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EFFECTIVE BOUND FOR SINGULARITIES ON TORIC
FIBRATIONS

BINGYI CHEN

Abstract. It was conjectured by McKernan and Shokurov that for any Fano
contraction f: X — Z of relative dimension r with X being e-lc, there is a
positive § depending only on r, e such that Z is d-lc and the multiplicity of the
fiber of f over a codimension one point of Z is bounded from above by 1/4.
Recently, this conjecture was confirmed by Birkar [9]. In this article, we give
an explicit value for ¢ in terms of €, in the toric case, which belongs to O(ezr)
as € = 0. The order O(e*") is optimal in some sense.

81. Introduction.

We work over an algebraically closed field k of characteristic zero. Given a contraction
f: X — Z, that is, a projective morphism such that f,Ox = Oz, a fundamental problem
is to relate the singularities on X and those on Z. This problem is important as it
appears frequently in inductive arguments. Assume that f is a Fano contraction, McKernan
conjectured that in this case the singularities on Z are bounded in terms of those on X.

CONJECTURE 1.1 (McKernan). Fiz a positive integer v and a real number 0 < e < 1.
There exists § > 0 depending only on r,e and satisfying the following. Assume:

o f: X — Z is a contraction of relative dimension r;
o X is e-lc;

o —Kx is ample over Z; and

e 7 is Q-Gorenstein.

Then, Z is §-lc.

Recently, this conjecture was solved by Birkar [9]. Indeed, he proved a more general
conjecture—Shokurov conjecture (see Conjecture 1.7 below), which implies McKernan
conjecture. Another interesting consequence of Shokurov conjecture is that under the setting
of Conjecture 1.1, the multiplicity of the fiber of f over a codimension one point of Z is
bounded above. For more historical results on these two conjectures, we refer to [1], [5], [6],
[10], [11], [14], [19], [26], [27].

The next problem is to give an explicit value for ¢ in terms of r,e. When r =1 and e =1,
Han, Jiang, and Luo [19] showed that the optimal value of § is 1/2. When r =1, in [14] the
author showed that one can take § = €2/2. The main purpose of this article is to treat the
toric case for arbitrary r,e. Our main result is the following.

THEOREM 1.2. Let r be a positive integer and 0 < € <1 be a real number. Let f: X — Z
be a toric contraction of relative dimension r such that —Kx is ample over Z and X
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is e-lc vertically over Z, that is, a(E,X,0) > € for any prime divisor E over X with
f(centerx E) # Z. Let

62
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i=1

d=109(re)= (1.1)

Then:

(1) if Z is Q-Gorenstein, then Z is d-lc;

(2) for any codimension one point z of Z, the multiplicity of each component of f*z is
bounded from above by 1/0.

REMARK 1.3. (1) Comparing with Conjecture 1.1, in Theorem 1.2, we require a weaker
condition that X is e-lc vertically over Z instead of the original condition that X is e-lc.
Note that under the original condition the general fiber F' of f is an e-lc Fano variety, so it
belongs to a bounded family by [7, 8]. However, under the new condition, the general fiber
may not belong to a bounded family.

(2) For the first assertion in Theorem 1.2, when r = 2, the order O(e?) is optimal. Indeed,
Alexeev and Borisov [1, Theorem 1.5] constructed a sequence of toric Fano contractions
X — Z such that dim X =4, dimZ = 2, mld(X) — 0 and mld(Z) ~ C-mld(X)*.

(3) For the second assertion in Theorem 1.2, the order O(€?") is optimal by the following
example.

EXAMPLE 1.4. Let ¢,7 be two positive integers. Let u;, (i € Z~() be a sequence of
integers defined recursively as follows:

Ulg=¢, Ukt1,q=Ukq(ukq+1) for any k € Z-.

Then, uy41,4 € O(¢*") when ¢ — +ooc.
Let ey,...,e,41 be the standard basis of Z" ™! and denote e = Z;zl e;. Let

vi = (14 u;q)er —ge for 1 <i <,

Upr41 = —€, Ury2 = (urJrl,q - 1)er+1 —qge.

Let X be the toric variety associated to the fan in R"*! whose maximal cones are generated
by vy12 and subsets of {v1,...,v,41} of size . The support of the fan of X is R” x R>¢. The
projection Z™! — 7 onto the (r+ 1)th coordinate induces a toric morphism f: X — Z,
where Z = A! with a distinguished point o. Then, f: X — Z is a toric Fano contraction of
relative dimension r. Moreover,

fro=(uri1,4—-1)-D,

where D is the toric divisor on X corresponding to the ray R>¢ - v,42.

Let S be the lattice simplex in R"™! with vertices vy,...,v,42. Let F' be the face of S
which is the intersection of S and the subspace spanned by eq,...,e.. Then, X is %—lc if and
only if

1 1
int(=S)NZ* =0 and relint(-F)NZ"* = {0}.
q q
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This condition is satisfied because S is contained in the lattice simplex S’ with vertices
v; (1<0<7), Upp1,9€r41—G€, —Uril,qri1— g€
and int(%S’) NZ™1 = {0} by [30, Theorem 1.3]. Therefore, X is %—lc.
The following is a local and more general version of Theorem 1.2.

THEOREM 1.5. Let r be a positive integer, 0 < e <1 be a real number and § = 6(r,€) as
in (1.1). Let f: X — Z be a toric contraction of relative dimension r and let z € Z be a
codimension > 1 point. Suppose there is a pair (X, B) on X such that Kx + B ~r 0/Z and
mld(X/Z > z,B) >e. Then:

(1) if Z is Q-Gorenstein, then mld(Z > 2,0) > 0;

(2) if the codimension of z in Z is one, then the multiplicity of each component of f*z is
bounded from above by 1/4.

