of steps (i.e., 1, 2, and 3 steps) for the reduced models to be
derived from the saturated model of a particular link function. For example, the pA-CDM can be derived from the identity sp-CDM through pG-
DINA (two steps) or through f A-M then either min-f A-M or max-f A-M (three steps). The dashed lines indicate that the reduced models can also
be shown to be special cases of sp-CDM with logit or log link functions.
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Table 2. The relationships between sp-CDMs and the existing CDMs for polytomous attributes

Existing CDMs Constraints on the sp-CDM Special cases

pG-DINA sp-CDM with I[αl⋅ ≥ qjk] OCAC

OCAC pG-DINA without interaction terms —

f A-M identity sp-CDM with main effects of levels —

PDCM logit sp-CDM cPDCM; GDM-PA

GDM-PA logit sp-CDM without interaction terms —

RUM-PA log sp-CDM with log(π∗)+∑K
k=1∑

M
m=1 log(r∗km) = ν0 and

−∑K
k=1∑

M
m=1 log(r∗km) = −∑

K
k=1∑

M
m=1 νkm

cRUM-PA

Note: sp-CDM: saturated polytomous cognitive diagnosis models; pG-DINA: generalized deterministic input, noisy “and” gate model for
polytomous attributes with the specific attribute level mastery (SALM) assumption; OCAC: ordered category attribute coding framework; f A-
M: fully additive model for polytomous attributes; PDCM: saturated polytomous-attribute diagnostic classification models; cPDCM: constrained
PDCM; GDM-PA: general diagnostic model for polytomous attributes; RUM-PA: reparameterized unified model for polytomous attributes; cRUM-
PA: constrained RUM-PA.

4.2. The logit model: PDCM and GDM-PA
In the PDCM framework (Bao, 2019), the logit of the success probably in answering item j correctly is
given by

log
P(Xj = 1∣α̃)
P(Xj = 0∣α̃) = λj0+

K
∑
k=1

M−1
∑
m=1

λm
jkα̃m

k qjk+
K−1
∑
k=1

M−1
∑
m=1

K
∑

k′=k+1

M−1
∑

m′=1
λmm′

jkk′ α̃m
k α̃m′

k′ qjkqjk′ +⋯, (11)

where α̃m
k is the dummy variable for level m of attribute k, qjk is equal to 1 if kth attribute is measured

by item j. λm
jk is the main effect of level m for attribute k, and λmm′

jkk′ is the two-way interaction effect for
level m of attribute k and level m′ of attribute k′. As mentioned earlier, qjk in the PDCM are still binary
values. Hence, the PDCM is a special case of the logit sp-CDM.

In the GDM (von Davier, 2008), the IRF can be expressed as

logit[P(Xj = 1∣β,qk,γ,αk)] = β+γTh(qk,αk). (12)

As mentioned earlier, for polytomous attributes with qk ∈ {0,1,2, . . . ,m} and αk ∈ {0,1,2, . . . ,m}, a useful
and reasonable choice of h(⋅) in GDM is defined as

h(qk,αk) = {
qk if αk > qk
αk if αk ≤ qk

. (13)

To this end, Equation (12) is equivalent to

logit[P(Xj = 1∣β,qk,γ,αk)] = β+
K∗j
∑
k=1

M
∑
m=1

γjk ⋅h(qk,αk), (14)

where γjk is the increase in the logit of the probability of success for every level of αk mastered up to the
required level (i.e., qk).

4.3. The log model: RUM-PA
In the polytomous attribute RUM (Templin, 2004) with qk ∈ {0,1} and αk ∈ {0,1,2, . . . ,m}, the success
probability is given by

P(Xj = 1∣qk,αk,π∗,r∗k ) = π∗
K
∏
k=1
(r∗k )fk(qk,αk), (15)
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where

f (qk,αk) = {
1 if qk = 1,αk = 0
0 if qk = 1 ≤ αk =m . (16)

Like in the PDCM, the Q-matrices in the RUM-PA are assumed to be dichotomous, whereas the person
attributes are assumed to be polytomous. Equation (15) can be written with respect to different attribute
level m as

P(Xj = 1∣qk,αk,π∗,r∗k ) = π∗
K
∏
k=1

M
∏
m=1
(r∗k )fkm(qkm,αkm). (17)

Equation (17) can be rewritten using α∗k with qk = 1 as

P(Xj = 1∣qk,α∗k ,π
∗,r∗k ) = π∗

K
∏
k=1

M
∏
m=1

r∗km×
K
∏
k=1

M
∏
m=1
( 1

r∗km
)αkm . (18)

Thus,

log[P(Xj = 1∣qk,α∗k ,π
∗,r∗k )] = log(π∗)+

K
∑
k=1

M
∑
m=1

log(r∗km)−
K
∑
k=1

M
∑
m=1

log(r∗km)αkm. (19)

By setting log(π∗) +∑K
k=1∑M

m=1 log(r∗km) = ν0 and −∑K
k=1∑M

m=1 log(r∗km) = −∑K
k=1∑M

m=1 νkm, Equation
(19) is a special case of log sp-CDM without the interaction terms.

5. Model estimation

The estimation algorithms for the parameters, the corresponding standard errors (SEs), and the person
attribute patterns in the sp-CDM model are primarily similar to those in estimating the parameters
of the G-DINA model described in de la Torre (2011) and those of the DINA model in de la Torre
(2009). Specifically, parameters for the saturated forms of the sp-CDM can be estimated via the marginal
maximum likelihood estimation method with an expectation-maximization (MMLE/EM), and those
of reduced models can be estimated by incorporating appropriate design matrix in the MMLE/EM
procedure. Details can be found in Appendix A.

6. Simulation study

6.1. Design
Two research questions were investigated in the simulation study. First, how well can the parameters
of the sp-CDM be recovered with the proposed estimation algorithms? And second, how does the
fit of the sp-CDM compare with those of constrained and simplified models across different data
generation assumptions. Due to time and space constraints, we focus on the identity sp-CDM and
its two special cases, namely, the pG-DINA and f A-M, in this study. The details of the design are
summarized in Table 3. The levels for the manipulated factors followed previous studies (e.g., de la
Torre et al., 2021). In particular, the levels of item quality, defined as a function of the guessing and
slip parameters, were computed as p0 and (1− p1). Specifically, items with (p0, 1− p1) ∈ U(.05, .15),
U(.10, .20), and U(.15, .30) were classified as high, moderate, and low-quality items, respectively. To
this end, the generating values for the intercept parameters were set to be .05, .10, and .15 under the
three types of quality items. For the main effect parameters, the mean of the generating values are .16,
.15, and .13, respectively, and for the interaction effect parameters, they are .1, .08, and .07, respectively.
Attribute patterns were generated from a uniform distribution where all possible attribute patterns were
equally likely. The Q-matrix for K = 3 and K = 5 with 26 items is shown in Tables 4 and B.1, respectively,
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Table 3. Summary of the simulation design

Factor Level

M (attribute levels) 3

N (sample size) 1,000, 2,000

K (number of attributes) 3, 5

J (number of items) 26, 52

Item quality High, Moderate, Low

True/Fitted model sp-CDM/sp-CDM

sp-CDM/pG-DINA, sp-CDM/f A-M

pG-DINA/sp-CDM, pG-DINA/pG-DINA,

f A-M/sp-CDM, f A-M/f A-M

Note: sp-CDM: saturated polytomous cognitive diagnosis models; pG-DINA: generalized deter-
ministic input, noisy “and” gate model for polytomous attributes with the specific attribute
level mastery (SALM) assumption; f A-M: fully additive model for polytomous attributes.

