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Abstract
We consider generalised Dirac-Schrödinger operators, consisting of a self-adjoint elliptic first-order differential
operator D with a skew-adjoint ‘potential’ given by a (suitable) family of unbounded operators. The index of such an
operator represents the pairing (Kasparov product) of the K-theory class of the potential with the K-homology class
of D. Our main result in this paper is a generalisation of the Callias Theorem: the index of the Dirac-Schrödinger
operator can be computed on a suitable compact hypersurface. Our theorem simultaneously generalises (and is
inspired by) the well-known result that the spectral flow of a path of relatively compact perturbations depends only
on the endpoints.
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1. Introduction

Let D𝑀 be the Dirac operator on an odd-dimensional locally compact smooth spin manifold M, which
determines the K-homology fundamental class [D𝑀 ] ∈ 𝐾1(𝑀). If Σ𝑀 ∈ 𝐾1(𝑀) is any element in the
K-theory of M, there is a natural pairing 〈 , 〉 : 𝐾1(𝑀) × 𝐾1(𝑀) → Z of K-theory with K-homology,
often referred to as the index pairing, which yields an integer〈

Σ𝑀 , [D𝑀 ]
〉
∈ Z.

We now wish to compute this integer in terms of an index pairing on a suitable hypersurface 𝑁 ⊂ 𝑀
of codimension one. Assume that 𝑈 ⊂ 𝑀 is an open subset with compact closure 𝐾 = 𝑈 and smooth
boundary 𝑁 = 𝜕𝑈. Consider the natural map 𝜄𝑈 ∗ : 𝐾1(𝑀) → 𝐾1(𝑈) which sends [D𝑀 ] to the class
[D𝑈 ] of the restriction of the Dirac operator to U. The K-homology boundary map

𝜕 : 𝐾1(𝑈) → 𝐾0(𝜕𝑈)

sends the class [D𝑈 ] to the class [D𝜕𝑈 ] of the Dirac operator on the boundary 𝜕𝑈.
Now suppose that the K-theory class Σ𝑀 is the image of a class Σ𝑈 ∈ 𝐾1(𝑈) under the natural map

𝜄𝑈 ∗ : 𝐾1(𝑈) → 𝐾1(𝑀). Suppose furthermore that Σ𝑈 is the image of a class Σ𝜕𝑈 ∈ 𝐾0(𝜕𝑈) under the
K-theory boundary map 𝜕 : 𝐾0(𝜕𝑈) → 𝐾1(𝑈). Then by naturality, we have the equalities〈

Σ𝑀 , [D𝑀 ]
〉
=
〈
𝜄𝑈 ∗ ◦ 𝜕 (Σ𝜕𝑈 ), [D𝑀 ]

〉
=
〈
𝜕 (Σ𝜕𝑈 ), 𝜄𝑈 ∗([D𝑀 ])

〉
=
〈
Σ𝜕𝑈 , 𝜕 ◦ 𝜄𝑈

∗([D𝑀 ])
〉
=
〈
Σ𝜕𝑈 , [D𝜕𝑈 ]

〉
.

To summarise the preceding argument, if there exists a classΣ𝜕𝑈 ∈ 𝐾1(𝜕𝑈) withΣ𝑀 = 𝜄𝑈 ∗◦𝜕 (Σ𝜕𝑈 ),
then the index pairing on the locally compact manifold M can be computed from an index pairing on
the compact hypersurface 𝜕𝑈: 〈

Σ𝑀 , [D𝑀 ]
〉
=
〈
Σ𝜕𝑈 , [D𝜕𝑈 ]

〉
. (1.1)

There are two (at first sight rather different) instances in the literature where such a computation has
been made. The first instance is in the case of Dirac-Schrödinger (or Callias-type) operators. These
are operators of the form D𝑀 − 𝑖S , where the ‘potential’ S is a self-adjoint endomorphism on some
auxiliary vector bundle (of finite rank) over M. Assuming that S is invertible outside of 𝑈 ⊂ 𝑀 , the
Dirac-Schrödinger operator D𝑀 − 𝑖S is Fredholm, and its index computes the index pairing of the
K-theory class of the potential with the K-homology class of the Dirac operator:

Index(D𝑀 − 𝑖S) =
〈
[S], [D𝑀 ]

〉
∈ Z.

The invertibility of S outside U ensures that [S] = 𝜄𝑈 ∗([S |𝑈 ]). Moreover, since we may perturb the
potential on a compact subset without changing its K-theory class, and since𝑈 is compact, we note that
𝑗∗([S |𝑈 ]) = [S |𝑈 ] = 0 ∈ 𝐾1(𝑈), where 𝑗∗ : 𝐾1(𝑈) → 𝐾1(𝑈) is induced from the inclusion 𝑈 ↩→ 𝑈.
By exactness of the sequence

𝐾0(𝜕𝑈)
𝜕
−→ 𝐾1(𝑈)

𝑗∗
−→ 𝐾1(𝑈),

we therefore know that [S |𝑈 ] = 𝜕 (Σ𝜕𝑈 ) for some Σ𝜕𝑈 ∈ 𝐾0(𝜕𝑈). In fact, as we will see in Corol-
lary 3.11, we can explicitly identify Σ𝜕𝑈 as the K-theory class of the vector bundle 𝑉+ over 𝜕𝑈
obtained from the positive eigenspace of the invertible self-adjoint endomorphism S |𝜕𝑈 . The pairing
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〈[𝑉+], [D𝜕𝑈 ]〉 can be computed as the index of the operator (D𝜕𝑈 )++ , which is obtained by twisting the
chiral Dirac operator on 𝜕𝑈 with the vector bundle 𝑉+. The equality (1.1) therefore yields

Index(D𝑀 − 𝑖S) = Index(D𝜕𝑈 )++ . (1.2)

This result is known as the Callias Theorem; the first version was proven by Callias [Cal78] on Euclidean
space, and it has subsequently been generalised by various authors (see, for instance, [Ang90, BM92,
Ang93, Råd94, Bun95, Kuc01, GW16]).

The second instance of Equation (1.1) appears in the study of spectral flow. Consider a ‘sufficiently
continuous’ family of self-adjoint Fredholm operators {S (𝑥)}𝑥∈[0,1] with invertible endpoints and with
common domain on a Hilbert space H, such that S (𝑥) is a relatively compact perturbation of S (0) (for
each 𝑥 ∈ [0, 1]). Then the spectral flow depends only on the endpoints and is given by (see [Les05,
Theorem 3.6] and [Wah08, Proposition 2.5])

sf
(
{S (𝑥)}𝑥∈[0,1]

)
= rel-ind

(
𝑃+(S (1)), 𝑃+(S (0))

)
. (1.3)

Here, the left-hand side is the spectral flow of the family {S (𝑥)}𝑥∈[0,1] , and the right-hand side is given
by the relative index of the pair of positive spectral projections associated to S (1) and S (0). To view
this equality in the form of Equation (1.1), let 𝑀 = R,𝑈 = (0, 1), and 𝑁 = 𝜕𝑈 = {0} ∪ {1}, and extend
S to a family on R. By the well-known ‘index = spectral flow’ equality of Robbin–Salamon (see, for
example, [RS95, Wah07, AW11] and [Dun19, Corollary 5.16]), the spectral flow can be described as an
index pairing on R:

sf
(
{S (𝑥)}𝑥∈R

)
= Index

(
𝜕𝑥 + S (·)

)
=
〈
[S (·)], [−𝑖𝜕𝑥]

〉
,

where −𝑖𝜕𝑥 is the standard Dirac operator on R. Moreover, the assumption that S (𝑥) is a relatively
compact perturbation of S (0) (for each 𝑥 ∈ [0, 1]), combined with the compactness of [0, 1], implies
that the operator S (·) |[0,1] is a relatively compact perturbation of a constant invertible family. It follows
that 𝑗∗([S (·) |(0,1) ]) = 0 ∈ 𝐾1([0, 1]) (where 𝑗∗ is induced from the inclusion (0, 1) ↩→ [0, 1]), and
therefore (by exactness, as in the case of Dirac-Schrödinger operators), [S (·) |(0,1) ] = 𝜕

(
Σ{0}∪{1}

)
for

someΣ{0}∪{1} ∈ 𝐾
0({0}∪{1}) 
 Z⊕Z. We will see in Corollary 3.12 that the relative index on the right-

hand side of Equation (1.3) is indeed obtained from an index pairing of Σ{0}∪{1} with the K-homology
element [D{0}∪{1}] ∈ 𝐾0({0} ∪ {1}), where the latter can be identified with (−1) ⊕ 1 ∈ Z ⊕ Z.

Thus, we have seen that both the Callias Theorem (1.2) and the spectral flow result (1.3) can be
viewed as a special case of the equality (1.1). Our goal in the present paper is to provide a common
generalisation which unifies both these results. For this purpose, we now consider ‘generalised’ Dirac-
Schrödinger operators, which are again operators of the form D𝑀 − 𝑖S (·), where now the auxiliary
vector bundle is of infinite rank, and the ‘potential’ S (·) consists of a family of (unbounded) self-adjoint
operators {S (𝑥)}𝑥∈𝑀 on a fixed Hilbert space H. (In fact, instead of H, we will more generally consider
a Hilbert 𝐶∗-module over some auxiliary 𝐶∗-algebra, but in this introduction, we limit our attention to
the simpler case of a Hilbert space.) Such operators were studied in [KL13, §8] for suitably differentiable
potentials, and in [Dun19] for continuous potentials. It is known that the pairing of the K-theory class of
S (·) with the K-homology class of D𝑀 still equals the index of the Dirac-Schrödinger operator ([KL13,
Theorem 1.2] and [Dun19, Theorem 5.15]):〈

[S (·)], [D𝑀 ]
〉
= Index(D − 𝑖S (·)).

Now, under the additional assumption that the potential S (·) is given by a family of relatively compact
perturbations (as in the case of the spectral flow result (1.3)), we again find that [S (·)] = 𝜄𝑈 ∗ ◦ 𝜕 (Σ𝜕𝑈 )

for some K-theory class Σ𝜕𝑈 ∈ 𝐾0(𝜕𝑈). Hence, Equation (1.1) applies, and to obtain our desired
generalisation of the Callias Theorem, it remains only to identify the class Σ𝜕𝑈 . We will see that
this class can again (as in the spectral flow case) be described as a relative index of positive spectral
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projections, and our generalised Callias Theorem then provides the equality (we refer to §3.2 for the
precise statement)

Index
(
D − 𝑖S (·)

)
=
〈

rel-ind
(
𝑃+(S𝑁 (·)), 𝑃+(T (·))

)
, [D𝑁 ]

〉
.