Here, we denote by mld(X/Z 5> z,B) (resp. mld(Z > 2,0)) the infimum of the log
discrepancy of E with respect to (X, B) (resp. (Z,0)), where E runs over all prime divisors
over X (resp. Z) whose image on Z is the closure z of z (see Definition 2.3).

REMARK 1.6. Notice that the assumption “mld(X/Z > z,B) > €” is weaker than “X is
e-lc over some neighborhood of z” since the former does not put restriction on the log
discrepancy of such prime divisor whose image on Z is not Z but contains z.

As mentioned earlier, Shokurov proposed a more general conjecture which implies
McKernan conjecture. In order to state Shokurov conjecture, we recall some background
on adjunction for fibrations (also called the canonical bundle formula). Let f: X — Z be
a contraction between normal varieties. Let (X, B) be a pair which is lc over the generic
point of Z and such that Kx + B ~g 0/Z. By the work of Kawamata [22], [23] and Ambro
[2], [3], we may write

Kx +B~p f*(Kz+Bz+Mz),

where By is called the discriminant divisor and My is called the moduli divisor. The
discriminant divisor is defined by lc thresholds, more precisely, the coefficient of a prime
divisor D in By is set to be 1 —t, where t is the largest number such that (X, B+tf*D) is
lc over the generic point of D. The moduli divisor is then automatically determined up to
R-linear equivalence.

For each birational model Z’ over Z, similarly we can define Bz/,Mz so that their
pushdowns on Z coincide with By, Myz. This defines a discriminant b-divisor B and a
moduli b-divisor M over Z. It was shown that M is a b-nef b-divisor and we hence obtain
a generalized pair (Z, Bz,M), which is called the generalized pair given by adjunction for
f:(X,B)— Z (see §2.4 for more details). We are now ready to state Shokurov conjecture.

CONJECTURE 1.7 (Shokurov). Fiz a positive integer r and a real number 0 < e < 1.
There exists 6 >0 depending only on r,e and satisfying the following. Let (X, B) be a pair
and f: X — Z be a contraction such that:

e dimX —dimZ =r;

e (X,B) is e-lc;

e Kx+B~gr0/Z; and

e X is of Fano type over Z, equivalently, —Kx 1is big over Z.
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Let (Z,Bz,M) be the generalized pair given by adjunction for f :(X,B) — Z. Then,
(Z,Bz,M) is generalized §-lc.

As mentioned earlier, Shokurov conjecture was proved by Birkar [9] recently. Before this
celebrated result, in [11, Theorem 1.4] Birkar and Chen showed a variant of Shokurov
conjecture in the toric setting, which says that Shokurov conjecture holds after taking an
average with the toric boundary. This is enough for some interesting applications. Building
on ideas from their work and combining the main result in [14], we give an explicit value
for ¢ in [11, Theorem 1.4] as follows.

THEOREM 1.8. Let r be a positive integer and 0 < e <1 be a real number. Assume:

o f: X — Z is a toric contraction of relative dimension r with z € Z a codimension > 1
point;

o (X,B) is a pair (B is not necessarily toric) such that mld(X/Z > z,B) > €;

e Kx+ B~ O/Z, and

e A is the toric boundary divisor of X.

Let
I'“=aB+(1—a)A, where a=1/r!
and let (Z,I'y,N®) be the generalized pair given by adjunction for f: (X, I'*) — Z. Then,
mld(Z 3 2,I'Z,N%) > 6,
where 6 = 0(r,€) as in (1.1).

Theorems 1.2 and 1.5 are consequences of Theorem 1.8. Another interesting corollary is
the following.

THEOREM 1.9. Let r be a positive integer, 0 < € <1 be a real number and 6 = (r,€)
as in (1.1). Let f: X — Z be a toric contraction of relative dimension r with a toric pair
(X, B) and a codimension one point z € Z. Suppose there is an R-divisor BT (not necessary
toric) such that Bt > B, Kx +B*" ~g 0/Z, and mld(X/Z > z,B") > €. Then, (X,B+f*Z)
1s lc over some neighborhood of z € Z.

REMARK 1.10. After this work was completed, Ambro informed me that he also got
some explicit lower bounds in the toric case. Let f: X — Z be a toric Fano contraction
of relative dimension r with X being e-lc. Let F' be the general fiber and let v be the
a-invariant of F. There exists a sharp lower bound for v just in terms of r and e (cf. [4]).
Ambro got explicit bounds for § in terms of €,r, and v in Theorems 1.2, 1.5, and 1.9.

1.1 Idea of the proof of Theorem 1.8.

The proof is built on ideas from [11] with some modifications. In [11], by running toric
minimal model program (MMP), they reduced the problem to the case for toric Mori
fiber spaces. Then, they showed that after taking a finite cover and extracting a toric
divisor, a Q-factorial toric Mori fiber space can be factored as the composition of toric
contractions of smaller relative dimension. Therefore, they can reduce the problem to the
case for contractions of relative dimension one. However, after taking a finite cover and
extracting a divisor, the pullback of Kx + B may be a sub-pair rather than a pair, so it is
necessary to take average I'* = aB + (1 — «)A with the toric boundary to make its pullback
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a pair. To guarantee that the singularities of (X,I'*) are not too bad, « can not be too small
and hence it is important to control the order n of the finite cover and the log discrepancy
of the extracted divisor. They showed the boundedness of the order n, however, it seems not
easy to give an explicit bound for n, as it involves all possibilities of the fans corresponding
to e-lc toric Fano varieties up to the action of GL,(Z). In this article, we make some
modifications to their method. We factor a toric Mori fiber space after extracting a toric
divisor with log discrepancy <r, without taking a finite cover (see Lemma 3.6). Recall that
in relative dimension one, an explicit value for § in Shokurov conjecture was given in [14].
Combining this result, we obtain an explicit value for ¢ in [11, Theorem 1.4].