Table 4. Q-matrix for conditions of three attributes in simulation study

Item α1 α2 α3 Item α1 α2 α3 Item α1 α2 α3

1 1 0 0 11 1 0 1 21 1 2 1

2 0 1 0 12 1 0 2 22 1 2 2

3 0 0 1 13 2 0 1 23 2 1 1

4 2 0 0 14 2 0 2 24 2 1 2

5 0 2 0 15 0 1 1 25 2 2 1

6 0 0 2 16 0 1 2 26 2 2 2

7 1 1 0 17 0 2 1

8 1 2 0 18 0 2 2

9 2 1 0 19 1 1 1

10 2 2 0 20 1 1 2

and the Q-matrix with 52 items is duplicate of respective Q-matrices. The Q-matrix in the simulation
study was specified to satisfy the sufficient conditions similar to Theorem 4 in Fang et al. (2019). The
GDINA package (Ma & de la Torre, 2019) and a customized program were used to generate the data
and estimate the models. The monotonic constraints were imposed when estimating the models. A total
of 168 conditions were examined, and each condition was replicated 100 times.

To answer the research questions, the simulation study was carried out in three steps. Step 1 was
designed to answer the first research question. In this step, data under different conditions were
generated following the sp-CDM (i.e., Equation (1)) and fitted with the true model (i.e., the sp-
CDM). Steps 2 and 3 were designed to answer the second research question. In the second step,
the pG-DINA model and f A-M were also fitted to the generated data in step 1 to investigate the
consequences of fitting reduced models when neither the SALM nor the additive assumption holds.
In step 3, two sets of data were generated following the pG-DINA model and f A-M, and fitted with sp-
CDM, as well as their respective true model to investigate the consequences of fitting an unnecessarily
complicated model (i.e., the sp-CDM) when the SALM or the additive assumption holds. For the sake of
discussion, step 1 is referred to as the parameter recovery study, whereas steps 2 and 3 as the comparison
study.
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Evaluation criteria
The dependent variables in the parameter recovery study were the bias and root mean square error
(RMSE) of the estimated success probabilities of the reduced attribute patterns in item j (denoted as
P̂j(α∗l )), and were defined as

Bias(P̂j(α∗l )) =
J
∑
j=1

L∗j
∑
l=1
[ ¯̂Pj(α∗l )−Pj(α∗l )]/

J
∑
j=1

L∗j , (20)

and

RMSE(P̂j(α∗l )) =

�
����

J
∑
j=1

L∗j
∑
l=1

R
∑
r=1
[P̂(r)j (α∗l )−Pj(α∗l )]

2
/[R×

J
∑
j=1

L∗j ], (21)

respectively, where Pj(α∗l ) is the generating probability of α∗l in item j, P̂(r)j (α
∗
l ) is the estimate of P̂j(α∗l )

in the rth replication, ¯̂Pj(α∗l ) is the mean of P̂j(α∗l ) across R replications, and L∗j is the number of
attribute patterns in item j.

In the comparison study, the dependent variables were the proportion of correctly classified attributes
(PCA) and vectors (PCV), which were computed as

PCAr = ∑
N
n=1∑K

k=1∑M
m=1 I[α̂nkm = αnkm]
N ×K

, (22)

and

PCVr = ∑
N
n=1 I[α̂n = αn]

N
, (23)

respectively, where I[α̂nkm = αnkm]was used to evaluate the match between the estimated and generated
attribute in the rth replication and I[α̂n = αn] to attribute vectors. For both studies, the results are
summarized using the average values of the variables across replications.

Results
For K = 3, the bias and RMSE under different conditions are shown in Figures 2 and 3, respectively,
and PCA and PCV under the high, moderate, and low quality item conditions in Tables 5, 6, and 7,
respectively. In particular, the upper panels of Figures 2 and 3 give the biases and RMSEs from fitting
the sp-CDM to the sp-CDM data under different numbers of attributes, item qualities, test lengths,
and sample sizes. The figures show that the parameters of the sp-CDM can be well recovered with the
proposed estimation algorithms, particularly when high quality items were involved. For example, the
mean biases were between−0.007 and 0.000, and the mean RMSEs were between 0.000 and 0.009 across
all conditions. The upper panels of Tables 5, 6, and 7 reveal that the classification of attributes and vectors
are satisfactory under the sp-CDM. For example, for the high quality item conditions (i.e., Table 5), the
PCAs were between 88.2% and 96.9%, and the PCVs were between 71.9% and 89.3%.

In comparison, a closer inspection of the panels of Figures 2 and 3 and Tables 5, 6, and 7 reveals
that fitting the reduced models, either the f A-M or the pG-DINA, to the sp-CDM data resulted in
larger biases and RMSEs, or lower PCAs and PCVs, particularly when high quality items were used.
Dramatically different results were obtained when the sp-CDM was fitted to the data generated using
the reduced models, the biases, RMSEs, PCAs, and PCVs were similar to those obtained when the
corresponding true models were fitted. These results can have important practical implications—when
it is unclear which is the true model for an item, it is safer to fit the more general sp-CDM, rather than
a particular reduced model.

https://doi.org/10.1017/psy.2024.16 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.16


12 J. de la Torre et al.

Figure 2. Bias in parameter recovery with three attributes.
Note: sp-CDM: saturated polytomous cognitive diagnosis models; f A-M: fully additive model for polytomous attributes; pG-DINA: generalized
deterministic input, noisy “and” gate model for polytomous attributes with the specific attribute level mastery (SALM) assumption. J: test length;
N: sample size.

Due to space constraints, the results for K = 5 are given in Appendix B, where Figures B.1 and B.2
contain the bias and RMSE, respectively, and Tables B.2, B.3, and B.4 the PCA and PCV under the three
item quality conditions, respectively. In general, the findings for K = 5 were similar to those for K = 3.
However, it should be noted that for two conditions in Figure B.2 (i.e., K = 5, J = 26, N = 1000, and items
are either of low or moderate quality), the sp-CDM produced larger RMSEs than f -AM even though
the data were generated from the sp-CDM. This could be attributed to the instability of estimating the
sp-CDM when a large number of parameters are involved, and the data are not sufficiently informative.