Let us provide a brief summary of the contents of this paper. We start in Section 2 with some
background material, describing both the classical Callias Theorem as well as the study of the spec-
tral flow for relatively compact perturbations (in particular, we prove Equation (1.3)). In Section 3,
we describe our main assumptions, definitions and the main results (the proofs are postponed to later
sections). In particular, we state in §3.2 our generalisation of the classical Callias Theorem and show
in §3.3 that we recover the Callias Theorem (1.2) and the spectral flow result (1.3). The remaining
sections are devoted to the proofs. In Section 4, we first consider generalised Dirac-Schrödinger op-
erators. As an important tool, we present a relative index theorem for such operators in §4.1, under
fairly general assumptions. §4.2 and §4.3 then provide sufficient conditions under which we can prove
that a Dirac-Schrödinger operator is Fredholm, and that its index equals the pairing between the K-
theory and K-homology classes. Section 5 finally provides the proof of the generalised Callias-type
theorem.

Throughout the body of this article, we will work with Hilbert 𝐶∗-modules over 𝐶∗-algebras (rather
than just Hilbert spaces). An important step in our main result is to ensure that the relative index is well-
defined, for which we require several operator-theoretic facts that are known for operators on Hilbert
spaces, but (to the author’s best knowledge) have not yet appeared in the literature for operators on
Hilbert 𝐶∗-modules. We therefore include an Appendix, in which we generalise several (partly well-
known) operator-theoretic results from Hilbert spaces to Hilbert 𝐶∗-modules. We mention here a few
of these results, which may also be of independent interest:

◦ The composition of a ∗-strongly convergent sequence of adjointable operators with a compact operator
yields a norm-convergent sequence (Lemma A.1).

◦ Let T be regular and self-adjoint. Then any relatively T-compact operator R is relatively T-bounded
with arbitrarily small relative bound (Proposition A.6). Consequently, if R is symmetric, then 𝑇 + 𝑅
is again regular and self-adjoint on Dom(𝑇) (Proposition A.7).

◦ Let T be regular and self-adjoint, and let R be symmetric and relatively T-compact. Let 𝑓 ∈ 𝐶 (R)
be a continuous function for which the limits lim𝑥→±∞ 𝑓 (𝑥) exist. Then 𝑓 (𝑇 + 𝑅) − 𝑓 (𝑇) is compact
(Proposition A.9). Furthermore, if T and 𝑇 +𝑅 are both invertible, also 𝑃+(𝑇 +𝑅) −𝑃+(𝑇) is compact
(where 𝑃+(𝑇) denotes the positive spectral projection of T).

1.1. Notation

Throughout this paper, let A be a 𝜎-unital 𝐶∗-algebra, and let E be a (possibly Z2-graded) countably
generated Hilbert 𝐶∗-module over A (or Hilbert A-module for short) with A-valued inner product 〈·|·〉.
(The reader unfamiliar with 𝐶∗-modules may consider the special case 𝐴 = C, so that E is simply a
separable Hilbert space. For an introduction to Hilbert 𝐶∗-modules, we refer to [Lan95].) For the inner
product of an element 𝜓 ∈ 𝐸 with itself, we use the convenient short-hand notation

⟪𝜓⟫ := 〈𝜓 |𝜓〉.

The norm of 𝜓 is then given by ‖𝜓‖ = ‖⟪𝜓⟫‖
1
2 .

The space of adjointable linear operators 𝐸 → 𝐸 is denoted by L𝐴(𝐸). For any 𝜓, 𝜂 ∈ 𝐸 , the
rank-one operators 𝜃𝜓,𝜂 are defined by 𝜃𝜓,𝜂𝜉 := 𝜓〈𝜂 |𝜉〉 for 𝜉 ∈ 𝐸 . The compact operators K𝐴(𝐸) are
given by the closure of the space of finite linear combinations of rank-one operators. For two Hilbert
A-modules 𝐸1 and 𝐸2, the adjointable linear operators 𝐸1 → 𝐸2 are denoted by L𝐴(𝐸1, 𝐸2).

A densely defined operator S is called regular if S is closed, the adjoint 𝑆∗ is densely defined, and
1 + 𝑆∗𝑆 has dense range (note that on a Hilbert space, every closed operator is regular). A densely
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defined, closed, symmetric operator S is regular and self-adjoint if and only if the operators 𝑆 ± 𝑖 are
surjective [Lan95, Lemma 9.8].

Given a densely defined, symmetric operator S on E, we can equip Dom 𝑆 with the graph inner
product 〈𝜓 |𝜓〉𝑆 := 〈(𝑆 ± 𝑖)𝜓 | (𝑆 ± 𝑖)𝜓〉 = 〈𝜓 |𝜓〉 + 〈𝑆𝜓 |𝑆𝜓〉. The graph norm of S is then defined as
‖𝜓‖𝑆 :=

��〈𝜓 |𝜓〉𝑆�� 1
2 = ‖(𝑆 ± 𝑖)𝜓‖.

2. Background

As described in the Introduction, our main theorem simultaneously generalises both the classical Callias
Theorem (1.2) and the spectral flow equality (1.3). In this section, we will introduce both these results.

2.1. The classical Callias Theorem

The ‘classical Callias Theorem’, which we aim to generalise, is a result which was first proven by
Callias [Cal78] on Euclidean space, who proved that the index of a Dirac-Schrödinger operator D − 𝑖S
onR2𝑛+1 can be computed on a sufficiently large sphere. This has become known as the Callias Theorem
and has been generalised by various authors (see, for instance, [Ang90, BM92, Ang93, Råd94, Bun95,
Kuc01, GW16]), replacing Euclidean space by larger classes of Riemannian manifolds and computing
the index on a suitable hypersurface (which is the boundary of a compact subset). The Callias Theorem
continues to be actively studied, with recent work considering, for instance, Callias-type operators on Lie
manifolds [CN14], with degenerate potentials [Kot15], via cobordism invariance [BS16], on manifolds
with boundary [Shi17], twisted by Hilbert 𝐶∗-bundles of finite type [Cec20], and associated to abstract
spectral triples [SS23].

We will cite here Anghel’s version [Ang93] of the Callias Theorem. Let M be a complete odd-
dimensional oriented Riemannian manifold, and let D be a formally self-adjoint Dirac-type operator on
a hermitian Clifford bundle Σ → 𝑀 . Let S = S∗ ∈ Γ∞(EndΣ) be a hermitian bundle endomorphism
such that S commutes with Clifford multiplication, S and [D,S] are uniformly bounded, and there
exists a compact subset 𝐾 ⊂ 𝑀 such that S is uniformly invertible on the complement of K.

Without loss of generality, assume that K has a smooth compact boundary N. On Σ𝑁 := Σ |𝑁 , we
have a Z2-grading operator Γ𝑁 given by Clifford multiplication with the unit normal vector on N,
which yields the decomposition Σ𝑁 = Σ+

𝑁 ⊕ Σ−
𝑁 . Consider a ‘restriction’ D𝑁 of D to Σ𝑁 (i.e., the

principal symbol of D𝑁 is obtained from the principal symbol of D by restricting from 𝑇𝑀 to 𝑇𝑁),
which anticommutes with Γ𝑁 . Since D𝑁 is elliptic and N is compact, D𝑁 has compact resolvents. In
particular, D𝑁 is Fredholm, and we obtain a K-homology class [D𝑁 ] ∈ 𝐾0(𝐶 (𝑁)) ≡ 𝐾0(𝑁).

Let S𝑁 denote the restriction of S to Σ𝑁 → 𝑁 . We define Σ𝑁+ := Ran 𝑃+(S𝑁 ) to be the image of
the positive spectral projection of S𝑁 , representing a K-theory class [Σ𝑁+] ∈ 𝐾0(𝐶 (𝑁)) ≡ 𝐾

0(𝑁).
Since S commutes with the Clifford multiplication, Γ𝑁 is still a Z2-grading on Σ𝑁+ and yields the

decomposition Σ𝑁+ = Σ+
𝑁+

⊕ Σ−
𝑁+

. We will consider the Fredholm operator

(D𝑁 )++ := D𝑁 |Σ+
𝑁+

: Σ+
𝑁+ → Σ−

𝑁+.

Theorem 2.1 [Ang93, Theorem 1.5]. Under the assumptions given above, we have the equalities

Index
(
D − 𝑖S

)
= Index

(
D𝑁

)+
+
= [Σ𝑁+] ⊗𝐶 (𝑁 ) [D𝑁 ] =

∫
𝑁
�̂�(𝑁) ∧ ch(Σ𝑁+).

We note that, while Anghel’s theorem and proof focused on the first equality, the index of
(
D𝑁

)+
+

realises the index pairing (Kasparov product) of the K-theory class [Σ𝑁+] with the K-homology class
[D𝑁 ], and it can be computed as

∫
𝑁
�̂�(𝑁) ∧ ch(Σ𝑁+) by the Atiyah–Singer Index Theorem [AS63].
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2.2. Spectral flow

Next, we will describe the spectral flow equality (1.3) from the Introduction in detail (see Proposition 2.8).
First, we provide the relevant definitions in the context of Hilbert 𝐶∗-modules.

An adjointable operator 𝐹 ∈ L𝐴(𝐸) is called Fredholm if there exists a parametrix 𝐺 ∈ L𝐴(𝐸) such
that 𝐺𝐹 − 1 and 𝐹𝐺 − 1 are compact operators on E. If F is Fredholm, we denote by Index(𝐹) ∈ 𝐾0(𝐴)
the 𝐾0(𝐴)-valued index of F; for the definition of this index, we refer to [Dun19, §2.2] and references
therein.

2.2.1. The relative index of projections
Consider two projections 𝑃,𝑄 ∈ L𝐴(𝐸). If the difference 𝑃 − 𝑄 is a compact operator on E, then the
operator 𝑄 : Ran(𝑃) → Ran(𝑄) is a Fredholm operator with parametrix 𝑃 : Ran(𝑄) → Ran(𝑃).