82. Preliminaries.

We will freely use the standard notations and definitions in [12], [24]. A contraction
f: X — Z is a projective morphism of varieties with f,Ox = Oz. An extremal contraction
is a contraction f: X — Z with the relative Picard number p(X/Z) = 1.

2.1 Fano type varieties.

Let X — Z be a contraction of normal varieties. We say X is of Fano type over Z if there
is a klt pair (X, B) on X such that —(Kx + B) is ample over Z.

We say X — Z is a Mori fiber space if —Kx is ample over Z and the relative Picard
number p(X/Z) = 1.

2.2 b-divisors.

Let X be a normal variety. A b-divisor D over X is a collection of R-divisors Dy for
each birational model Y over X, such that o,Dy, = Dy, for any birational morphism
g Yl — YQ/X

Let D be a b-divisor over X and Yj be a birational model over X. We say D descends to Y
if Dy, is an R-Cartier R-divisor and Dy = ¢*Dy, for any birational morphismo:Y — Y,/ X.

Let X — U be a projective morphism. We say that a b-divisor D over X is b-nef /U
(resp. b-semiample/U) if D descends to some birational model Y; and Dy, is nef/U (resp.
semiample/U).

We denote by 0 the b-divisor D such that Dy = 0 for each birational model Y over X.

2.3 Generalized pairs.
We will follow the original definitions in [13] and adopt the notations in [20].

DEFINITION 2.1. A generalized sub-pair (g-sub-pair for short) (X,B,M)/U consists of
a normal variety X associated with a projective morphism X — U, an R-divisor B on X,
and a b-nef/Ub-divisor M over X.

A g-sub-pair (X,B,M)/U is called a sub-pair if M = 0. In this case, we denote it by
(X,B)/U or (X,B).

A g-sub-pair (X,B,M)/U is called a generalized pair (g-pair for short) if B > 0.
A sub-pair (X, B) is called a pair if B > 0.

We may drop U when we emphasize the structures of (X, B,M) that are independent of
the choice of U, for example, the singularities of (X, B,M).

DEFINITION 2.2. Let (X,B,M)/U be a g-(sub-)pair and F be a prime divisor over X,
that is, a prime divisor on a normal variety Y with a birational morphism 7 :Y — X.
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The center of F on X is defined as the image of F on X under the morphism 7 and it is
denoted by centerx E. Write

Ky + By + My :ZW*(Kx—l-B—l-Mx).

Then, the log discrepancy of E with respect to (X, B,M) is defined as 1 —mult gy By and it
is denoted by a(F, X, B,M), where multg By is the coefficient of £ in By-.

DEFINITION 2.3. Let (X,B,M)/U be a g-(sub-)-pair, f: X — Z/U be a projective
morphism and z € Z be a (not necessary closed) point. The minimal log discrepancy of
(X,B,M) over z is defined as

mld(X/Z 3 z,B,M) :=inf{a(E,X,B,M) | E is a prime divisor over X
with f(centerx(E))=7z}.

In the case, that Z = X, z =z and f is the identity morphism, we will use mld(X > x, B,M)
instead of mld(X/Z > z, B,M).

DEFINITION 2.4. A g-(sub-)pair (X,B,M) is said to be (sub-)e-glc (resp. (sub-)e-gklt,
(sub-)gle, (sub-)gklt) if mld(X >z, B,M) > € (resp. > ¢, >0, > 0) for any codimension > 1,
point x € X.

If M=0 and (X,B,M) is (sub-)e-glc (resp. (sub-)e-gklt, (sub-)gle, (sub-)gklt), we say
that (X, B) is (sub-)e-lc (resp. (sub-)e-klt, (sub-)lc, (sub-)kit). In the case when B =0, we
also say X is e-lc (resp. e-klt, lc, klt).

DEFINITION 2.5. Let (X,B,M)/U be a g-(sub-)pair and D be an effective R-Cartier
R-divisor on X. The lc threshold of D with respect to (X, B,M) is defined to be

let(X, B,M; D) :=sup{t > 0| (X,B+tD,M) is (sub-)glc}.

DEFINITION 2.6. Let (X,B,M)/U and (X,I''N)/U be two g-(sub-)pairs. We say
(X,B,M) has better singularities than (X,I",N) if

a(E,X,B,M) > a(E, X,I',N)
for any prime divisor E over X.

LEMMA 2.7. Let (X,B,M)/U be a g-(sub—)-pair, f : X — Z/U be a projective morphism
and z € Z be a (not necessary closed) point. Then, mld(X/Z > z,B,M) > 0 if and only if
(X,B,M) is (sub—)glc over some neighborhood of z € Z.

Proof. This is essentially [19, Lemma 2.8] where it was stated only for M = 0. By
definition, the “if” part is obvious. Next, we show the “only if” part.

Assume the contrary that mld(X/Z 3 z, B,M) >0 but (X, B,M) is not (sub-)glc over any
neighborhood of z € Z. Then, there is a prime divisor £ over X such that z € f(centerx E)
and a(F,X,B,M) <0. Let 7: Y — X be a resolution with Ky + By + My =7*(Kx + B+
My ) such that:

e M descends to Y;

e I/ is a prime divisor on Y

e 71 f~1(2) is a divisor on Y, say F'; and

e /4 I is a simple normal crossing divisor on Y.
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We can find an irreducible component D of F' such that f(7(DNE))=7Z (indeed, since
z € f(m(E)), there is a point € E such that f(7(n)) = z, then, we take D to be a component
of F' which contains 7).