One reviewer noted that the RMSE results from both the K = 3 and K = 5 conditions for the sp-CDM
and f AM tend to yield decreased RMSEs when tests contain more items and use smaller samples. For
example, in the top panel of Figure 3, the RMSE results under the condition J52/N1000 are smaller
than those for the condition J26/N2000. To investigate this phenomena, an additional simulation was
conducted where the dataset was generated from the sp-CDM with K = 3 and high item quality for
the two conditions (i.e., J52/N1000 and J26/N2000). Three analyses were carried out as follows: In
the first analysis, for the condition of J52/N1000, the true attribute patterns for each person were
assigned a posterior probability of 0.950, and the remaining 26 patterns for the person a probability
of (1 − 0.950)/26 ≈ 0.002. In contrast, for the condition of J26/N2000, the true attribute patterns
for each person were assigned a posterior probability of 0.700 and other patterns a probability of
(1−0.700)/26 ≈ 0.011. This analysis mimics a scenario where the attribute patterns are better estimated
in a smaller sample size condition than in a larger one. In the second analysis, the setting for the patterns’
posterior probabilities was reversed for the two conditions to mimic a scenario where the attribute
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Figure 3. Root mean square error (RMSE) in parameter recovery with three attributes.
Note: sp-CDM: saturated polytomous cognitive diagnosis models; f A-M: fully additive model for polytomous attributes; pG-DINA: generalized
deterministic input, noisy “and” gate model for polytomous attributes with the specific attribute level mastery (SALM) assumption. J: test length;
N: sample size.

patterns are better estimated in a larger sample size than in a smaller one. Finally, the patterns’ posterior
probabilities were set using the results of the original simulation study. Specifically, the mean of the
posterior probabilities for the true patterns across persons was computed for the two conditions—which
are 0.601 and 0.456 for the conditions of J52/N1000 and J26/N2000, respectively—and are used in the
third analysis.

The biases and RMSEs for the additional simulation study are shown in Table 8. It was found that, for
each analysis, the test that was assigned more accurate attribute pattern estimates resulted in better item
parameter estimates (i.e., smaller bias and RMSE), even when the sample size was supposedly smaller.
For example, in the first and third analyses, the biases and RMSEs under J52/N1000 are smaller than
those under J26/N2000. These results demonstrate how more informative (i.e., longer) tests calibrated
with a smaller sample size can produce better item parameter estimates.

7. Real data example

7.1. Data and analysis
The responses in this example consisted of 1,408 middle school students in Hong Kong to a PR
assessment described earlier. The assessment uses 31 multiple-choice items measuring six PR attributes,
namely, (1) prerequisite skills and concepts required in PR, (2) comparing and ordering fractions, (3)
constructing ratios and proportions, (4) identifying a multiplicative relationship between sets of values,
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Table 5. Correctly classified attributes (PCA) and vectors (PCV) (in %) with three attributes and high quality items

Test length/sample size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 90.6 86.3 87.2 91.0 86.2 87.3 96.6 91.7 95.4 96.9 91.6 95.4

PCA2 88.9 84.3 82.9 89.4 84.5 82.7 95.7 90.8 92.4 96.1 91.1 92.8

PCA3 88.2 82.5 82.2 88.8 82.6 82.6 95.4 89.7 92.2 95.7 90.2 92.4

PCV 71.9 58.3 58.9 73.2 58.3 59.2 88.4 73.2 81.4 89.3 73.8 81.9

f A-M PCA1 89.7 90.6 81.3 90.6 90.9 81.6 96.5 96.7 88.2 96.7 96.8 88.3

PCA2 86.0 87.4 77.9 87.2 87.7 77.7 94.1 94.6 79.4 94.5 94.8 79.4

PCA3 84.2 86.3 77.3 85.9 86.5 77.2 93.1 93.8 77.7 93.8 94.1 77.9

PCV 65.4 69.1 47.4 68.5 69.7 47.3 84.8 86.2 51.8 86.0 86.6 52.0

pG-DINA PCA1 96.8 95.1 97.0 97.0 95.2 97.1 99.5 99.0 99.5 99.5 99.1 99.6

PCA2 96.1 94.2 96.3 96.3 94.3 96.4 99.3 98.9 99.4 99.3 98.9 99.4

PCA3 95.5 93.4 95.6 95.6 93.5 95.7 99.1 98.5 99.2 99.1 98.6 99.2

PCV 89.5 83.9 90.0 89.9 84.3 90.2 97.9 96.5 98.2 98.1 96.6 98.2

Note: Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: f A-M; 3: pG-DINA; PCAk: PCA of attribute k.

Table 6. Correctly classified attributes (PCA) and vectors (PCV) (in %) with three attributes and moderate quality items

Test length/sample size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 79.1 78.2 75.9 79.9 78.4 76.2 89.3 87.7 83.2 90.2 87.8 83.2

PCA2 76.5 75.5 73.4 77.4 76.2 74.1 87.1 85.5 79.6 88.3 86.0 80.2

PCA3 75.0 74.7 74.0 76.7 75.0 74.4 86.6 84.9 81.3 87.9 85.0 81.2

PCV 44.9 43.0 40.9 48.5 43.7 41.6 68.0 62.9 52.2 70.9 63.3 52.6

f A-M PCA1 83.7 85.7 79.5 85.2 86.0 79.7 93.6 94.2 87.0 94.1 94.4 87.0

PCA2 79.4 82.1 76.0 81.2 82.6 76.5 90.5 91.6 81.7 91.4 91.9 82.2

PCA3 75.2 78.8 75.3 77.6 79.3 75.4 87.2 88.8 81.0 88.5 89.2 81.2

PCV 50.4 56.4 45.1 54.5 57.2 45.7 74.4 77.3 56.3 76.7 78.0 56.7

pG-DINA PCA1 92.5 90.0 92.9 92.6 89.9 92.8 97.9 96.7 98.1 98.1 96.8 98.1

PCA2 91.5 88.4 92.0 91.8 88.7 92.1 97.6 96.3 97.8 97.8 96.3 97.9

PCA3 90.6 87.1 91.1 91.1 87.7 91.4 97.1 95.6 97.3 97.4 95.8 97.5

PCV 78.4 69.5 79.5 79.1 70.3 79.7 93.2 89.3 93.7 93.8 89.7 94.0

Note: Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: f A-M; 3: pG-DINA; PCAk: PCA of attribute k.

(5) differentiating a proportional relationship from a non-proportional relationship, and (6) applying
algorithms in solving PR problems, among which, the second and third attributes are polytomous with
M = 3 and other attributes are dichotomous. The Q-matrix for the empirical example is provided in
Table 9, where each item requires one to four attributes (i.e., 1 ≤ K∗j ≤ 4). This Q-matrix satisfies the
identifiability conditions by Fang et al. (2019). The sp-CDM, f A-M, and pG-DINA model were fitted to
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Table 7. Correctly classified attributes (PCA) and vectors (PCV) (in %) with three attributes and low quality items

Test length/sample size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 73.2 71.8 72.1 74.0 73.9 72.3 84.2 83.6 79.8 85.4 83.9 80.1

PCA2 70.1 69.2 68.8 71.2 70.8 69.9 81.2 80.8 76.1 82.6 81.5 76.7

PCA3 67.1 66.0 66.2 67.9 67.0 67.8 77.3 77.2 74.1 79.2 77.3 74.2

PCV 33.4 33.0 33.1 36.3 34.5 34.2 53.2 51.8 43.7 56.9 52.4 44.3

f A-M PCA1 76.7 79.4 74.6 78.3 79.9 74.8 88.4 89.6 81.0 89.3 89.8 81.2

PCA2 73.3 74.9 71.7 73.4 75.6 72.3 83.7 85.9 78.8 85.2 86.1 78.9

PCA3 69.7 70.5 69.3 68.8 71.6 69.6 77.8 81.3 75.5 80.4 81.8 75.9

PCV 43.0 43.1 37.5 40.2 44.2 37.9 58.2 63.6 47.6 62.0 64.3 48.0

pG-DINA PCA1 80.6 73.8 82.4 82.0 74.3 82.9 90.9 83.7 91.9 91.6 83.9 92.1

PCA2 80.5 75.3 82.2 81.9 76.4 82.8 91.0 86.4 91.8 91.7 86.9 92.1

PCA3 80.6 74.5 82.4 82.1 75.1 83.0 91.1 84.6 91.9 91.6 84.1 92.0

PCV 56.5 39.9 60.0 59.2 41.1 61.0 77.4 60.3 79.4 79.0 60.5 79.9

Note: Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: f A-M; 3: pG-DINA; PCAk: PCA of attribute k.