Definition 2.2. For projections 𝑃,𝑄 ∈ L𝐴(𝐸) with 𝑃 − 𝑄 ∈ K𝐴(𝐸), we define the relative index of
(𝑃,𝑄) by

rel-ind(𝑃,𝑄) := Index
(
𝑄 : Ran(𝑃) → Ran(𝑄)

)
∈ 𝐾0(𝐴).

For future reference, we record two important properties of the relative index:

Lemma 2.3 [Wah07, §3.2].

◦ (Additivity.) If 𝑃,𝑄, 𝑅 ∈ L𝐴(𝐸) are projections with 𝑃 −𝑄 and 𝑄 − 𝑅 compact, then

rel-ind(𝑃, 𝑅) = rel-ind(𝑃,𝑄) + rel-ind(𝑄, 𝑅).

◦ (Homotopy invariance.) If {𝑃𝑡 }𝑡 ∈[0,1] and {𝑄𝑡 }𝑡 ∈[0,1] are strongly continuous paths of projections
such that 𝑃𝑡 −𝑄𝑡 is compact for each 𝑡 ∈ [0, 1], then

rel-ind(𝑃0, 𝑄0) = rel-ind(𝑃1, 𝑄1).

Using the homotopy invariance of the relative index, we obtain the following:

Corollary 2.4. Let {𝑃𝑡 }𝑡 ∈[0,1] be a strongly continuous family of projections on E, such that 𝑃𝑡 − 𝑃0 is
compact for each 𝑡 ∈ [0, 1]. Then rel-ind(P0, P1) = 0.

2.2.2. The spectral flow
The notion of spectral flow for a path of self-adjoint operators (typically parametrised by the unit
interval) was first defined by Atiyah and Lusztig, and it appeared in the work of Atiyah, Patodi and
Singer [APS76, §7]. Heuristically, the spectral flow of a path of self-adjoint Fredholm operators counts
the net number of eigenvalues which pass through zero. An analytic definition of the spectral flow
of a path of self-adjoint Fredholm operators on a Hilbert space was given by Phillips in [Phi96]. An
axiomatic study of the spectral flow was given by Lesch in [Les05].

For regular self-adjoint Fredholm operators on a Hilbert 𝐶∗-module, a general definition of spectral
flow was given by Wahl in [Wah07, §3], which we will largely follow here. However, we slightly adapt
this definition by allowing the ‘trivialising operators’ (which appear in the definition of the spectral
flow) to be possibly unbounded (rather than bounded, as in [Wah07, §3]). This is made possible by
Proposition A.9 and Corollary A.10 (generalising [Wah07, Proposition 3.7]). For the definition and
properties of relatively compact operators, we refer the reader to §A.3 in the Appendix.

Definition 2.5 (cf. [Wah07, Definition 3.4]). Let D be a regular self-adjoint operator on E. A trivialising
operator for D is a (densely defined) symmetric operator B on E such that B is relatively D-compact
and D + B is invertible.
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Now let D be a regular self-adjoint Fredholm operator on E, and let B0 and B1 be two trivialising
operators for D. By Corollary A.10, which generalises [Wah07, Proposition 3.7], the difference of
spectral projections 𝑃+(D + B1) − 𝑃+(D + 𝐵0) is compact. Hence, we can define

ind(D,B0,B1) := rel-ind
(
𝑃+(D + B1), 𝑃+(D + 𝐵0)

)
. (2.1)

Definition 2.6 (cf. [Wah07, Definition 3.9]). Let X be a compact Hausdorff space, and consider a
regular operator D(·) = {D(𝑥)}𝑥∈𝑋 on the Hilbert 𝐶 (𝑋, 𝐴)-module 𝐶 (𝑋, 𝐸). A trivialising family for
{D(𝑥)}𝑥∈𝑋 is a family {B(𝑥)}𝑥∈𝑋 of operators on E such that B(·) is a trivialising operator for D(·).

We say there exist locally trivialising families for D(·) if for each 𝑥 ∈ 𝑋 there exist a compact
neighbourhood 𝑂𝑥 of x and a trivialising family for {D(𝑦)}𝑦∈𝑂𝑥 .

We note that the existence of locally trivialising families for {D(𝑥)}𝑥∈𝑋 then implies that D(·) is
Fredholm (using compactness of X).

Definition 2.7 (cf. [Wah07, Definition 3.10]). LetD(·) = {D(𝑡)}𝑡 ∈[0,1] be a regular self-adjoint operator
on the Hilbert 𝐶 ([0, 1], 𝐴)-module 𝐶 ([0, 1], 𝐸), for which locally trivialising families exist. Let 0 =
𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 1 be such that there is a trivialising family {B𝑖 (𝑡)}𝑡 ∈[𝑡𝑖 ,𝑡𝑖+1 ] of {D(𝑡)}𝑡 ∈[𝑡𝑖 ,𝑡𝑖+1 ] for
each 𝑖 = 0, . . . , 𝑛 − 1. Let A0 and A1 be trivialising operators of D(0) and D(1). Then we define

sf
(
{D(𝑡)}𝑡 ∈[0,1] ;A0,A1

)
:= ind

(
D(0),A0,B0(0)

)
+

𝑛−1∑
𝑖=1

ind
(
D(𝑡𝑖),B𝑖−1(𝑡𝑖),B𝑖 (𝑡𝑖)

)
+ ind

(
D(1),B𝑛−1(1),A1

)
∈ 𝐾0(𝐴),

where ind is defined in Equation (2.1). If we assume furthermore that the endpoints D(0) and D(1) are
invertible, then the spectral flow of {D(𝑡)}𝑡 ∈[0,1] is defined by

sf
(
{D(𝑡)}𝑡 ∈[0,1]

)
:= sf

(
{D(𝑡)}𝑡 ∈[0,1] ; 0, 0

)
= ind

(
D(0), 0,B0(0)

)
+

𝑛−1∑
𝑖=1

ind
(
D(𝑡𝑖),B𝑖−1(𝑡𝑖),B𝑖 (𝑡𝑖)

)
+ ind

(
D(1),B𝑛−1 (1), 0

)
.

As in [Wah07], the definition of the spectral flow is independent of the choice of subdivision and
the choice of trivialising families {B𝑖 (𝑡)}𝑡 ∈[𝑡𝑖 ,𝑡𝑖+1 ] . In particular, using [Wah07, Lemma 3.5], we may
choose the trivialising families to be bounded, and thus, we recover the definition of the spectral flow
given in [Wah07, Definition 3.10].

2.2.3. Spectral flow for relatively compact perturbations
For our attempt to generalise the Callias Theorem to the case of infinite-rank bundles, we take some
inspiration from the study of spectral flow. In particular, the following result motivates the idea that a
Callias-type theorem should hold for generalised Dirac-Schrödinger operators whenever the ‘potential’
is given by a family of relatively compact perturbations.

Proposition 2.8 (cf. [Wah07, Example in §3.4]). Let T (·) = {T (𝑡)}𝑡 ∈[0,1] be a regular self-adjoint
operator on the Hilbert 𝐶 ([0, 1], 𝐴)-module 𝐶 ([0, 1], 𝐸), such that

◦ the endpoints T (0) and T (1) are invertible;
◦ T (𝑡) : Dom T (0) → 𝐸 depends norm-continuously on t; and
◦ T (𝑡) − T (0) is relatively T (0)-compact for each 𝑡 ∈ [0, 1].
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Then the following statements hold:

1. There exists a trivialising family for {T (𝑡)}𝑡 ∈[0,1] .
2. We have the equality

sf
(
{T (𝑡)}𝑡 ∈[0,1]

)
= rel-ind

(
𝑃+(T (1)), 𝑃+(T (0))

)
. (2.2)

Proof.

1. We observe that the family of operators B(𝑡) := T (0) − T (𝑡) (𝑡 ∈ [0, 1]) yields a densely defined
symmetric operator B(·) on 𝐶 ([0, 1], 𝐸), such that T (·) +B(·) is invertible. Moreover, B(𝑡)

(
T (𝑡) ±

𝑖
)−1 is compact for each 𝑡 ∈ [0, 1] (where we use that Dom T (𝑡) = Dom T (0) by Proposition A.7).

Since
(
T (𝑡)±𝑖

) (
T (0)±𝑖)−1 is norm-continuous in t, also the family of inverses

(
T (0)±𝑖

) (
T (𝑡)±𝑖)−1

is norm-continuous, and therefore, B(𝑡)
(
T (𝑡) ± 𝑖

)−1 is norm-continuous in t. This shows that B(·) is
relatively T (·)-compact. Thus, B(·) is a trivialising operator for T (·).

2. We can insert the trivialising family {B(𝑡)}𝑡 ∈[0,1] from the first statement into Definition 2.7 to obtain

sf
(
{T (𝑡)}𝑡 ∈[0,1]

)
= ind

(
T (0), 0,B(0)

)
+ ind

(
T (1),B(1), 0

)
= rel-ind

(
𝑃+(T (0) + B(0)), 𝑃+(T (0))

)
+ rel-ind

(
𝑃+(T (1)), 𝑃+(T (1) + B(1))

)
= rel-ind

(
𝑃+(T (1)), 𝑃+(T (0))

)
,

where we used that B(0) = 0 and T (1) + B(1) = T (0). �

We remark that for paths of operators on Hilbert spaces (rather than Hilbert modules), the identity
(2.2) has been shown to hold even under more general continuity assumptions; see [Les05, Theorem
3.6] and [Wah08, Proposition 2.5].

3. A generalised Callias-type theorem

3.1. Generalised Dirac-Schrödinger operators

Throughout this section, we will consider the following setting.

Assumption (A). Let A be a 𝜎-unital 𝐶∗-algebra, and let E be a countably generated Hilbert A-module.
Let M be a connected Riemannian manifold (typically non-compact), and let D be an essentially self-
adjoint elliptic first-order differential operator on a hermitian vector bundle F→ 𝑀 . Let {S (𝑥)}𝑥∈𝑀 be
a family of regular self-adjoint operators on E satisfying the following assumptions:

(A1) The domain 𝑊 := DomS (𝑥) is independent of 𝑥 ∈ 𝑀 , and the inclusion 𝑊 ↩→ 𝐸 is compact
(where W is viewed as a Hilbert A-module equipped with the graph norm of S (𝑥0), for some
𝑥0 ∈ 𝑀).