Denote d = multp By and e = multg By > 1. Blowing up DN E, we get a new resolution
7' Y — X with Ky + By + My, =7"*(Kx + B+ Mx). Denote by D’ the exceptional /Y
divisor on Y’ and by E’ the birational transformation of F on Y. By construction, we have
f(n'(D") =%, D' meets E’ transversely, f(n'(D'NE’")) =% and multp By >d+e—1>d.

So, by successively blowing up, we eventually obtain a prime divisor D over X such
that f(centerx D) =z and a(D,X,B,M) < 0, which contradicts that mld(X/Z > z,
B,M) > 0. 0

2.4 Adjunction for generalized fibrations.

Let f: X — Z be a contraction between normal varieties over U with dimZ > 0. Let
(X,B,M)/U be a g-pair which is glc over the generic point of Z and such that Kx + B+
My ~g 0/Z. Then, Kx + B+Myx ~g f*L for some R-Cartier R-divisor L on Z.

For any prime divisor D on Z, let tp be the lc threshold of f*D with respect to
(X, B,M) over the generic point of D. This make sense even if D is not Q-Cartier because
we only need the pullback of D over the generic point of D, where Z is smooth. We set
Bz =) p(1—tp)D, where D runs over all prime divisors on Z and set Mz = L— Kz — B.
The former is called the discriminant divisor and the latter is called the moduli divisor.

Let 0 : Z/ — Z be a birational morphism from a normal variety Z’ and let X’ be the
resolution of the main component of X Xz Z’ with induced morphism 7: X’ — X and
f/ X' = 7' Write Kx'+B'+Mx/ = T*(KX —|—B+Mx), then Kx/+B' +Mx/ ~p f/*J*L.
Similarly, we can define the discriminant divisor Bz and the moduli divisor M. for the
contraction (X', B’,M) — Z’. One can check that 0.Bz = Bz and o.Mz = M. Hence,
there exist b-divisors B# ,MZ such that Bg/ = By and Mg/ = My, for any birational
model Z’ over Z, which are called the discriminant b-divisor and the moduli b-divisor,
respectively. By construction, we have

Kx+B+Mx ~g f*(Kz+ Bz +M%).

It was shown that MZ is a b-nef/Ub-divisor over Z (see [15, Theorem 11.4.4]). Hence, we
can regard (Z, Bz,M?) /U as a g-pair. We call (Z, Bz,M?#) /U the g-pair given by adjunction
for f:(X,B,M) — Z. In the case, that (X, B,M) is glc, (Z, Bz,M?) is also a glc g-pair.

For more details about adjunction for generalized fibrations, we refer the readers to [17],
[21] and [15, Section 11.4].

LEMMA 2.8 [11, Lemma 2.1]. Assume that:

e (X,B,M)/U is a g-pair which is glc over the generic point of Z;
o X LY L 7 are contractions of normal varieties/U with dimZ > 0; and
[ ] Kx+B+MX ~R O/Z

Let (Y,By,MY)/U be the g-pair given by adjunction for g: (X,B,M) — Y and let
(Z,Bz,M?)/U be the g-pair given by adjunction for hog: (X,B,M) — Z. Then,
(Z,Bz,M?%)/U s also the g-pair given by adjunction for h: (Y, By ,MY) — Z.

LEMMA 2.9. Let f: X — Z be a contraction between normal varieties over U. Let
(X,B,M)/U and (X,I',N)/U be two g-pairs on X which are glc over the generic point of Z.
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Assume that Kx +B+Mx ~r 0/Z and Kx +T' +Nx ~r 0/Z. Let (Z,Bz,M?)/U and
(Z,T z,IN?) /U be the g-pairs given by adjunction for (X, B,M) and (X,T,N) over Z, respec-
tively. Suppose that (X, B,M) has better singularities than (X,T,N), then (Z,Bz,M?%) has
better singularities than (Z,Tz,N?) (see Definition 2.6 for “better singularities”).

Proof. Let D be a prime divisor on some high resolution Z/ — Z. Let 7 : X' = X
be a high enough resolution such that the induced map f': X’ --» Z’ is a morphism.
Write Kx:+ B'+ My (resp. Kx/+1”+Nx/) for the pullback of Kx + B+ Mx (resp.
Kx +T+Nx). Denote by ¢ (resp. s) the lc threshold of f*D with respect to (X', B’,M)
(resp. (X',IV,N)) over the generic point of D. It suffices to show ¢ > s.

By construction, (X',I"+sf* D,N) is sub-glc over the generic point of D. Since (X, B,M)
has better singularities than (X,I',N), (X', B'+ s f"*D,M) also has better singularities than
(X',T"+sf"*D,N) and it hence is sub-glc over the generic point of D. Therefore, t >s. [J

LEmMMA 2.10. Let f: X — Z be a contraction of normal varieties over U. Let
(X,B,M)/U and (X,I'N)/U be two g-pairs on X which are glc over the generic point
of Z. Assume that Kx + B+Mx ~r 0/Z and Kx +T+Nx ~gr 0/Z. Let 0 < a <1 be a real
number and let

Q=aB+(1—a)l' and L=aM+(1-a)N.

Let (Z,Bz,M?)/U, (Z,T z,N%) /U, and (Z,Qz,L%)/U be the g-pairs given by adjunction
for (X,B,M), (X,I',N), and (X,Q,L) over Z, respectively. Then, (Z,Qz,L%) has better
singularities than

(Z,aBz + (1—a)T'z,aM?% + (1 —a)N?%). (2.1)
See Definition 2.6 for “better singularities”.