Table 8. Additional simulation study: Bias and root mean square error (RMSE)

J52/N1000 J26/N2000

Analysis Bias RMSE Bias RMSE

First 0.003 0.038 0.020 0.101

Second 0.020 0.103 0.003 0.029

Third 0.026 0.134 0.036 0.180

Note: In the first analysis, the posterior probabilities for the true attribute patterns are set to
be 0.95 and 0.70 for the conditions of J52/N1000 and J26/N2000, respectively. In the second
analysis, they are 0.70 and 0.95 for the two conditions, respectively. In the third analysis, the
probabilities are 0.601 and 0.456, respectively.

the data. No monotonicity constraint was imposed in this analysis. The deviance, Akaike information
criterion (AIC), and Bayesian information criterion (BIC) were used to compare the three fitted
models.

7.2. Results
Table 10 shows the number of parameters and the fit statistics (i.e., deviance, AIC, and BIC) for the
sp-CDM, f A-M, and pG-DINA models in the empirical example. All the fit statistics indicate that the
sp-CDM fitted the data the best and the f A-M the worst.

To quantify the discrepancies between the parameter estimates of item j, the root mean squared
difference (RMSD) between any model pair is computed as follows:

RMSDj(M1,M2) =

�
����

Lj

∑
l=1

wjl(PjlM1 −PjlM2)2, (24)
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Table 9. Q-matrix for the proportional reasoning data and the number of parameters under the sp-CDM, f AM, and pG-DINA

model

Item α1 α2 α3 α4 α5 α6 #Par Item α1 α2 α3 α4 α5 α6 #Par

M1 M2 M3 M1 M2 M3

1 1 0 0 0 0 1 4 3 4 17 1 2 0 0 0 0 6 4 4

2 1 1 1 0 0 0 18 6 8 18 1 0 2 0 1 1 24 6 16

3 1 0 2 1 1 0 24 6 16 19 1 0 2 1 1 0 24 6 16

4 1 1 1 0 0 0 18 6 8 20 0 0 2 1 1 0 12 5 8

5 1 1 1 0 0 0 18 6 8 21 1 1 1 0 0 0 18 6 8

6 1 0 2 1 1 0 24 6 16 22 1 2 0 0 0 0 6 4 4

7 1 0 0 0 0 1 4 3 4 23 1 1 1 0 0 0 18 6 8

8 1 2 1 0 0 0 18 6 8 24 1 0 2 0 1 1 24 6 16

9 1 0 0 1 0 0 4 3 4 25 1 1 1 0 0 0 18 6 8

10 0 2 0 0 0 0 3 3 2 26 0 1 1 0 0 0 9 5 4

11 1 0 0 0 0 0 2 2 2 27 1 0 0 1 1 0 8 4 8

12 0 0 0 0 1 0 2 2 2 28 1 0 2 0 1 1 24 6 16

13 1 0 2 1 1 0 24 6 16 29 1 0 2 1 1 0 24 6 16

14 1 1 1 0 0 0 18 6 8 30 1 0 0 1 0 1 8 4 8

15 0 0 2 0 0 0 3 3 2 31 1 2 0 0 0 0 6 4 4

16 0 0 2 0 0 0 3 3 2 sum 416 148 254

Note: #Par: number of parameters; M1: sp-CDM, saturated generalized deterministic, input, noisy, “and” gate model for polytomous attributes;
M2: f A-M, fully additive model for polytomous attributes; M3: pG-DINA, polytomous generalized DINA model.

Table 10. Fit statistics of the sp-CDM, f A-M, and pG-DINA model for the empirical example

Number of parameters

Fitted model Items Population Deviance AIC BIC

sp-CDM 416 143 43360.17 44192.17 46376.13

f A-M 148 143 47983.06 48565.06 50092.79

pG-DINA 254 143 45524.30 46318.30 48402.52

Note: sp-CDM: saturated generalized deterministic, input, noisy, “and” gate model for polytomous attributes;
f A-M: fully additive model for polytomous attributes; pG-DINA: polytomous generalized DINA model.

where M1 and M2 are pair of models, wjl and Lj are the posterior probability of latent group l and the
number of latent groups for item j based on the sp-CDM, respectively, and Pjlm is the success probability
of latent group l on item j based on a model m. Given in Table 11 are the results of RMSD for the 31
items, as well as the average RMSD for the entire test. On the average, f A-M and pGDINA model had
the most similar the item parameter estimates (average RMSD = 0.171), whereas the sp-CDM and pG-
DINA model had the most disparate estimates (average RMSD = 0.230). These results suggest that, at
least for this empirical example, the two reduced model behaved more similarly to each other than they
did to the saturated model. However, this pattern did not necessarily hold for all items. For example, the
discrepancies between f A-M and pGDINA model turned out to be the largest for items 13 and 19.

To better understand how similar and disparate item parameter estimates look like, the side-by-side
success probability bar graphs of two items requiring one dichotomous and one polytomous attributes
are given in Figure 4. Item 17 had estimates that can be considered more similar, whereas item 22
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Table 11. Root mean squared differences between the sp-CDM, f A-M, and pG-DINA model for the empirical example

Item (M1,M2) (M1,M3) (M2,M3) Item (M1,M2) (M1,M3) (M2,M3)

1 0.24 0.14 0.12 17 0.20 0.25 0.10

2 0.12 0.23 0.20 18 0.09 0.20 0.15

3 0.09 0.28 0.27 19 0.33 0.41 0.36

4 0.22 0.23 0.15 20 0.28 0.36 0.14

5 0.15 0.23 0.14 21 0.31 0.28 0.26

6 0.22 0.35 0.28 22 0.22 0.46 0.33

7 0.28 0.32 0.08 23 0.20 0.15 0.17

8 0.20 0.19 0.21 24 0.29 0.29 0.29

9 0.37 0.25 0.15 25 0.18 0.30 0.19

10 0.12 0.05 0.12 26 0.12 0.13 0.06

11 0.04 0.06 0.01 27 0.21 0.26 0.16

12 0.06 0.05 0.01 28 0.17 0.28 0.25

13 0.31 0.30 0.36 29 0.11 0.15 0.09

14 0.19 0.18 0.25 30 0.39 0.24 0.16

15 0.18 0.16 0.10 31 0.18 0.20 0.07

16 0.19 0.17 0.07 Average 0.20 0.23 0.17

Note: M1: sp-CDM, saturated generalized deterministic, input, noisy, “and” gate model for polytomous attributes; M2: f A-M, fully additive model
for polytomous attributes; M3: pG-DINA, polytomous generalized DINA model.

more disparate. It should be noted that because RMSD is computed using latent group weights, large
differences in the success probability estimates can have a limited impact on the RMSD, and vice
versa. As can be seen from the upper panel, despite having more similar item parameter estimates,
the success probabilities of item 17 for some latent groups (i.e., 10 and 11) can be quite different. In
contrast, the lower panel shows that item parameter estimates for item 22 were quite disparate, and huge
discrepancies the success probabilities for latent groups for 01, 02, and 11 can be found, particularly,
between sp-CDM and pG-DINA model.