(A2) The map S : 𝑀 → L𝐴(𝑊, 𝐸) is norm-continuous.
(A3) There is a compact subset 𝐾 ⊂ 𝑀 such that S (𝑥) is uniformly invertible on 𝑀 \ 𝐾 .

Given the family of operators {S (𝑥)}𝑥∈𝑀 on E, we obtain a closed symmetric operator S (·) on
𝐶0 (𝑀, 𝐸), which is defined as the closure of the operator

(
S (·)𝜓

)
(𝑥) := S (𝑥)𝜓(𝑥) on the initial dense

domain 𝐶𝑐 (𝑀,𝑊). By [Dun19, Proposition 3.4], the operator S (·) on the Hilbert 𝐶0 (𝑀, 𝐴)-module
𝐶0 (𝑀, 𝐸) is regular self-adjoint and Fredholm. Consequently, we obtain from [Dun19, Proposition
2.14] a well-defined K-theory class

[S (·)] ∈ 𝐾𝐾1 (C, 𝐶0 (𝑀, 𝐴)) 
 𝐾1(𝐶0 (𝑀, 𝐴)).

https://doi.org/10.1017/fms.2024.157 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.157


Forum of Mathematics, Sigma 9

Furthermore, since D is an essentially self-adjoint first-order differential operator, and since the
ellipticity of D ensures that D also has locally compact resolvents [HR00, Proposition 10.5.2], we know
that (𝐶1

0 (𝑀), 𝐿2 (𝑀, F),D) is an (odd) spectral triple, which represents a K-homology class

[D] ∈ 𝐾𝐾1(𝐶0 (𝑀),C) 
 𝐾1(𝐶0 (𝑀)) ≡ 𝐾1(𝑀).

We consider the balanced tensor product 𝐿2 (𝑀, 𝐸 ⊗ F) := 𝐶0 (𝑀, 𝐸) ⊗𝐶0 (𝑀 ) 𝐿
2 (𝑀, F). The operator

S (·) ⊗ 1 is well-defined on DomS (·) ⊗𝐶0 (𝑀 ) 𝐿
2 (𝑀, F) ⊂ 𝐿2 (𝑀, 𝐸 ⊗ F), and is denoted simply by S (·)

as well. By [Lan95, Proposition 9.10], S (·) is regular self-adjoint on 𝐿2 (𝑀, 𝐸 ⊗ F).
The operator 1 ⊗ D is not well-defined on 𝐿2 (𝑀, 𝐸 ⊗ F). Instead, using the canonical isomorphism

𝐿2 (𝑀, 𝐸⊗F) 
 𝐸⊗𝐿2 (𝑀, F), we consider the operator 1⊗D on 𝐸⊗𝐿2 (𝑀, F) with domain 𝐸⊗DomD.
Alternatively, we can extend the exterior derivative on 𝐶1

0 (𝑀) to an operator

𝑑 : 𝐶1
0 (𝑀, 𝐸)



−→ 𝐸 ⊗ 𝐶1

0 (𝑀)
1⊗𝑑
−−−→ 𝐸 ⊗ Γ0(𝑇

∗𝑀)


−→ Γ0(𝐸 ⊗ 𝑇∗𝑀).

Denoting by 𝜎 the principal symbol of D, we can define an operator 1 ⊗𝑑 D on the Hilbert space
𝐶0 (𝑀, 𝐸) ⊗𝐶0 (𝑀 ) 𝐿

2 (𝑀, F) by setting

(1 ⊗𝑑 D) (𝜉 ⊗ 𝜓) := 𝜉 ⊗ D𝜓 + (1 ⊗ 𝜎) (𝑑𝜉)𝜓.

Under the isomorphism𝐶0 (𝑀, 𝐸)⊗𝐶0 (𝑀 ) 𝐿
2 (𝑀, F) 
 𝐸⊗𝐿2 (𝑀, F), the operator 1⊗D on 𝐸⊗𝐿2 (𝑀, F)

agrees with 1⊗𝑑D on𝐶0 (𝑀, 𝐸) ⊗𝐶0 (𝑀 ) 𝐿
2 (𝑀, F). We will denote this operator on 𝐿2 (𝑀, 𝐸 ⊗F) simply

as D. The operator D is regular self-adjoint on 𝐿2 (𝑀, 𝐸 ⊗ F) (see also [KL13, Theorem 5.4]).
Definition 3.1. Consider M, D and S (·) satisfying assumption (A). We define the operator

DS := D − 𝑖S (·)

on the initial domain 𝐶1
𝑐 (𝑀,𝑊) ⊗𝐶1

0 (𝑀 ) DomD. Since D + 𝑖S (·) ⊂
(
D − 𝑖S (·)

)∗ is densely defined
(on the same domain), D − 𝑖S (·) is closable, and (with slight abuse of notation) we denote its closure
simply by DS as well.

The operator DS is called a generalised Dirac-Schrödinger operator if DS is regular and Fredholm,
and D∗

S = D−S . In this case, we obtain a well-defined 𝐾0(𝐴)-valued index

IndexDS ∈ 𝐾0(𝐴).

For the definition of this index, we refer to [Dun19, §2.2] and references therein.
We note that, despite our use of the term ‘Dirac-Schrödinger’ operator, we do not assume that the

operatorD is of Dirac-type (although a Dirac-type operator is of course the typical example, as described
in the Introduction). Furthermore, we note that regularity, the Fredholm property and the adjoint relation
of DS do not follow automatically from assumption (A).

In order to prove the Fredholm property of DS , we consider in addition to assumption (A) also the
following assumption:
Assumption (B). We assume the following conditions are satisfied:
(B1) the map S : 𝑀 → L𝐴(𝑊, 𝐸) is weakly differentiable (i.e., for each 𝜓 ∈ 𝑊 and 𝜂 ∈ 𝐸 , the map

𝑥 ↦→ 〈S (𝑥)𝜓 |𝜂〉 is differentiable), and the weak derivative 𝑑S (𝑥) : 𝑊 → 𝐸 ⊗ 𝑇∗
𝑥 (𝑀) is bounded

for all 𝑥 ∈ 𝑀 .
(B2) the operator

[
D,S (·)

] (
S (·)±𝑖

)−1 is well-defined and bounded (in the sense of [KL12, Assumption
7.1] and [Dun19, Definition 5.5]): there exists a core E ⊂ DomD for D such that for all 𝜉 ∈ E and
for all 𝜇 ∈ (0,∞), we have the inclusions(

S (·) ± 𝑖𝜇
)−1
𝜉 ∈ DomS (·) ∩ DomD and D

(
S (·) ± 𝑖𝜇

)−1
𝜉 ∈ DomS (·),
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and the map
[
D,S (·)

] (
S (·) ± 𝑖𝜇

)−1 : E → 𝐿2 (𝑀, 𝐸 ⊗ F) extends to a bounded operator for all
𝜇 ∈ (0,∞).

Remark 3.2.
1. Assumption (B) requires the potential S (·) to be differentiable (in a suitable sense). Alternatively, it

is also possible to deal with continuous potentials, as is done in [Dun19].
2. As described in [KL13, Remark 8.4], assumption (B1) already implies assumption (A2).
3. If, in addition to (B1), we assume that D has bounded propagation speed, that DomS (·) ⊂ 𝐶0 (𝑀,𝑊)

(i.e., that there exists 𝐶 > 0 such that for all 𝑥 ∈ 𝑀 , we have ‖ · ‖𝑊 ≤ 𝐶‖ · ‖S (𝑥) ), and that the
weak derivative 𝑑S (·) is uniformly bounded, then the boundedness of

[
D,S (·)

] (
S (·) ± 𝑖

)−1 in (B2)
already follows. Indeed, as in [KL13, Lemma 8.5 & Theorem 8.6], we can then write[

D,S (·)
] (
S (·) ± 𝑖

)−1 = 𝜎D ◦ 𝑑S (·) ◦
(
S (·) ± 𝑖

)−1 :

𝐿2 (𝑀, 𝐸 ⊗ F)
(S ( ·)±𝑖)−1

−−−−−−−−→ DomS (·) ⊗𝐶0 (𝑀 ) 𝐿
2 (𝑀, F) ↩→ 𝐿2 (𝑀,𝑊 ⊗ F)

𝑑S ( ·)
−−−−→ 𝐿2 (𝑀, 𝐸 ⊗ 𝑇∗𝑀 ⊗ F)

𝜎D
−−−→ 𝐿2 (𝑀, 𝐸 ⊗ F)

as a composition of bounded operators.
Thanks to assumption (B), we have the following:

Proposition 3.3 [KL12, Theorem 7.10]. The operators D±S are regular on the domain DomDS and
satisfy D∗

±S = D∓S .
The following theorem will be proven as the first statement of Theorem 4.4 below. It states that the

operator DS is Fredholm, provided that (if necessary) the potential S (·) is rescaled by a sufficiently
large 𝜆 > 0.
Theorem 3.4. There exists 𝜆0 > 0 such that for any 𝜆 ≥ 𝜆0, the operator D𝜆S is Fredholm and thus a
generalised Dirac-Schrödinger operator.

Our next theorem then describes the Fredholm index of a Dirac-Schrödinger operator in terms of the
index pairing between the K-theory class of the potential S (·) and the K-homology class of the elliptic
operator D. Results of this form were previously given by Bunke [Bun95] (see also [Kuc01]) in the
classical case and in [KL13, Dun19] for ‘generalised’ Dirac-Schrödinger operators.
Theorem 3.5. Let M be a connected Riemannian manifold, and let {S (𝑥)}𝑥∈𝑀 andD satisfy assumptions
(A) and (B). Then there exists 𝜆0 > 0 such that for any 𝜆 ≥ 𝜆0, the 𝐾0(𝐴)-valued index of D𝜆S equals
the pairing of [S (·)] ∈ 𝐾1(𝐶0 (𝑀, 𝐴)) with [D] ∈ 𝐾1(𝐶0 (𝑀)).

The proof is given in §4.3. It relies on identifying the classes as elements in Kasparov’s 𝐾𝐾-
theory via the isomorphisms 𝐾1(𝐶0 (𝑀, 𝐴)) 
 𝐾𝐾

1(C, 𝐶0 (𝑀, 𝐴)), 𝐾1(𝐶0 (𝑀)) 
 𝐾𝐾1 (𝐶0 (𝑀),C) and
𝐾0(𝐴) 
 𝐾𝐾0 (C, 𝐴), and then computing the index pairing using the description of the unbounded
Kasparov product given in [KL13].