Proof. Let Z' — Z be any resolution and D be a prime divisor on Z’. Take a high enough
resolution X’ — X such that the induced map h': X’ --» Z’ is a morphism. Let ¢ (resp. s)
be the lc threshold of A*D with respect to (X', B/, M) (resp. (X’,I",N)) over the generic
point of D, where Kx/+ B'+Mx. (resp. Kx/+I"+Nx/) is the pullback of Kx + B+Mx
(resp. Kx +I'+Nx). By definition, the coefficient of D in By (resp. I'z/) is 1 —1t (resp.
1—35), where Kz + Bz +MZ%, (resp. Kz +Tz +N%,) is the pullback of Kz + Bz +M?%
(resp. Kz +T'z+MZ%). Hence, a(D,Z,Bz,M%) =t and a(D,Z,Tz,N?) =s. So the log
discrepancy of D with respect to the g-pair (2.1) is at+ (1 —a)s.

Now,

(X",aB'+(1—a)l"+ath”" D+ (1—a)shD,aM+ (1 —a)N)

is glc over the generic point of D. Assuming that Kx/ + Q' + Lx, is the pullback of
Kx +Q+Lx, we have Q' =aB’'+(1—a)I” and L =aM+ (1 —«a)N. Hence, the lc threshold
of h’*D with respect to (X', L) over the generic point of D is as least at+ (1 —a)s. By
definition, the coefficient of D in Qz is at most 1 —at — (1 —a)s, where Kz +Qz + L%, is
the pullback of K7+ Q4 + L%. So

a(D,Z,Qz,L%) > at+(1—a)s

and the proof is completed. O
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2.5 Toric varieties and toric morphisms.

We refer to [18], [28] or [16] for the general theory of toric varieties. Here, we collect some
definitions and facts on toric varieties. All toric varieties in this article are assumed to be
normal.

A toric variety X is given by a pair (Nx,YXx), where Nx is a lattice and Xx is a
rational polyhedral fan in Nx @ R. A toric morphism between toric varieties X and Y is
given by a Z-linear map ¢ : Nx — Ny which is compatible with the fan ¥x and ¥y, that
is to say, for any cone o1 € Xx, there is a cone o9 € ¥y such that ¢r(o1) C o2, where
or : Nx ® R — Ny ®R is the extension of ¢.

A toric divisor on a toric variety X is a divisor which is invariant under the torus action.
We say a pair (X, B) is a toric pair if X is a toric variety and B is a toric R-divisor.

There is a one-to-one correspondence between the cones ¢ in X x and the torus orbits
O(o) in X. The dimension of the cone o is equal to the codimension of the orbit O(o) in X.
In particular, a one-dimensional-cone o, called a ray, corresponds to a toric prime divisor
O(o).

If A is the toric boundary divisor of a toric variety X, that is, A is the sum of all the
toric prime divisors on X, then (X,A) is lc and Kx + A ~ 0. Moreover, a(D,X,A) =0 for
any toric prime divisor D over X.

A toric variety X is Q-factorial if and only if the fan ¥ x is simplicial, that is, every cone

in Y x is generated by a set of R-linear independent vectors.

If a toric morphism f: X — Y given by ¢: Nx — Ny is a contraction, then ¢ is surjective.

If f: X — Z is a toric contraction, then X is of Fano type over Z.

Every toric varieties is a Mori dream space, that is to say, if X — Z is a toric contraction,
then we can run a MMP on any R-Cartier R-divisor D relatively over Z and it terminates
with either a D-negative fibre space or a D-minimal model. Moreover, all the steps of the
MMP are toric (see [25, Chapter 14] for the Q-factorial case.

LEMMA 2.11 [16, p. 133]. Let X, Z be two toric varieties given by (Nx,¥x), (Nz,Xz),
respectively, and f: X — Z be a toric morphism given by a surjective Z-linear map
¢: Nx — Ny. Let F be a toric varieties given by (No,%o), where Ny = ker(¢) and

EO :{O'EEX | o C (NO)R}
is a sub-fan of ¥x. Then, f~1(Ty) ~ F x Tz, where Ty is the torus in Z.
We also need the following lemma in [11] regarding adjunction for toric pairs.

LEMMA 2.12 [11, Lemma 2.11]. Let f: X — Z be a toric contraction between toric
varieties and A, Az be the toric boundary divisors of X,Z respectively. Then, (Z,Az,0) is
the g-pair given by adjunction for f:(X,A) — Z.

83. Proofs of main results.

In this section, we will prove a more general form of Theorem 1.8 for generalized pairs
as follows.

THEOREM 3.1 (cf. [11, Theorem 1.7]). Let r be a positive integer and 0 < e <1 be a real
number. Assume:

(a) f: X — Z is a toric contraction of relative dimension r between toric varieties over U
with a codimension > 1 point z € Z;
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(b) (X,B,M)/U is a g-pair (not necessarily toric) with mld(X/Z > z, B,M) > ¢;
(C) Kx+B+Mx NRO/Z,' and
(d) A is the toric boundary divisor of X.

Let
'“=aB+(1—a)A and N*=aM, where a=1/r!

and let (Z,1%,N%Z)/U be the g-pair on Z given by adjunction for f:(X,T* N%) — Z.
Then,

mld(Z 3 2,74, N*%) > 6,
where 6 = 0(r,€) as in (1.1).

We start with showing a generalized version of [14, Theorem 1.4], that is, showing that
one can take § = €2/2 in a generalized version of Shokurov conjecture in relative dimension
one. Its proof is similar to that of [11, Lemma 3.1].