The above comparisons were not meant to establish in general the similarities or differences between
the three polytomous CDMs. Rather, it sought to better understand how the three models behave for a
very particular empirical data set, which may provide insights into how future studies can be designed
for the different models to be compared in a more systematic and comprehensive way.

The results can have important practical implications for diagnosing the mastery status of students.
As shown in Figure 4, based on the sp-CDM, latent groups 10 and 11 have slightly higher success
probabilities on item 17 than latent groups 00, 01, and 02. This suggests that mastering the prerequisite
skills and concepts increases the probability of getting item 17 correctly; however, the success probability
for this item is the highest when, in addition to mastering the prerequisite skills and concepts, an
examinee also masters ordering fractions (level 2 of α2). In comparison, again based on the sp-CDM,
the estimated success probability on item 22 is the highest for latent group 12, whereas the success
probabilities for other latent groups (i.e., 00, 01, 02, 10, and 11) are similar to each other, indicating a
conjunctive process for the item. Overall, an examinee should master levels 1 and 2 of the two required
attributes, respectively, to optimize their success probabilities on these two items.

Of the possible 144 latent classes, 25 did not have any student. However, it should be noted that,
although some latent classes had no observations, all the latent groups, from which estimates were
derived, were nonempty, albeit some were small. For example, one of the 24 latent groups of items 3 had
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Figure 4. Success probabilities of latent groups in two items in the empirical example.
Note: sp-CDM: saturated polytomous cognitive diagnosis models; f A-M: fully additive model for polytomous attributes; pG-DINA: generalized
deterministic input, noisy, “and” gate model for polytomous attributes with the specific attribute level mastery (SALM) assumption.

an expected size of 7.12. Of the remaining latent classes, 122111 was the largest—about 35.5% of the
students had this attribute pattern. Finally, the individual attribute prevalences were as follows: 88.2%
mastered α1; 16.2% and 68.5% were in levels 1 and 2 of α2, respectively; 11.7% and 74.7% were in levels
1 and 2 of α3, respectively; and 75.4%, 70.5%, and 63.5% mastered α4, α5, and α6, respectively.

8. Discussion

Finer-grained feedback in the form of polytomous attributes can better inform classroom instruction
and learning. However, the existing CDMs for polytomous attributes are deemed to be not general
enough because most of them focused on a specific and constrained CDM or were proposed with
very stringent assumptions. To this end, a more general framework, referred to as the sp-CDM, was
proposed. The proposed model is a straightforward extension of the pG-DINA model (Chen & de la
Torre, 2013), which itself is generalized from the G-DINA model for polytomous attributes, by relaxing
its SALM assumption and can be formulated using the identity, logit, and log link functions. As such,
the sp-CDM includes all the existing CDMs for polytomous attributes as its special cases. This paper
has also illustrated the relationships between the sp-CDM and the existing CDMs mathematically and
graphically.

In addition to the theoretical illustration, the estimation of the proposed model and the consequences
of using constrained polytomous-attribute CDMs were examined via simulation study. The results
showed that the parameter of the proposed model can be well recovered using the proposed estimation
algorithms. On the other hand, improperly fitting a constrained polytomous-attribute CDM can lead
to poor item parameter estimates and misdiagnosis of students’ true mastery levels while unnecessarily
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fitting the complex sp-CDM does little harm to the item and person estimation, particularly when high
quality items were used. Moreover, the PR assessment example demonstrated the applicability of the
proposed model to real data and its advantages over the constrained models.

Despite the promising results, this study is not without its limitations. First, although the simulation
study manipulated several important factors, other relevant factors such as the number of attribute
levels, the distribution of attribute patterns, and the link functions were fixed. Additional simulation
studies are needed in the future to investigate the performance of the proposed model across a wider
range of conditions. For example, the current simulation studies used the same number of attribute levels
(i.e., three) across the items, which might not always the case in practice. Nevertheless, both the model
and estimation algorithms proposed in this work are sufficiently general to apply to varying and a larger
number of attribute levels, as evidenced by the empirical example. It would be interesting for future
studies to extend the simulation design to incorporate attributes with more, as well as varying levels.
This extension would provide useful information on how the increased attribute levels, which will lead
to a greater number of latent classes, affects the sample size and test length required for the parameters of
the proposed model to be estimated accurately. Moreover, this work focused on the uniform distributed
attribute patterns. Future studies can extend the proposed model to other attribute distributions (e.g.,
higher-order distribution; de la Torre & Douglas, 2004), to understand the model performance across
a wider variety of conditions.

Second, it has been recognized that failure to satisfy the Q-matrix identifiability conditions can result
in poor parameter estimates. The existing necessary and sufficient conditions for the identifiability of
CDMs in the literature focus on dichotomous attributes. (For example, see Chen et al. (2015), Chen
et al. (2018), Chiu et al. (2009), DeCarlo (2011), Gu and Xu (2019), Liu et al. (2012), and Xu and
Zhang (2016) for the conditions for the DINA model, and Fang et al. (2019), Gu and Xu (2021), Köhn
and Chiu (2018), and Xu (2017) for general models.) In contrast, at present, only Fang et al. (2019)
have discussed the identifiability conditions for the Q-matrix for polytomous attributes. However, the
relevant results (i.e., Theorem 4) were limited to the sufficient conditions. To optimize the process of
developing assessments that involve polytomous attributes, further research is needed to establish both
the necessary and sufficient conditions specific to the identifiability of the sp-CDM and potentially its
special cases.

Third, the current work focuses on polytomous attributes used in conjunction with dichotomous
responses. Future research should extend the sp-CDM to also cover polytomous responses (e.g., Ma &
de la Torre, 2020), as well as develop the associated estimation algorithms and computer program to
implement such a model.

Fourth, although it has been noted that a polytomous attribute can be equivalently represented as a
set of linearly structured dichotomous attributes, it is not clear to what extent the equivalence extends to
methodologies that are specifically developed for each attribute type. For example, what modifications
are needed for the empirical Q-matrix validation procedures developed for dichotomous attributes (e.g.,
de la Torre & Chiu, 2016) to be equivalent to Q-matrix validation procedures developed for polytomous
attributes (e.g., de la Torre et al., 2021). Incidentally, a more general Q-matrix validation procedure that
can be used with proposed model needs to be considered in future research.

Finally, this work proposes an MMLE/EM algorithm for estimating the sp-CDM and its special cases.
The results of the simulation study demonstrate that the algorithm provides accurate estimates and is
efficient in estimating the proposed models. However, challenges arise when the algorithm has to deal
with the complexities associated with the sp-CDM in its most general form. For example, the estimation
of standard errors in the saturated models becomes particularly challenging due to often encountered
singular Hessian matrices.