3.2. Generalised Callias-type operators

Let M, D and S (·) satisfy assumptions (A) and (B) such that D𝜆S is Fredholm (and hence a generalised
Dirac-Schrödinger operator) for 𝜆 ≥ 𝜆0 > 0. In the remainder of this section, we furthermore assume
the following:
Assumption (C). Without loss of generality, assume that the compact subset K from assumption (A3)
has a smooth compact boundary N. We assume furthermore that the following conditions are satisfied:
(C1) The operator D is of ‘product form’ near N in the following sense. There exists a collar neigh-

bourhood 𝐶 
 (−2𝜀, 2𝜀) × 𝑁 of N (with (−2𝜀, 0) × 𝑁 in the interior of K), where we can
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identify F|𝐶 with the pullback of F𝑁 := F|𝑁 → 𝑁 to 𝐶 
 (−2𝜀, 2𝜀) × 𝑁 , so that Γ∞(F|𝐶 ) 


𝐶∞
(
(−2𝜀, 2𝜀)

)
⊗ Γ∞(F𝑁 ). On this collar neighbourhood, we have D |𝐶 
 −𝑖𝜕𝑟 ⊗ Γ𝑁 + 1 ⊗ D𝑁 ,

where D𝑁 is an essentially self-adjoint elliptic first-order differential operator on F𝑁 → 𝑁 , and
where Γ𝑁 ∈ Γ∞(End F𝑁 ) is a self-adjoint unitary satisfying Γ𝑁D𝑁 = −D𝑁 Γ𝑁 .

(C2) For any 𝑥, 𝑦 ∈ 𝐾 , S (𝑥) − S (𝑦) is relatively S (𝑥)-compact.

Moreover, we fix an (arbitrary) invertible regular self-adjoint operator T on E with domain Dom T = 𝑊 ,
such that S (𝑥) − T is relatively T -compact for some (and hence, by (C2), for every) 𝑥 ∈ 𝐾 .

Remark 3.6.

1. For the definition and properties of relatively compact operators, we refer the reader to §A.3 in the
Appendix.

2. The product form of D in assumption (C1) is typical of Dirac operators corresponding to a product
metric on the collar neighbourhood C of N, where Γ𝑁 is given by Clifford multiplication with the
unit normal vector 𝜕𝑟 to N (actually, one might often write D′

𝐶 = −𝑖(1 ⊗ Γ𝑁 ) (𝜕𝑟 ⊗ 1 + 1 ⊗D𝑁 ), but
these two product forms are in fact unitarily equivalent). However, in this paper, we do not insist that
D is of Dirac-type. One can view assumption (C1) as requiring precisely those properties of Dirac
operators which we need below (in particular, to prove Lemma 4.3).

3. We remind the reader that assumption (C2) is motivated by the spectral flow result from Proposi-
tion 2.8.

4. We note that, for the operator T , we can for instance choose T = S (𝑥0) for some 𝑥0 ∈ 𝐾 , but it can
be useful to allow for arbitrary relatively compact perturbations.

Definition 3.7. If assumptions (A), (B) and (C) are satisfied, then the generalised Dirac-Schrödinger
operator D𝜆S is called a generalised Callias-type operator.

(We always implicitly assume that 𝜆 ≥ 𝜆0 > 0 such that D𝜆S is Fredholm.)

We consider the invertible regular self-adjoint operator T (·) on 𝐶 (𝑁, 𝐸) corresponding to the
constant family T (𝑦) := T (for 𝑦 ∈ 𝑁). The restriction of the potential S (·) to the hypersurface
N also yields an invertible regular self-adjoint operator S𝑁 (·) = {S (𝑦)}𝑦∈𝑁 on 𝐶 (𝑁, 𝐸). We recall
that S (𝑦) − T is relatively T -compact for each 𝑦 ∈ 𝑁 . Furthermore, S (𝑦)

(
T ± 𝑖

)−1 depends norm-
continuously on y by assumption (A2). Hence, S𝑁 (·) − T (·) is relatively T (·)-compact. We then
know from Corollary A.10 that the difference of positive spectral projections 𝑃+(S𝑁 (·)) − 𝑃+(T (·)) is
compact, so that the relative index rel-ind

(
𝑃+(S𝑁 (·)), 𝑃+(T (·))

)
is well-defined in 𝐾1(𝐶 (𝑁, 𝐴)) (see

Definition 2.2). We are now ready to state our generalisation of the Callias Theorem.

Theorem 3.8 (Generalised Callias Theorem). Let D𝜆S be a generalised Callias-type operator. Then we
have the equality

Index
(
D𝜆S

)
= rel-ind

(
𝑃+(S𝑁 (·)), 𝑃+(T (·))

)
⊗𝐶 (𝑁 ) [D𝑁 ] ∈ 𝐾0(𝐴),

where ⊗𝐶 (𝑁 ) denotes the pairing 𝐾1(𝐶 (𝑁, 𝐴)) × 𝐾
1(𝐶 (𝑁)) → 𝐾0(𝐴).

Remark 3.9. Although the relative index depends explicitly on the choice of T , the theorem in particular
shows that the pairing rel-ind

(
𝑃+(S𝑁 (·)), 𝑃+(T (·))

)
⊗𝐶 (𝑁 ) [D𝑁 ] on the right-hand side is in fact

independent of this choice. This independence of T can be understood as a consequence of the cobordism
invariance of the index (since N is the boundary of K, the index ofD𝑁 vanishes). In fact, one can also turn
this around and prove the cobordism invariance of the index as a consequence of the Callias Theorem
(by considering the trivial rank-one bundle 𝑀 ×C with the potential S (·) = 1, and the operator T = −1
on 𝐸 = 𝐴 = C).

We observe next that our assumption (C2) ensures that the class [S (·)] of the potential depends
only on the hypersurface N. This is the crucial observation which enables one to obtain the index of the
Callias-type operator from a computation on the hypersurface N, as in Equation (1.1) in the Introduction.
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12 K. van den Dungen

Consider the open subset 𝑈 := 𝐾 ∪ 𝐶 ⊂ 𝑀 with compact closure 𝑈 and boundary 𝜕𝑈 
 𝑁 . We have
the short exact sequence

0 → 𝐶0 (𝑈, 𝐴)
𝑗
−→ 𝐶 (𝑈, 𝐴) → 𝐶 (𝑁, 𝐴) → 0 (3.1)

and the corresponding cyclic six-term exact sequences in K-theory and K-homology.

Proposition 3.10. The K-theory class [S (·)] ∈ 𝐾1(𝐶0 (𝑀, 𝐴)) is uniquely determined by an element
Σ𝑁 ∈ 𝐾0(𝐶 (𝑁, 𝐴)). More explicitly, we have

[S (·)] = 𝜄𝑈 ∗ ◦ 𝜕 (Σ𝑁 ),

where 𝜕 : 𝐾0(𝐶 (𝑁, 𝐴)) → 𝐾1(𝐶0 (𝑈, 𝐴)) denotes the exponential map in the cyclic six-term exact
sequence in K-theory corresponding to the short exact sequence (3.1), and where 𝜄𝑈 ∗ : 𝐾1(𝐶0 (𝑈, 𝐴)) →
𝐾1(𝐶0 (𝑀, 𝐴)) is induced by the inclusion 𝜄𝑈 : 𝐶0 (𝑈, 𝐴) ↩→ 𝐶0 (𝑀, 𝐴).

Proof. The invertibility of the potential S (·) outside of the compact subset K ensures that the class
[S (·)] depends only on the restriction of S (·) to U. Indeed, we have from [Dun19, Lemma 3.8] the
equality [S (·)] = 𝜄𝑈 ∗

(
[S (·) |𝑈 ]

)
.

We may assume, without loss of generality, that assumption (C2) holds for all 𝑥 ∈ 𝑈 (see
Lemma 5.1 below for an explicit computation). Using compactness of 𝑈, it follows that the operator
S (·) |𝑈 is a relatively compact perturbation of the invertible operator T (·)𝑈 = {T }𝑥∈𝑈 , and therefore,
𝑗∗
( [
S (·) |𝑈

] )
= 0 ∈ 𝐾1(𝐶 (𝑈, 𝐴)). From the cyclic six-term exact sequence in K-theory, we conclude

that
[
S (·) |𝑈

]
lies in the image of the exponential map 𝜕 : 𝐾0(𝐶 (𝑁, 𝐴)) → 𝐾1(𝐶0 (𝑈, 𝐴)), so there

exists a class Σ𝑁 ∈ 𝐾0(𝐶 (𝑁, 𝐴)) such that 𝜕 (Σ𝑁 ) = [S (·) |𝑈 ]. �

The above proposition ensures that we can apply Equation (1.1), and combined with Theorem 3.5,
we obtain the equality

Index
(
D𝜆S

)
= Σ𝑁 ⊗𝐶 (𝑁 ) [D𝑁 ] .

Thus, in order to prove Theorem 3.8, it remains to explicitly identify the K-theory class Σ𝑁 ∈

𝐾0(𝐶 (𝑁, 𝐴)) as the relative index of the positive spectral projections 𝑃+(S𝑁 (·)) and 𝑃+(T (·)). We
will obtain this identification in Section 5 by first reducing the general statement to the special case of
a cylindrical manifold R × 𝑁 (see Theorem 5.4). The main advantage of considering the cylindrical
manifold is, roughly speaking, that we can then invert the boundary map in order to explicitly compute
a solution Σ𝑁 of the equation [S (·) |𝑈 ] = 𝜕 (Σ𝑁 ).

3.3. Special cases

In this subsection, we reconsider the two well-known special cases of our generalised Callias Theorem,
described in Section 2.

First, in the special case when E is a finite-dimensional Hilbert space, we recover the classical
Callias Theorem 2.1 (though only for globally trivial bundles). In fact, we find that the statement of the
classical Callias Theorem continues to hold if E is a finitely generated projective module over a unital
𝐶∗-algebra A.