LEMMA 3.2 (cf. [11, Lemma 3.1]). Let f: X — Z be a contraction between normal
varieties over U, (X,B,M)/U be a g-pair and z € Z be a codimension > 1 point such
that:

e dimX —dimZ =1,

e Kx+B+Myx NRO/Z,‘

e mld(X/Z > 2,B;M) >¢, where 0 <e<1; and
e X is of Fano type over Z.

Let (Z,Bz,M?%)/U be the g-pair given by adjunction for f:(X,B,M) — Z. Then,
mld(Z > z,Bz,M?) > §(1,¢) = €2 /2.

Proof. Since the singularities of (Z,Bz,M?%)/U are independent of the choice of U,
we may assume that U = Z. Shrinking Z around z by Lemma 2.7, we may assume
that (X,B,M) is glc. Let D be a prime divisor on some high resolution Z' — Z with
centery D =Z. Let m: X’ — X be a high enough resolution such that M descends to X’
and the induced map f’: X’ --» Z’ is a morphism. Write K x.+ B’ + My for the pullback
of Kx + B+My. Then, (X’,B’) is sub-lc and mld(X’'/Z 5 z,B’) > €. Denote by ¢ the lc
threshold of f"*D with respect to (X', B’) over the generic point of D. It suffices to show
that ¢ is bounded from below by €2/2.

We may assume that X is Q-factorial. Since X is of Fano type over Z, X is klt and —Kx
is big over Z. So we can write

W*(—Kx) ~Q H,—I—C//Z,

where H' is ample over Z and C’ > 0. We can also write 7*Kx = Kx/+ E'. Then, ' < B’
and (X', E’) is sub-klt. For each sufficiently small real number u > 0, let

B, =(1—u)B' +ukFE’,
then we have (X', B)) is sub-klt and mld(X'/Z > z,B],) > €. So we can find a general
0< L ~g (1—u)Mys +uH'/Z

https://doi.org/10.1017/nmj.2025.10079 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2025.10079

EFFECTIVE BOUND FOR SINGULARITIES ON TORIC FIBRATIONS 789

(note that H' is ample/Z and Mx is nef/Z) such that letting
A =B tuC' + L,

we have mld(X'/Z € z,A’) > ¢’ where e —€’ > 0 is sufficiently small. Moreover, over Z we
have

K/ +A/ ~r Kx +(1 —u)B’—l—uE'—i—uC'—l—(l —U)MX/ —i—qu
= (1—u)(Kx +B' +Mx)+u(Kx +E)+u(H +C")
~r (1—u)(Kx +B +Mx/) ~g 0.
Therefore, letting A = 7, A’, we deduce that Kx, + A’ is the pullback of Kx + A.
Now, if we choose u > 0 to be sufficiently small, the lc threshold s of f”*D with respect
to (X', A’) over the generic point of D is sufficiently close to t. Applying [14, Theorem 1.4]

to (X,A) — Z, we deduce that s > ¢2/2, where € — € > 0 is sufficiently small. Hence,
t>e€?/2. 1

To prove Theorem 3.1, we need a couple of lemmas.

LEMMA 3.3 (cf. [11, Lemma 3.2]). Let 0 <e <1 be a real number and r,s,t be positive
integers such that r = s+t. Suppose Theorem 5.1 holds in relative dimension s and in
relative dimension t. Keep the assumptions (a),(b),(c), and (d) in Theorem 5.1. Additionally

assume that f: X — Z can be factored as X LY LN Z, where h and g are toric contractions
of relative dimension s and t, respectively. Let

I =B+ (1—-B)A and N’ =M, where §=1/(s!t)

and let (Z,Fg,Nﬁ’Z)/U be the g-pair given by adjunction for f: (X, T% NP) — Z. Then,

s+t
62

mld(Z 3 2,7, N%%) > §(t,0(s,¢)) =

P .
225+t_1 ﬁ 7;21‘+t . 1—[ ’L.2i
i=1 =1

Proof. By assumption, Theorem 3.1 holds for both h and ¢ in the following sense. Let
I =AB+(1-A)A and N*=\M, where A\ =1/s!
and let (Y,I'3,NMY) /U be the g-pair given by adjunction for g: (X,T*,N*) — Y. Then,
mld(Y/Z 3 2, Ty, NMY) > §(s,¢).
On the other hand, let
Q) =Ty +(1—7)Ay and LY =yN*Y | where v = 1/¢!

and Ay is the toric boundary divisor of Y. Let (Z,Q7,,L"%)/U be the g-pair given by the
adjunction for h: (Y,Q7,L"Y) — Z. Then,

mld(Z 3 2,9%,L7%) > §(t,6(s,€)). (3.1)
Now, let

=8B+ (1-8)A and NP =M, where =\ y=1/(st!).
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By construction, we have
P =4T* 4+ (1—9)A and NP =N

Let (Y, F?,,N&Y)/U be the g-pair given by adjunction for g: (X,I'”,N?) — Y. and let
(Z, F%,N/B’Z) be the g-pair given by adjunction for f: (X,I'® + N#) — Z. By Lemma 2.8,
(Z,1',,N?%) is also the g-pair given by adjunction for h: (Y, Fg,Nﬁ’Y) — Z.