Furthermore, the parameter estimation becomes notably challenging in situations when the sample
size is small relative to the number of attributes and attribute levels. To investigate this, an additional
simulation was conducted with a sample size of 500, maintaining the same settings as the primary
simulation study. The results are given in Figure B.3 and Table B.5 in Appendix B. It was found that,
under K = 3 conditions, item parameter recovery and the PCA and PCV are satisfactory. However,
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for K = 5, although item parameter recovery and the PCA are only marginally acceptable, the PCV
exhibits a significant deterioration, particularly when the item quality was low. The deterioration in the
PCV performance may be attributed to the sparse latent classes—the expected number of individuals
are 18 (500/33) and two (500/35) when K = 3 and K = 5, respectively. These findings suggest that the
sp-CDM may not be well suited for stand-alone small-sample settings (e.g., classroom assessment).
Nonetheless, small-sample applications are still possible provided items can be calibrated a priori using
a sufficiently large pool of individuals. In future research, it would be beneficial to explore the use of
alternative estimation procedures such as nonparametric methods (e.g., Chiu et al., 2018) or Bayesian
modal estimation (Ma & Jiang, 2021) to obtain robust person classification when polytomous attributes
and small sizes are involved. It can be noted that small sample sizes impact not only the quality of
item parameter estimates and attribute classification accuracy, but more so the standard error estimates.
Thus, exploring various estimators of the CDM standard errors (Philipp et al., 2018) in the context of
the proposed model need to be considered, particularly when the sample size is small.
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Appendix A

Item parameter estimation for the saturated polytomous cognitive diagnosis model via marginal

maximum likelihood with an expectation-maximization algorithm

This appendix provides details of item parameter estimation in the sp-CDM. Due to space constraints, it focuses on the identity
sp-CDM in particular and the algorithms are ready to be implemented to the sp-CDM with the logit and log link functions.

Based on the IRF of the saturated identity sp-CDM (i.e., Equation (1)) and assuming local independence, the marginalized
likelihood of the data, denoted as L(X), is given by

L(X) =
N
∏
n=1

L(Xn) =
N
∏
n=1

L
∑
l=1

L(Xn∣αl,δ)p(αl), (A1)

where L(Xn) is the marginalized likelihood of the response vector of examinee n, L(Xn∣αl,δ) is the joint probability of the
examinee’s response vector Xn conditional on attribute vectors αl and the item parameters δ, and p(αl) is the prior probability
of the attribute vectors αl.

The logarithm of L(X) is

LL(X) = logL(X) = log
N
∏
n=1

L(Xn) =
N
∏
n=1

log
L
∑
l=1

L(Xn∣αl,δ)p(αl). (A2)

To find the marginal likelihood equation for δ of item j, take

∂

∂δj
LL(X) = 0. (A3)
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Then,

∂

∂δj
LL(X) =

N
∑
n=1

∂

∂δj
(logL(Xn))

=
N
∑
n=1
[L(Xn)]−1 ∂

∂δj
L(Xn) (A4)

=
N
∑
n=1
[L(Xn)]−1

L
∑
l=1

p(αl)
∂

∂δj
L(Xn∣αl,δ).

Assuming local independence, the term L(Xn∣αl,δ) in Equation (A4) is given by

L(Xn∣αl,δ) =
J
∏
j=1

Pj(α∗l )Xj Qj(α∗l )1−Xj, (A5)

where Pj(α∗l ) is defined in Equation (1), Qj(α∗l ) = 1−Pj(α∗l ), Xj = 1 for correct answer of examinee n in item j and 0 otherwise.
Hence, the derivative of L(Xn∣αl,δ) becomes

∂

∂δj
L(Xn∣αl,δ) =

∂

∂δj
[P1(α∗l )X1 Q1(α∗l )1−X1 . . .Pj(α∗l )Xj Qj(α∗l )1−Xj . . .PJ(α∗l )XJ QJ(α∗l )1−XJ ]

=
⎡⎢⎢⎢⎢⎣

J
∏
j′≠j

Pj′(α∗l )Xj′ Qj′(α∗l )1−Xj′

⎤⎥⎥⎥⎥⎦
× ∂

∂δj
[Pj(α∗l )Xj Qj(α∗l )1−Xj], (A6)

where the product is over j′ ≠ j rather than j because the derivation is with respect to δj.
The second term in the right hand side of Equation of A6 is

∂Pj(α∗l )Xj

∂δj
×Qj(α∗l )1−Xj +Pj(α∗l )Xj ×

∂Qj(α∗l )1−Xj

∂δj

= XjPj(α∗l )Xj−1Qj(α∗l )1−Xj
∂Pj(α∗l )

∂δj
+(1−Xj)Pj(α∗l )Xj Qj(α∗l )1−Xj−1 ∂Qj(α∗l )

∂δj
(A7)

= Pj(α∗l )Xj Qj(α∗l )1−Xj
∂Pj(α∗l )

∂δj
[

Xj −Pj(α∗l )
Pj(α∗l )Qj(α∗l )

] .

By substituting Equation (A7) to the right hand side of Equation (A6) and rearranging yields

∂

∂δj
L(Xn∣αl,δ) =

⎡⎢⎢⎢⎢⎣

J
∏
j′≠j

Pj′(α∗l )Xj′ Qj′(α∗l )1−Xj′

⎤⎥⎥⎥⎥⎦
×Pj(α∗l )Xj Qj(α∗l )1−Xj

∂Pj(α∗l )
∂δj

[
Xj −Pj(α∗l )

Pj(α∗l )Qj(α∗l )
]

=
J
∏
j=1

Pj(α∗l )Xj Qj(α∗l )1−Xj
∂Pj(α∗l )

∂δj
[

Xj −Pj(α∗l )
Pj(α∗l )Qj(α∗l )

]

= L(Xn∣αl,δ)
∂Pj(α∗l )

∂δj
[

Xj −Pj(α∗l )
Pj(α∗l )Qj(α∗l )

] . (A8)

Substituting Equation (A8) to Equation (A4) yields

∂

∂δj
LL(X) =

N
∑
n=1
[L(Xn)]−1

L
∑
l=1

p(αl)L(Xn∣αl,δ)
∂Pj(α∗l )

∂δj
[

Xj −Pj(α∗l )
Pj(α∗l )Qj(α∗l )

]

=
L
∑
l=1

∂Pj(α∗l )
∂δj

[ 1
Pj(α∗l )Qj(α∗l )

]
N
∑
n=1

L(Xn∣αl,δ)p(αl)
L(Xn)

[Xj −Pj(α∗l )]
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=
L
∑
l=1

∂Pj(α∗l )
∂δj

[ 1
Pj(α∗l )Qj(α∗l )

]
N
∑
n=1

p(α∗l ∣Xn)[Xj −Pj(α∗l )] (A9)

=
L
∑
l=1

∂Pj(α∗l )
∂δj

[ 1
Pj(α∗l )Qj(α∗l )

][
N
∑
n=1

p(α∗l ∣Xn)Xj −Pj(α∗l )
N
∑
n=1

p(α∗l ∣Xn)]

=
L
∑
l=1

∂Pj(α∗l )
∂δj

[ 1
Pj(α∗l )Qj(α∗l )

][Rjl −Pj(α∗l )Tl],

where p(α∗l ∣Xn) = L(Xn ∣αl,δ)p(αl)

L(Xn)
is the posterior probability that examinee n is in the latent group α∗l , Rjl =∑N

n=1 p(α∗l ∣Xn)Xj is
the number of examinees in the latent group α∗l expected to answer the item j correctly, and Tl =∑N

n=1 p(α∗l ∣Xn) is the number
of examinees expected to be in the latent group α∗l .