Corollary 3.11. Let D𝜆S be a generalised Callias-type operator. Suppose furthermore that A is unital
and that E is finitely generated and projective over A. Then

Index
(
D𝜆S

)
=
[

Ran 𝑃+(S𝑁 (·))
]
⊗𝐶 (𝑁 ) [D𝑁 ] ∈ 𝐾0(𝐴).
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Proof. The assumptions on A and E ensure that all operators on E are compact. In particular, the operator
T := −1 is a relatively compact perturbation of each S𝑁 (𝑦). With 𝑃+(T (·)) = 0, we therefore obtain

rel-ind
(
𝑃+(S𝑁 (·)), 0

)
= Index

(
0: Ran 𝑃+(S𝑁 (·)) → {0}

)
=
[

Ran 𝑃+(S𝑁 (·))
]
.

Thus, from Theorem 3.8, we find that

Index
(
D𝜆S

)
= rel-ind

(
𝑃+(S𝑁 (·)), 0

)
⊗𝐶 (𝑁 ) [D𝑁 ] =

[
Ran 𝑃+(S𝑁 (·))

]
⊗𝐶 (𝑁 ) [D𝑁 ] . �

Second, in the special case where 𝑀 = R, we recover the equality between the spectral flow and the
relative index of spectral projections of the end-points from Proposition 2.8.

Corollary 3.12. Consider the operator D = −𝑖𝜕𝑡 on the manifold 𝑀 = R and a potential S (·) ={
S (𝑡)

}
𝑡 ∈R

satisfying assumptions (A), (B) and (C). Suppose for simplicity that the compact subset from
assumption (A3) is given by the unit interval 𝐾 = [0, 1]. Then we have the equality

sf
(
{S (𝑡)}𝑡 ∈[0,1]

)
= rel-ind

(
𝑃+(S (1)), 𝑃+(S (0))

)
.

Proof. From Theorem 3.8, we obtain

Index
(
D − 𝑖𝜆S (·)

)
= rel-ind

(
𝑃+(S𝑁 (·)), 𝑃+(T (·))

)
⊗𝐶 (𝑁 ) [D𝑁 ],

where the ‘hypersurface’ 𝑁 = {0, 1} consists of the endpoints of the unit interval, and T is any relatively
compact perturbation of S (0). We will examine both the left-hand side and the right-hand side of the
above equation.

First, the left-hand side is given by

Index
(
−𝑖𝜕𝑡 − 𝑖𝜆S (·)

)
= [S (·)] ⊗𝐶0 (R) [−𝑖𝜕𝑡 ] = sf

(
{S (𝑡)}𝑡 ∈[0,1]

)
,

where the first equality is obtained from Theorem 3.5, and the second from [Dun19, Proposition 2.21]
(using that trivialising families exist by Proposition 2.8.(1)).

For the right-hand side, we examine the product form of−𝑖𝜕𝑡 near 𝑁 = {0, 1}. The operatorD𝑁 is just
the zero operator on F𝑁 = F{0} ⊕ F{1} 
 C ⊕ C. We note that the coordinate r increases in the outward
direction, so we have 𝑡 = −𝑟 near 0 and 𝑡 = 1 + 𝑟 near 1. Thus, on a collar neighbourhood of N, we can
write −𝑖𝜕𝑡 
 𝑖𝜕𝑟 ⊕ (−𝑖𝜕𝑟 ) = −𝑖𝜕𝑟 ⊗ Γ𝑁 , where the operator Γ𝑁 is given by (−1) ⊕ 1 on F{0} ⊕ F{1}.
Thus, F{0} = F−{0} = C and F{1} = F+{1} = C, and we can identify [D𝑁 ] ∈ 𝐾𝐾0 (C2,C) 
 𝐾0(C2) with
(−1) ⊕ 1 ∈ Z ⊕ Z. Then the Kasparov product over 𝐶 (𝑁) = C2 can be calculated as follows:

rel-ind
(
𝑃+(S𝑁 (·)), 𝑃+(T (·))

)
⊗C2 [D𝑁 ]

= rel-ind
(
𝑃+(S (0)), 𝑃+(T )

)
⊗ (−1) + rel-ind

(
𝑃+(S (1)), 𝑃+(T )

)
⊗ 1

= rel-ind
(
𝑃+(T ), 𝑃+(S (0))

)
+ rel-ind

(
𝑃+(S (1)), 𝑃+(T )

)
= rel-ind

(
𝑃+(S (1)), 𝑃+(S (0))

)
. �

4. Generalised Dirac-Schrödinger operators

Consider M, D and S (·) satisfying assumption (A). We have defined in Definition 3.1 the operator
DS := D − 𝑖S (·) on the initial domain 𝐶1

𝑐 (𝑀,𝑊) ⊗𝐶1
0 (𝑀 ) DomD. We now also define the operators
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D̃ :=
(

0 D
D 0

)
, S̃ (·) :=

(
0 +𝑖S (·)

−𝑖S (·) 0

)
,

D̃S := D̃ + S̃ (·) =
(

0 D + 𝑖S (·)
D − 𝑖S (·) 0

)
,

on the initial domain
(
𝐶1
𝑐 (𝑀,𝑊) ⊗𝐶1

0 (𝑀 ) DomD
) ⊕2. The operator D̃S is odd with respect to the Z2-

grading Γ :=
(
1 0
0 −1

)
.

We recall that DS is called a generalised Dirac-Schrödinger operator if D̃S is regular, self-adjoint
and Fredholm. In this case, the operator D̃S yields a class

[D̃S ] ∈ 𝐾𝐾
0(C, 𝐴),

corresponding to the 𝐾0(𝐴)-valued index of DS under the isomorphism 𝐾𝐾0(C, 𝐴) 
 𝐾0(𝐴). For the
construction of this class in Kasparov’s 𝐾𝐾-theory and its relation to the Fredholm index, we refer to
[Dun19, §2.2].

4.1. Relative index theorem

An important tool for our index computations is the relative index theorem [Dun19, Theorem 4.7],
which is an adaptation of a theorem by Bunke [Bun95, Theorem 1.14]. Here, we shall adapt [Dun19,
Theorem 4.7] in order to allow for more general situations (in particular, we avoid the assumption (A4)
from [Dun19, §3.2]).

We consider the following setting. For 𝑗 = 1, 2, let F 𝑗 → 𝑀 𝑗 , D 𝑗 and S 𝑗 (·) be as in assumption
(A), and assume that the operators {S 𝑗 (𝑥)}𝑥∈𝑀 𝑗 act on the same Hilbert A-module E. Suppose we have
partitions 𝑀 𝑗 = 𝑈

𝑗
∪𝑁 𝑗 𝑉

𝑗 , where 𝑁 𝑗 are smooth compact hypersurfaces. Let 𝐶 𝑗 be open tubular
neighbourhoods of 𝑁 𝑗 , and assume that there exists an isometry 𝜙 : 𝐶1 → 𝐶2 (with 𝜙(𝑁1) = 𝑁2)
covered by an isomorphism Φ : F1 |𝐶1 → F2 |𝐶2 , such that D1 |𝐶1Φ∗ = Φ∗D2 |𝐶2 and S2 (𝜙(𝑥)) = S1(𝑥)
for all 𝑥 ∈ 𝐶1.

We will identify 𝐶1 with 𝐶2 (as well as 𝑁1 with 𝑁2) via 𝜙, and we simply write C (and N). Define
two new Riemannian manifolds

𝑀3 := 𝑈1
∪𝑁 𝑉

2
, 𝑀4 := 𝑈2

∪𝑁 𝑉
1
.

Moreover, we glue the bundles using Φ to obtain hermitian vector bundles F3 → 𝑀3 and F4 → 𝑀4.
For 𝑗 = 3, 4, we then obtain corresponding operators D 𝑗 and S 𝑗 (·) satisfying assumption (A).

Theorem 4.1 (Relative index theorem). Assume that D̃ 𝑗
S (for 𝑗 = 1, 2) are regular self-adjoint Fredholm

operators with locally compact resolvents. Then D̃3
S and D̃4

S are also regular self-adjoint Fredholm
operators with locally compact resolvents. Moreover, we have the equality

Index
(
D1 − 𝑖S1 (·)

)
+ Index

(
D2 − 𝑖S2(·)

)
= Index

(
D3 − 𝑖S3(·)

)
+ Index

(
D4 − 𝑖S4(·)

)
∈ 𝐾0(𝐴).

Proof. First, we need to check that D̃3
S and D̃4

S are also regular self-adjoint and Fredholm. We give the
proof only for D̃3

S . We choose smooth functions 𝜒1 and 𝜒2 such that

supp 𝜒1 ⊂ 𝑈1 ∪ 𝐶, supp 𝜒2 ⊂ 𝑉2 ∪ 𝐶, 𝜒2
1 + 𝜒2

2 = 1.

For 𝜆 > 0, we define

𝑅±(𝜆) := 𝜒1
(
D̃1

S ± 𝑖𝜆
)−1
𝜒1 + 𝜒2

(
D̃2

S ± 𝑖𝜆
)−1
𝜒2.
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Then (
D̃3

S ± 𝑖𝜆
)
𝑅±(𝜆) = 1 + [D̃1, 𝜒1]

(
D̃1

S ± 𝑖𝜆
)−1
𝜒1 + [D̃2, 𝜒2]

(
D̃2

S ± 𝑖𝜆
)−1
𝜒2 =: 1 +K±(𝜆).

We can pick 𝜆 sufficiently large, such that the norm of K±(𝜆) is less than one. Then 1 + K±(𝜆) is
invertible, and 𝑅±(𝜆) (1 + K±(𝜆))

−1 is a right inverse of D̃3
S ± 𝑖𝜆. Similarly, we can also obtain a left

inverse, which proves that D̃3
S is regular self-adjoint. Moreover, since 𝑅±(𝜆) is locally compact, we see

that D̃3
S has locally compact resolvents.

Next, given parametrices 𝑄1 and 𝑄2 for D̃1
S and D̃2

S , respectively, we define

𝑄3 := 𝜒1𝑄1𝜒1 + 𝜒2𝑄2𝜒2.

Then

D̃3
S𝑄3 − 1 = 𝜒1

(
D̃1

S𝑄1 − 1
)
𝜒1 + [D̃1, 𝜒1]𝑄1𝜒1 + 𝜒2

(
D̃2

S𝑄2 − 1
)
𝜒2 + [D̃2, 𝜒2]𝑄2𝜒2.