Since

P =4T* 4+ (1—9)A, NP =4N*
and
0 = T3 +(1-9)Ay, LY = N,

by Lemmas 2.10 and 2.12, the g-pair (Y, Fé,Nﬂ’Y) has better singularities than
(Y,Q7,, L"), which implies that (Z, Fg,NB’Z) has better singularities than (Z,Q},,L7%)
by Lemma 2.9. So by (3.1), we have

mld(Z > Z,Fg,NB’Z) > 6(t,8(s,€)). U

LEMMA 3.4. Let F be a Q-factorial complete toric variety given by (N,X) with p(F) =1
and dim F' =r > 2. Then:
(1) its fan X has exactly v+ 1 rays generated by primitive elements v;, i =1,...,7+1,
and there exist positive integers q; such that Z:;l qiv; =05
(2) let E;, i=1,...,7+1, be the prime divisor over F corresponding to —v;, then
o(Ei, F,0) = Q1+"'+qu'q+"'+qr+1’

where the hat indicates that we omit that term;
(3) let m: F' — F be an extremal toric divisorial contraction with the exceptional divisor
E; for some i, then there exwists a toric contraction g: F' — G such that dimG =r—1.

REMARK 3.5. Since p(F’) =2, NE(F’) has exactly two extremal rays. One corresponds
to F/ — F and the other corresponds to F’ — G.

Proof. (1) This assertion was showed in the proof of [11, Lemma 3.3]. We give another
proof here. By [16, Proposition 6.4.1], for a Q-factorial complete toric variety, the number
of rays in its fan is equal to the sum of its Picard number and its dimension. As p(F') =1
and dim F' =r, ¥ has r+1 rays, say Ry,...R,y1. Let v; be the primitive element of the ray
R;fori=1,...,7+1.

As F is complete, the support of ¥ (denoted by |X|) is Ng, so v1,...,v,41 span Ng. We
may assume that vy,...,v, form a basis of Ng. Then, there exist rational numbers ci,...,c,
such that v, 41 =Y., ¢;v;. We claim that all ¢; are negative. Indeed, if one of them (say ¢1)
is non-negative, the support || is contained in the half space {>_._, a;v; | a; > 0}, which
leads to a contradiction. We can find a positive integer ¢ such that all qc; are integers. Let
qi = —qc; for i =1,...r and let ¢; 11 = q. Then, Z:;l qiv; = 0.

(2) Without loss of generality, we may suppose that i =7+ 1. Let Ar be the toric
boundary divisor of F, then a(D,F,Ar) =0 for any toric prime divisor D over F, which
implies that a(D, F,0) is equal to the coefficient of D in the pullback of Ar (denoted by
InultD AF) .
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Since —v,41 is in the interior of the cone o generated by v1,...,v,, the center of E,.1; is
contained in the affine chart U,. On the chart U,, Ar is determined by m € N* ® Q with
(m,v;) =1for i =1,...,r. Then,

(m o1+ +qv)  at+-+a

HlultErJrl Ap={(m,—v,41) =
qr+1 qr+1

(3) Without loss of generality, we may suppose that i = r+ 1. The toric variety F’ is
given by (N,Y’), where ¥’ is the star subdivision of ¥ along —v,.41, more precisely,

5= E\{eh)ux* (o),

where o is the cone generated by vy,...,v, and X*(o) is the set of all cones generated by
subsets of {—v,4+1,v1,...,v,} not containing {vy,...,v,}.
Let ¢ : N — N/(Zv,41) := Ng be the quotient map and let

Yo = {gbR(T) C (Ng)R | T €Y and —Up41 € T}.

Then, ¥¢ is a fan in (Ng)r ( [16, Exercise 3.2.7]). Let G be the toric variety given by
(Ng,Xa). We claim that ¢ is compatible with ¥ and X, that is, for any 7 € X, ¢r(7)
is contained in some cone in Y. Indeed, the claim holds obviously when —v,4; € 7, so

we may assume that —v,1 ¢ 7. Then, 7 is generated by a subset S of {v1,...,v,41} not
containing {v1,...,v,.}. Let 7" be the cone generated by S’, where
S — SU{-vrs1}, if v11 &5,
(S\{vrp1 ) U{—vra}, ifopa €8

Then, ¢r(7') € £ and ¢r(7) = ¢r(7'). Therefore, the claim holds and then ¢ : N — Ng
determines a toric contraction from F to G. U

LEMMA 3.6 (cf. [11, Lemma 3.4]). Let f: X — Z be a toric Mori fiber space of relative
dimension r > 2, where X is Q-factorial. Then, there is a commutative diagram

WL>Y—h>Z

J/W /
X
such that:

e m, h,g are toric contractions;

e : W — X s an extremal toric divisorial contraction with the exceptional divisor E
satisfying a(E,X,0) <r; and

o dimW —1=dimY >dimZ.

Proof. By Lemma 2.11, over the torus Tz in Z, f~1(Ty) is isomorphic to F x Ty, where
F is a general fiber of f. Since f: X — Z is a Mori fiber space, F' is a Fano variety with
p(F) = 1. Moreover, F is Q-factorial, as by Lemma 2.11 its fan X is a sub-fan of the
fan ¥ x of X which is simplicial. By Lemma 3.4 (1), the fan Xy has exactly r+ 1 rays
generated by primitive elements v;, ¢ =1,...,r+ 1, and there exist positive integers g; such
that Z:ill q;v; = 0. Pick e such that g, > g; for any i =1,...,74+1 and denote by Er the toric
prime divisor over F' corresponding to —v.. Extracting Er gives an extremal contraction
F' — F. By Lemma 3.4 (2), there is a toric contraction F/ — G with dimG =r — 1.
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The closure E of the exceptional divisor Er x Tz of F' x Ty — F x T is a toric divisor
over X, so it determines an extremal toric divisorial contraction 7 : W — X with the
exceptional divisor E. Then, p(W/Z) = 2. Over Ty, the two contractions W — X and
F'xTy; — F x Ty coincides. By Lemma 3.4 (2), we have

(L(E,X,O) :a(EF XTz,FXTz,O) <r.