Therefore, the marginal likelihood Equation (A3) can be written as follows:

L
∑
l=1

∂Pj(α∗l )
∂δj

[ 1
Pj(α∗l )Qj(α∗l )

][Rjl −Pj(α∗l )Tl] = 0. (A10)

Solving Equation (A10) yields the MML estimation of P(α∗lj ), which can be expressed as

P̂(α∗lj ) =
Rα∗lj

Tα∗lj

, (A11)

To convert the estimates of P̂(α∗lj ) into the item parameters δ, the design matrix Mj is needed. With M, the estimates of
δj = {δj0, δjkm, . . ., δjkmk′m′ , . . ., δj1m12m2...K∗j mK∗j

}′ can be computed as

δ̂j = (M
′

j Mj)−1M
′

j P̂j, (A12)

where P̂j = {P̂(α∗lj )}. This is identical to the design matrix used with G-DINA model (de la Torre, 2011). Due to the important
role the design matrix M plays in the estimation of the sp-CDM, the following shows how M can be constructed.

Under the sp-CDM, the dimension size of design matrix is MK∗j ×Pj, where Pj is the number of the parameters of the model
of interest, which is MK∗j when converting P̂j to δ̂j. To illustrate, let K∗j = 2 and M = 3 for item j. This item has one intercept
parameter, four main effect parameters for each level of the two nonzero levels of the required attributes, and four two-way
interaction parameters between the levels of the required attributes, leading to a total of nine parameters. Hence, Pj = 9 in this
example. The corresponding saturated design matrix is

M9×9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 0
1 1 0 1 0 1 0 0 0
1 1 1 1 0 1 1 0 0
1 1 0 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (A13)

where rows 1 through 9 of M correspond to the latent groups 00, 10, 20, 01, 02, 11, 21, 12, and 22, respectively; columns
1 through 9 represent the intercept followed by the four main effects, and then by the four two-way interaction effect. For
example, the success probability of the latent group 11 (i.e., row 6) is δj0 + δj1m1 + δj2m1 + δj1m12m1 , whereas that of the latent
group 22 (i.e., row 9) is δj0 +δj1m1 +δj1m2 +δj2m1 +δj2m2 +δj1m12m1 +δj1m22m1 +δj1m12m2 +δj1m22m2 .
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The implementation of the MMLE/EM algorithm is as follows:
Step 1: The expectation (E) step
(1) Use the Equation (A5) and provisional item parameter estimates to compute the likelihood of each examinee’s response

vector at each of the L attribute patterns.
(2) Use the Equation (A1) to compute the likelihood of the whole data. For convenience, the uniform distribution is usually

chosen to initialize the prior distribution, as in, p(αl) = 1/L in the first iteration. In subsequent iterations, the prior distribution
is updated by replacing it with the posterior distribution, which itself is updated at the end of each iteration.

It is not uncommon that many examinees can have the same response vectors to the J items in a data set and the
computations of L(Xn∣αl,δ) are often replicated. To increase the computational efficiency, an alternative way to compute the
likelihood of data starts from grouping the N examinees’ response vectors into 2J possible response patterns. Let the item
response patterns are denoted as Us (s = 1, . . . ,2J ) and the number of examinees possessing response pattern s is given by fs.
The likelihood of data can be calculated as L(X) = [∑L

l=1 L(Us∣α,δ)p(αl]fs .
(3) Count the number of examinees expected to be in the latent group α∗l among MK∗j latent groups and the number of

examinees in the latent group α∗l expected to answer the item j correctly and use them as the values of Tjl and Rjl in Equation
(A9), respectively.

Step 2: The maximization (M) step
Solve the likelihood Equation (A3) using the values of Tjl and Rjl . Because these values depend on L(Xn∣αl,δ), which in

turn, depends on the unknown item parameters, the likelihood equations are implicit and must be solved with an iterative
procedure(e.g., Newton-Raphson procedure).

The E step and M step will be repeated unless certain criteria are met (e.g., the change of likelihood between two successive
cycles is less than 0.001, the maximum number of iterations, say, 100 is reached).

Appendix B

Q-matrix with five attributes and additional results in simulation study

Table B.1. Q-matrix for conditions of five attributes in simulation study

Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5

1 1 0 0 0 0 11 1 1 0 0 0 21 0 0 1 2 1

2 0 1 0 0 0 12 1 2 0 0 0 22 0 0 1 2 2

3 0 0 1 0 0 13 2 1 0 0 0 23 0 0 2 1 1

4 0 0 0 1 0 14 2 2 0 0 0 24 0 0 2 1 2

5 0 0 0 0 1 15 1 0 1 0 0 25 0 0 2 2 1

6 2 0 0 0 0 16 1 0 2 0 0 26 0 0 2 2 2

7 0 2 0 0 0 17 2 0 1 0 0

8 0 0 2 0 0 18 2 0 2 0 0

9 0 0 0 2 0 19 0 0 1 1 1

10 0 0 0 0 2 20 0 0 1 1 2
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Figure B.1. Bias in parameter recovery with five attributes.
Note: sp-CDM: saturated polytomous cognitive diagnosis models; f A-M: fully additive model for polytomous attributes; pG-DINA: generalized
deterministic input, noisy “and” gate model for polytomous attributes with the specific attribute level mastery (SALM) assumption. J: test length;
N: sample size.
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Figure B.2. Room mean square error (RMSE) in parameter recovery with five attributes.
Note: sp-CDM: saturated polytomous cognitive diagnosis models; f A-M: fully additive model for polytomous attributes; pG-DINA: generalized
deterministic input, noisy “and” gate model for polytomous attributes with the specific attribute level mastery (SALM) assumption. J: test length;
N: sample size.
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Table B.2. Correctly classified attributes (PCA) and vectors (PCV) (in %) with five attributes and high quality items

Test length/sample size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 86.8 84.1 79.6 87.3 84.4 79.7 94.7 92.2 86.2 94.8 92.0 86.4

PCA2 80.3 79.1 76.8 81.1 79.9 76.7 90.0 88.2 80.6 90.4 88.1 80.4

PCA3 87.6 84.8 84.3 88.5 84.9 84.1 95.4 92.8 92.9 95.7 92.7 93.0

PCA4 78.8 75.6 77.8 80.2 75.6 78.1 88.6 84.4 82.0 89.5 84.0 81.5

PCA5 77.8 73.2 77.5 79.3 72.8 77.6 87.5 81.3 80.9 88.6 81.4 80.5

PCV 38.1 30.0 30.7 40.7 30.4 30.8 63.6 50.8 41.6 65.6 50.1 41.1

f A-M PCA1 87.6 88.0 79.8 88.2 88.3 79.2 94.9 95.0 82.2 95.2 95.3 82.4

PCA2 80.9 81.1 79.0 81.4 81.8 78.9 89.6 89.8 79.9 90.0 90.0 80.0

PCA3 84.4 86.1 79.9 85.6 86.7 80.0 93.1 94.0 84.4 93.8 94.1 84.4

PCA4 77.4 79.9 78.7 78.1 80.3 78.3 85.9 88.8 78.1 87.9 89.0 77.9

PCA5 78.2 80.8 77.7 79.8 81.5 77.7 87.4 89.8 78.5 89.1 89.9 78.3

PCV 36.1 39.8 30.0 38.5 41.3 29.8 59.3 64.3 32.3 63.2 65.0 32.4

pG-DINA PCA1 95.8 95.1 95.9 95.8 95.2 96.0 99.3 99.1 99.3 99.3 99.2 99.4

PCA2 92.5 92.3 92.9 92.8 92.6 93.1 97.7 97.6 97.8 97.7 97.7 97.8

PCA3 94.5 93.3 94.9 94.7 93.2 95.0 98.7 98.0 98.8 98.7 98.0 98.9

PCA4 92.8 84.6 93.3 93.2 83.9 93.5 97.0 96.2 97.2 97.0 96.2 97.2

PCA5 92.8 79.6 93.3 93.1 77.4 93.5 96.9 95.9 97.1 97.1 96.3 97.3

PCV 73.1 54.7 74.6 73.9 52.8 75.0 90.1 87.5 90.7 90.3 88.0 91.0

Note: Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: f A-M; 3: pG-DINA; PCAk: PCA of attribute k.
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Table B.3. Correctly classified attributes (PCA) and vectors (PCV) (in %) with five attributes and moderate quality items