The terms 𝜒 𝑗
(
D̃ 𝑗

S𝑄 𝑗 − 1
)
𝜒 𝑗 are compact because 𝑄 𝑗 are parametrices. Furthermore, the terms

[D̃ 𝑗 , 𝜒 𝑗 ]𝑄 𝑗 𝜒 𝑗 are compact because [D̃ 𝑗 , 𝜒 𝑗 ] are compactly supported and D̃ 𝑗
S have locally com-

pact resolvents. Hence, 𝑄3 is a right parametrix for D̃3
S . A similar calculation shows that 𝑄3 is

also a left parametrix, and therefore, D̃3
S is Fredholm. Similarly, the operator D̃4

S is also regular
self-adjoint and Fredholm. The proof of the equality Index

(
D1 − 𝑖S1 (·)

)
+ Index

(
D2 − 𝑖S2 (·)

)
=

Index
(
D3 − 𝑖S3(·)

)
+ Index

(
D4 − 𝑖S4(·)

)
∈ 𝐾0(𝐴)is then exactly as in [Dun19, Theorem 4.7]. �

4.2. The Fredholm index

From here on, we consider M, D and S (·) satisfying assumptions (A) and (B). Our aim in this subsection
is to prove Theorem 3.4 (see Theorem 4.4 below). We first observe that, thanks to assumption (B), the
operator D̃S has locally compact resolvents.

Proposition 4.2 [KL13, Theorem 6.7]. The operator 𝜙(D̃S ± 𝑖)−1 on 𝐿2 (𝑀, 𝐸 ⊗ F)⊕2 is compact for
any 𝜙 ∈ 𝐶0 (𝑀). Moreover, if (S (·) ± 𝑖)−1 is compact on 𝐶0 (𝑀, 𝐸), then (D̃S ± 𝑖)−1 is also compact.

In order to prove the Fredholm property of D̃S , we need to rescale the potential S (·) by a sufficiently
large 𝜆 > 0. First, we need the following pointwise estimate.

Lemma 4.3. There exist 𝜆0 > 0 and 𝜖 > 0 such that for any 𝜆 ≥ 𝜆0, there exists a compactly supported
smooth function 𝑓 ∈ 𝐶∞

𝑐 (𝑀) such that for all 𝑥 ∈ 𝑀 and 𝜓(𝑥) ∈ (𝑊 ⊗ F)⊕2, we have the inequality

⟪𝜆S̃ (𝑥)𝜓(𝑥)⟫ +
〈
{D̃, 𝜆S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 + ⟪ 𝑓 (𝑥)𝜓(𝑥)⟫ ≥ 𝜖⟪𝜓(𝑥)⟫.
Proof. We roughly follow the proof of [Dun19, Lemma 5.8], but with somewhat different estimates.

First, since 𝜆S also satisfies assumption (B), we know from Propositions 3.3 and 4.2 that D̃𝜆S is
regular self-adjoint and has locally compact resolvents. For any𝛼 ∈ (0,∞), 𝑥 ∈ 𝑀 and𝜓(𝑥) ∈ (𝑊⊗F)⊕2,
we have (using the same arguments as in the proof of [KL12, Lemma 7.5])

±2
〈
{D̃, S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 ≤ 𝛼2⟪{D̃, S̃ (·)}(𝑥)𝜓(𝑥)⟫ + 𝛼−2⟪𝜓(𝑥)⟫,

where {·, ·} denotes the anti-commutator. Using that 𝛿𝑥 :=
��[D,S (·)] (𝑥) (S (𝑥) ± 𝑖)−1�� is bounded, we

obtain

±2
〈
{D̃, S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 ≤ 𝛼2𝛿2
𝑥⟪(S̃ (𝑥) ± 𝑖)𝜓(𝑥)⟫ + 𝛼−2⟪𝜓(𝑥)⟫. (4.1)
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We distinguish between the cases 𝑥 ∈ 𝑀 \ 𝐾 and 𝑥 ∈ 𝐾:

𝒙 ∈ 𝑴 \ 𝑲: Let 𝑐 ≡ 𝑐𝑀\𝐾 := inf𝑥∈𝑀\𝐾 ‖S (𝑥)−1‖−1. Then combining (4.1) with the norm inequality
‖(S̃ (𝑥) ± 𝑖)S̃ (𝑥)−1‖ ≤ 1 + 𝑐−1, we obtain

±2
〈
{D̃, S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 ≤ 𝛼2𝛿2
𝑥 (1 + 𝑐−1)2⟪S̃ (𝑥)𝜓(𝑥)⟫ + 𝛼−2⟪𝜓(𝑥)⟫.

Now setting 𝛼 = 𝜆1/2𝛿−1
𝑥 (1 + 𝑐−1)−1 yields

±2
〈
{D̃, S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 ≤ 𝜆⟪S̃ (𝑥)𝜓(𝑥)⟫ + 𝜆−1𝛿2
𝑥 (1 + 𝑐−1)2⟪𝜓(𝑥)⟫

and in particular

〈
{D̃, S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 ≥ −
1
2
𝜆⟪S̃ (𝑥)𝜓(𝑥)⟫ − 1

2
𝜆−1𝛿2

𝑥 (1 + 𝑐−1)2⟪𝜓(𝑥)⟫.

Thus, we have

⟪𝜆S̃ (𝑥)𝜓(𝑥)⟫ +
〈
{D̃, 𝜆S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 ≥
1
2
⟪𝜆S̃ (𝑥)𝜓(𝑥)⟫ − 1

2
𝛿2
𝑥 (1 + 𝑐−1)2⟪𝜓(𝑥)⟫

≥
1
2
(
𝜆2𝑐2 − 𝛿2

𝑥 (1 + 𝑐−1)2)⟪𝜓(𝑥)⟫.
Now set 𝛿𝑀\𝐾 := sup𝑥∈𝑀\𝐾 𝛿𝑥 = sup𝑥∈𝑀\𝐾

��[D,S (·)] (𝑥) (S (𝑥) ± 𝑖)−1��, and pick 𝜆0 > 0 large
enough such that 𝜖 := 1

2
(
𝜆2

0𝑐
2 − 𝛿2

𝑀\𝐾
(1 + 𝑐−1)2) > 0. Then we have shown that for all 𝑥 ∈ 𝑀 \ 𝐾

and all 𝜆 ≥ 𝜆0, we have

⟪𝜆S̃ (𝑥)𝜓(𝑥)⟫ +
〈
{D̃, 𝜆S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 ≥ 𝜖⟪𝜓(𝑥)⟫. (4.2)

𝒙 ∈ 𝑲: Set 𝛿𝐾 := sup𝑥∈𝐾 𝛿𝑥 = sup𝑥∈𝐾

��[D,S (·)] (𝑥) (S (𝑥) ± 𝑖)−1��, fix 𝜆 ≥ 𝜆0 and pick a compactly
supported smooth function 𝑓 ∈ 𝐶∞

𝑐 (𝑀) such that 𝑓 (𝑥)2 ≥ 𝜖 + 1
2 (𝜆

2 + 𝛿2
𝐾 ) for all 𝑥 ∈ 𝐾 . Inserting

𝛼 = 𝜆1/2𝛿−1
𝐾 into (4.1), we see that for any 𝑥 ∈ 𝐾 , we have

±2
〈
{D̃, S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 ≤ 𝜆⟪S̃ (𝑥)𝜓(𝑥)⟫ + (𝜆 + 𝜆−1𝛿2
𝐾 )⟪𝜓(𝑥)⟫

and in particular

〈
{D̃, S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 ≥ −
1
2
𝜆⟪S̃ (𝑥)𝜓(𝑥)⟫ − 1

2
(𝜆 + 𝜆−1𝛿2

𝐾 )⟪𝜓(𝑥)⟫.

Thus, for any 𝑥 ∈ 𝐾 , we have

⟪𝜆S̃ (𝑥)𝜓(𝑥)⟫ +
〈
{D̃, 𝜆S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 + ⟪ 𝑓 (𝑥)𝜓(𝑥)⟫
≥

1
2
⟪𝜆S̃ (𝑥)𝜓(𝑥)⟫ − 1

2
(𝜆2 + 𝛿2

𝐾 )⟪𝜓(𝑥)⟫ + 𝑓 (𝑥)
2⟪𝜓(𝑥)⟫ ≥ 𝜖⟪𝜓(𝑥)⟫. (4.3)

Combining Equations (4.2) and (4.3), we have thus shown the desired inequality for any 𝑥 ∈ 𝑀 . �

Theorem 4.4.

1. There exists 𝜆0 > 0 such that for any 𝜆 ≥ 𝜆0, the operator D̃𝜆S is Fredholm, and thus, D𝜆S is a
generalised Dirac-Schrödinger operator.
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2. Suppose there exists a compact subset �̂� ⊃ 𝐾 such that 𝛿 < �̂�2

�̂�+1 , where

𝛿 := sup
𝑥∈𝑀\�̂�

��[D,S (·)] (𝑥) (S (𝑥) ± 𝑖)−1��, 𝑐 := inf
𝑥∈𝑀\�̂�

‖S (𝑥)−1‖−1.

Then the first statement holds with 𝜆0 = 1. In particular, DS is a generalised Dirac-Schrödinger
operator.

Proof. Let 𝜆 ≥ 𝜆0, 𝜖 > 0 and 𝑓 ∈ 𝐶∞
𝑐 (𝑀) be given by Lemma 4.3. For any 𝜓 ∈ Dom(D̃2

𝜆S ), we then
compute 〈

𝜓
�� (D̃2

𝜆S + 𝑓 2)𝜓〉 = 〈
D̃𝜆S𝜓

�� D̃𝜆S𝜓
〉
+
〈
𝜓
�� 𝑓 2𝜓

〉
= ⟪D̃𝜓⟫ + ⟪𝜆S̃ (·)𝜓⟫ +

〈
D̃𝜓

��𝜆S̃ (·)𝜓〉 + 〈
𝜆S̃ (·)𝜓

�� D̃𝜓〉 + ⟪ 𝑓 𝜓⟫
≥ ⟪𝜆S̃ (·)𝜓⟫ +

〈{
D̃, 𝜆S̃ (·)

}
𝜓
��𝜓〉 + ⟪ 𝑓 𝜓⟫

=
∫
𝑀

(
⟪𝜆S̃ (𝑥)𝜓(𝑥)⟫ +

〈{
D̃, 𝜆S̃ (·)

}
(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 + ⟪ 𝑓 (𝑥)𝜓(𝑥)⟫)dvol(𝑥)

≥ 𝜖

∫
𝑀
⟪𝜓(𝑥)⟫dvol(𝑥) = 𝜖⟪𝜓⟫, (4.4)

where the inequality on the last line is given by Lemma 4.3. Hence, we have shown that the spectrum
of D̃2

𝜆S + 𝑓 2 is contained in [𝜖,∞), and therefore, we have a well-defined inverse
(
D̃2

𝜆S + 𝑓 2)−1
∈

L𝐴
(
𝐿2 (𝑀, 𝐸 ⊗ F)⊕2) .