Let g: W —Y be a (—E)-negative toric extremal contraction over Z. Then, p(Y/Z) = 1.
Over Tz, the restriction g|p, : F' x Tz — Y|, is either an isomorphism or a (—Ep x Tz)-
negative toric extremal contraction over 7. But the former case is impossible because
p(F") =2 and p(Y/Z) = 1. Note that NE(F' x Tz /Tz) has exactly two extremal rays. One
corresponds to F' x Ty — F x Tz, and the other corresponds to F' x Tz — G x Tz. So g|r,
coincides with one of them. It is impossible that g|r, coincides with F' x Ty — F x Ty
because —Ep x T is ample over F' x Tz. So g|r, coincides with F’ x Tz — G X Tz, which
implies that dimY =dimW —1. O

LEMMA 3.7 (cf. [11, Lemma 3.4]). Assume that Theorem 3.1 holds in relative dimension
<r—1. Then, Theorem 3.1 holds in relative dimension r when f:X — Z is a toric Mori
fiber space and X is Q-factorial.

Proof. By Lemma 3.2, we may suppose that the relative dimension r > 2. By taking
a toric Q-factorialisation, we can assume X is Q-factorial. By Lemma 3.6, there is a
commutative diagram

WL>Y4h>Z

e

satisfying the properties listed in that lemma. Let Ay be the the toric boundary divisor of
W, then KW+AW = 7T*(KX —|—A) Write KW+BW+MW = ’/T*(KX —I—B—FM)() Let

% =0Bw +(1—0)Ayw and NY=6M, where § =1/r.

Since a(F, X,0) < r, the coefficient of E in By is bounded below by 1—r. Then, I'%, >0
since the coefficient of £ in Ay is 1.

By construction, mld(W/Z > 2,T'Y,,N?) > €. Applying Lemma 3.3 to (W, r%, NY) over
Z (taking s =1 and t =7 —1 in the lemma), we deduce that if we let

08 =BrY% +(1—B)Aw and L° =N’ where f=1/(r—1),
and (Z, Qg,Lﬁ’Z)/U be the g-pair given by adjunction for hog: (W, Qev,Lﬁ) — Z, then
27‘
mld(Z 3 2,95, L?%) > LT)_I = 5(r,e€).
92271, H 7;21'
i=1
It is easy check that
Qa, =aBw+(1-a)Ay and L =aM, where a=08=1/r.
Hence,

Kw +Q), + L, =" (Kx + T +N%),
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where
I'*=aB+(1-a)A and N =aoM.

Therefore, (Z, Qg,LB’Z)/U is also the g-pair given by adjunction for f: (X,I'* N%) — Z.
This finishes the proof of the lemma. 0

Proof of Theorem 5.1. By induction on relative dimension, we may assume that the
theorem holds in relative dimension < r —1. Taking a toric Q-factorization of X and running
an MMP on Kx over Z, we may assume that X is Q-factorial and it has a toric Mori fiber
space structure X — Y/Z.

If Y — Z is birational, we can replace Z by Y, then we are done by Lemma 3.7. Otherwise
dimY > dim Z. Denote s =dim X —dimY and t =dimY —dim Z, then r = s+t. Applying
Lemma 3.3, we deduce that if we let

=3B+ (1—B)A and NP =M, where §=1/(s!t!)

and (Z, Fg,Nﬁ’Z)/U be the g-pair given by adjunction for f: (X, I'”, N?) — Z, then

2"
mld(Z 5 2,5, NFZ) > ¢

(3.2)

227_1 ﬁ i2i+t . ﬁ 1/21
=1

i=1
Let
I'*=aB+(1—a)A and N*=aM, where a=1/rl.
Then, we have

=04+ (1-60)A and N*=0NP  where § = a/f = (s!t!)/r!.

Let (Z,I'%,N%Z) be the g-pair given by adjunction for f: (X,I'*,N®) — Z. By Lemmas 2.10
and 2.12, (Z,T'%,N%Z) has better singularities than

(Z,075 + (1 —0)Az,ONZ),

Hence, by (3.2), we have

1#] 2"
mld(Z 5 2,7, N*Z) > ﬁ .
T. 22T_1 1—[ Z.27;+t . H igi
i=1 i=1
€2’
> ———— =4(r€). [
9271 H 72°
i=1
Proof of Theorem 1.8. 1t is a special case of Theorem 3.1. 0

Proof of Theorem 1.9. By Lemma 2.7, shrinking Z around z, we may suppose that
(X, B) is lc. Since (X, B) is a toric lc pair, we have B < A, where A is the toric boundary
divisor of X. Let

['*=aB"+(1-a)A, where a=1/r!.
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Then, T'® > B. Let (Z,1%,N*Z) be the g-pair given by adjunction for f:(X,I'*) — Z. By
Theorem 1.8, mld(Z > 2,14, N*Z) > § = §(r,¢). Denote the prime divisor z by D. Then,
the coefficient of D in I'} is bounded from above by 1—¢. This means that (X,I'*+0f*D)
is lc over the generic point of D. Since I'* > B, we deduce that (X, B+4df*D) is lc over the
generic point of D. O

Proof of Theorem 1.5. Let
I'*=aB+(1—a)A, where a=1/r!

and let (Z,1'%,N*%) be the g-pair given by adjunction for f: (X,T'®) — Z. By Theorem 1.8,

mld(Z > 2,T%,N%Z) > §(r,¢). Hence, mld(Z 3 2,0) > 6(r,€) and the first assertion holds.
The second assertion is an immediate consequence of Theorem 1.9 (taking B =0 in

Theorem 1.9). 0

Proof of Theorem 1.2. This is a direct consequence of Theorem 1.5. O
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