Test length/sample size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 75.1 75.0 73.4 76.3 76.0 73.3 86.2 85.8 79.5 86.8 85.9 79.2

PCA2 69.5 67.3 70.0 70.4 67.2 70.1 79.1 77.9 75.2 80.5 78.2 75.3

PCA3 72.9 74.3 73.4 74.5 75.0 73.5 84.6 84.7 81.1 86.1 84.9 81.0

PCA4 68.1 69.5 70.1 69.1 69.3 70.3 80.6 79.8 76.4 80.3 79.9 76.6

PCA5 67.4 67.3 69.6 68.5 67.3 70.1 76.7 76.5 75.5 78.4 76.7 75.3

PCV 18.5 17.1 17.5 19.2 17.3 18.8 35.1 33.9 27.1 38.5 34.2 27.0

f A-M PCA1 78.8 80.0 75.1 80.2 80.8 75.2 89.0 89.5 78.5 89.7 89.9 78.5

PCA2 73.0 73.3 73.2 73.8 74.0 73.5 83.0 83.7 77.8 83.9 84.2 77.7

PCA3 76.2 79.5 75.7 78.2 80.3 75.8 87.2 89.6 82.2 88.7 89.7 82.3

PCA4 68.5 71.5 72.3 69.7 72.5 72.4 76.9 81.2 74.9 79.2 82.2 74.8

PCA5 69.0 71.5 72.4 69.4 72.3 72.4 76.5 80.6 74.4 78.5 81.6 74.2

PCV 20.7 24.2 21.6 22.4 25.5 21.9 37.8 44.3 27.0 41.6 45.9 27.1

pG-DINA PCA1 91.1 90.2 91.3 91.4 90.5 91.5 97.6 96.9 97.7 97.7 96.8 97.7

PCA2 85.8 85.3 86.2 86.1 85.5 86.5 94.3 94.0 94.4 94.4 94.0 94.5

PCA3 88.0 85.5 88.8 88.5 85.5 89.0 95.9 94.2 96.2 96.1 94.4 96.3

PCA4 84.5 74.6 85.8 86.0 73.8 86.5 92.0 90.8 92.5 92.4 91.0 92.7

PCA5 85.0 73.3 86.1 86.3 71.6 86.9 92.0 88.5 92.5 92.3 87.9 92.6

PCV 51.3 35.8 53.7 53.7 34.7 55.0 75.5 69.2 76.7 76.4 68.9 77.0

Note: Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: f A-M; 3: pG-DINA; PCAk: PCA of attribute k.
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Table B.4. Correctly classified attributes (PCA) and vectors (PCV) (in %) with five attributes and low quality items

Test length/sample size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 72.8 72.7 71.7 74.1 73.7 71.8 84.2 83.6 78.5 84.7 83.8 78.3

PCA2 67.9 65.0 68.2 68.9 65.2 68.2 76.9 75.5 73.5 77.9 75.9 73.5

PCA3 70.4 71.6 71.2 71.8 72.3 71.5 82.0 82.3 79.0 83.4 82.6 79.1

PCA4 65.5 66.8 67.9 66.8 67.4 68.2 78.6 77.0 74.6 77.1 77.5 74.5

PCA5 65.2 65.5 67.3 66.1 65.5 67.9 75.7 75.6 73.8 76.1 76.2 74.0

PCV 16.1 14.5 16.0 16.6 15.0 16.4 31.0 30.1 24.6 32.9 30.7 24.6

f A-M PCA1 74.2 75.7 72.5 75.5 76.4 72.6 85.4 86.1 78.9 86.1 86.4 79.0

PCA2 66.9 69.5 68.1 68.0 68.0 68.3 75.9 76.7 73.8 77.2 77.7 74.0

PCA3 69.3 73.0 70.4 71.0 73.8 70.9 80.5 83.7 77.7 82.3 84.0 77.8

PCA4 64.3 67.4 67.3 65.7 68.2 67.6 72.6 76.3 72.8 74.4 77.1 72.9

PCA5 62.1 68.6 66.5 64.0 67.1 67.1 69.7 73.7 70.7 71.3 74.3 70.8

PCV 13.8 16.8 15.8 15.4 17.9 16.1 26.4 31.6 23.2 29.3 32.8 23.2

pG-DINA PCA1 80.2 77.2 80.8 80.7 77.4 81.0 90.2 87.2 90.5 90.7 87.5 90.8

PCA2 76.5 70.5 77.0 76.8 70.0 77.2 85.5 82.6 85.8 85.8 82.7 85.9

PCA3 77.7 75.4 79.3 79.0 75.4 79.9 88.8 85.6 89.6 89.4 85.7 89.8

PCA4 72.5 69.7 74.9 74.2 69.2 75.7 83.0 81.4 84.0 83.7 81.7 84.4

PCA5 73.0 68.2 75.2 74.5 67.5 75.8 83.0 78.2 84.0 83.8 76.8 84.3

PCV 27.9 19.1 30.6 30.0 18.6 31.7 49.6 39.4 51.6 51.3 39.0 52.4

Note: Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: f A-M; 3: pG-DINA; PCAk: PCA of attribute k.
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Figure B.3. Results of parameter recovery for the sp-CDM with N = 500.
Note: sp-CDM: saturated polytomous cognitive diagnosis models; J: test length; N: sample size.

Table B.5. Correctly classified attributes (PCA) and vectors (PCV) (in %) for the sp-CDM with N = 500

K=3 K=5

26/500 52/500 26/500 52/500

EC H M L H M L H M L H M L

PCA1 89.3 76.0 70.1 96.1 87.8 82.0 85.7 73.5 71.2 94.2 84.8 82.7

PCA2 87.6 73.2 66.9 95.3 84.0 77.7 79.1 68.6 67.1 89.4 78.0 75.8

PCA3 86.8 72.5 64.2 94.9 84.6 74.4 86.6 70.7 69.2 94.7 82.0 79.8

PCA4 – – – – – – 77.8 66.9 63.5 87.2 76.7 73.7

PCA5 – – – – – – 76.6 66.2 63.2 86.2 75.5 72.6

PCV 68.5 40.6 30.1 87.2 62.8 47.5 35.2 15.7 13.4 60.1 31.4 26.7

Note: sp-CDM: saturated polytomous cognitive diagnosis models; EC: Evaluation criteria; H: High quality items; M: Moderate quality items; L:
Low quality items; PCAk: PCA of attribute k.
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