We can then construct a parametrix for D̃𝜆S as follows. Pick a smooth function 𝜒 ∈ 𝐶∞
𝑐 (𝑀) such that

0 ≤ 𝜒 ≤ 1, and 𝜒(𝑥) = 1 for all 𝑥 ∈ supp 𝑓 . Write 𝜒′ :=
√

1 − 𝜒2. Using that 𝑓 𝜒′ = 0, we calculate that

D̃𝜆S 𝜒
′D̃𝜆S

(
D̃2

𝜆S + 𝑓 2)−1
𝜒′ = [D̃, 𝜒′]D̃𝜆S

(
D̃2

𝜆S + 𝑓 2)−1
𝜒′ + (𝜒′)2.

Define the operator

𝑄 := 𝜒
(
D̃𝜆S − 𝑖

)−1
𝜒 + 𝜒′D̃𝜆S

(
D̃2

𝜆S + 𝑓 2)−1
𝜒′.

We then compute

D̃𝜆S𝑄 − 1 =
[
D̃, 𝜒

]
(D̃𝜆S − 𝑖)−1𝜒 + 𝑖𝜒(D̃𝜆S − 𝑖)−1𝜒 +

[
D̃, 𝜒′

]
D̃𝜆S

(
D̃2

𝜆S + 𝑓 2)−1
𝜒′.

The operators [D̃, 𝜒] and [D̃, 𝜒′] are smooth and compactly supported, and therefore bounded. Since
(D̃𝜆S − 𝑖)

(
D̃2

𝜆S + 𝑓 2)− 1
2 is also bounded, it follows from Proposition 4.2 that D̃𝜆S𝑄 − 1 is compact.

Hence, Q is a right parametrix for D̃𝜆S . A similar calculation shows that Q is also a left parametrix, and
therefore, D̃𝜆S is Fredholm. We have thus proven the first statement.

For the second statement, we note that we may replace K by the larger compact set �̂� . Using the
inequality 𝛿 < �̂�2

�̂�+1 , the proof of Lemma 4.3 (picking 𝜆0 = 1) shows that for all 𝑥 ∈ 𝑀 \ �̂� , we have

⟪S̃ (𝑥)𝜓(𝑥)⟫ +
〈
{D̃, S̃ (·)}(𝑥)𝜓(𝑥)

��𝜓(𝑥)〉 ≥ 𝜖⟪𝜓(𝑥)⟫,

for 𝜖 := 1
2
(
𝑐2 − 𝛿2(1 + 𝑐−1)2) > 0. Thus, in this case, the first statement holds with 𝜆0 = 1. �

Proposition 4.5. Suppose that {S (𝑥)}𝑥∈𝑀 is uniformly invertible on all of M. Then there exists 𝜆0 > 0
such that for any 𝜆 ≥ 𝜆0, the generalised Dirac-Schrödinger operator D̃𝜆S is also invertible.

Proof. Since S (·) is uniformly invertible, Equation (4.2) now holds for all 𝑥 ∈ 𝑀 (for 𝜆 ≥ 𝜆0 > 0), and
therefore, Equation (4.4) holds with 𝑓 ≡ 0, which shows that D̃2

𝜆S (and hence D̃𝜆S ) is invertible. �
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4.3. The index pairing

In this subsection, we will prove Theorem 3.5. Similarly to [Dun19, Proposition 5.14], we show first
that we can replace M by a manifold with cylindrical ends, without affecting the index of the generalised
Dirac-Schrödinger operator.

Proposition 4.6. There exist a precompact open subset U of M and a generalised Dirac-Schrödinger
operator D′

𝜆S on 𝑀 ′ := 𝑈 ∪𝜕𝑈 (𝜕𝑈 × [0,∞)) satisfying assumptions (A) and (B), such that

1. the operators D′ and S ′(·) on 𝑀 ′ agree with D and S (·) on M when restricted to U;
2. the metric and the operators D′ and S ′(·) on 𝑀 ′ are of product form on 𝜕𝑈 × [1,∞);
3. we have, for 𝜆 sufficiently large, the equality Index

(
D′ − 𝑖𝜆S ′(·)

)
= Index

(
D − 𝑖𝜆S (·)

)
∈ 𝐾0(𝐴).

In particular, 𝑀 ′ is complete and D′ has bounded propagation speed.

Proof. The proof is similar to the proof of [Dun19, Proposition 5.14] but requires some minor adapta-
tions. For completeness, we include the details here.

Let U be a precompact open neighbourhood of K, with smooth compact boundary 𝜕𝑈. Consider the
manifold𝑀 ′ := 𝑈∪𝜕𝑈

(
𝜕𝑈×[0,∞)

)
with cylindrical ends. For some 0 < 𝜖 < 1, let𝐶 
 𝜕𝑈×(−𝜖, 𝜖) be a

tubular neighbourhood of 𝜕𝑈, such that there exists a diffeomorphism 𝜙 : 𝑈∪𝐶 → 𝑈∪𝜕𝑈

(
𝜕𝑈×[0, 𝜖)

)
⊂

𝑀 ′ (which preserves the subset U). Equip 𝑀 ′ with a Riemannian metric which is of product form on
𝜕𝑈×[1,∞) (ensuring that𝑀 ′ is complete), and which agrees with 𝑔 |𝑈 on U. Let F′ → 𝑀 ′ be a hermitian
vector bundle which agrees with F|𝑈 on U. Let D′ be a symmetric elliptic first-order differential operator
on F′ → 𝑀 ′, which is of product form on 𝜕𝑈 × [1,∞), and which agrees with D |𝑈∪𝐶 on𝑈 ∪ 𝐶. Then
D′ has bounded propagation speed and is essentially self-adjoint by [HR00, Proposition 10.2.11].

Let 0 < 𝛿 < 𝜖 and let 𝜒 ∈ 𝐶∞(R) be such that 0 ≤ 𝜒(𝑟) ≤ 1 for all 𝑟 ∈ R, 𝜒(𝑟) = 1 for all r in a
neighbourhood of 0, and 𝜒(𝑟) = 0 for all |𝑟 | > 𝛿. Consider the family {S ′(𝑥)}𝑥∈𝑀 ′ given by

S ′(𝑥) :=

{
S (𝑥), 𝑥 ∈ 𝑈,

𝜒(𝑟)S (𝑥) + (1 − 𝜒(𝑟))S (𝑦), 𝑥 = (𝑟, 𝑦) ∈ [0,∞) × 𝜕𝑈.

We choose 𝛿 small enough such that 𝜒(𝑟)S (𝑦) + (1 − 𝜒(𝑟))S (𝑥) is invertible for all 𝑥 ∈ [0, 𝛿] × 𝜕𝑈.
Then the family {S ′(𝑥)}𝑥∈𝑀 ′ also satisfies assumptions (A) and (B). Thus, we have constructed a
Dirac-Schrödinger operator D′ − 𝑖𝜆S ′(·) on 𝑀 ′, satisfying the desired properties 1 and 2. It remains to
prove the equality Index

(
D′ − 𝑖𝜆S ′(·)

)
= Index

(
D − 𝑖𝜆S (·)

)
, for which we invoke the relative index

theorem.
Let 𝑀1 := 𝑀 and 𝑀2 := 𝜕𝑈 ×R. Let𝐶 ′ = 𝜙(𝐶) be the collar neighbourhood of 𝜕𝑈 in 𝑀 ′. We equip

𝑀2 with a complete Riemannian metric which agrees with the metric of 𝑀 ′ on 𝐶 ′ ∪
(
𝜕𝑈 × (0,∞)

)
,

and which is of product form on (−∞,−1] × 𝜕𝑈. We extend the vector bundle F′ |𝐶′∪(𝜕𝑈×(0,∞)) to a
bundle F2 → 𝑀2, and we pick an essentially self-adjoint elliptic first-order differential operator D2 on
F2 such that D2 |𝐶′∪(𝜕𝑈×(0,∞)) = D′|𝐶′∪(𝜕𝑈×(0,∞)) (for instance, we can take D2 to be of product form on
(−∞,−1) × 𝜕𝑈). We define a family {S2(𝑥)}𝑥∈𝑀 2 by S2(𝑦, 𝑟) := 𝜒(𝑟)S (𝑦, 𝑟) + (1 − 𝜒(𝑟))S (𝑦) for all
𝑦 ∈ 𝜕𝑈 and 𝑟 ∈ R. Then F2 → 𝑀2,D2 andS2 (·) satisfy assumptions (A) and (B). By cutting and pasting
along 𝜕𝑈, we obtain manifolds 𝑀3 = 𝑀 ′ and 𝑀4 =

(
𝜕𝑈 × (−∞, 0]

)
∪𝜕𝑈 (𝑀 \𝑈), with corresponding

operators D3, S3 (·), D4, and S4 (·). By Theorem 4.1, we have Index
(
D1 − 𝑖𝜆S1(·)

)
+ Index

(
D2 −

𝑖𝜆S2(·)
)
= Index

(
D3 − 𝑖𝜆S3(·)

)
+ Index

(
D4 − 𝑖𝜆S4(·)

)
. The potentials S2(·) and S4 (·) are both

uniformly invertible, so by Proposition 4.5, we have Index
(
D2 − 𝑖𝜆S2(·)

)
= Index

(
D4 − 𝑖𝜆S4(·)

)
= 0

(for 𝜆 sufficiently large). Since 𝑀1 = 𝑀 and 𝑀3 = 𝑀 ′, we conclude that Index
(
D − 𝑖𝜆S (·)

)
=

Index
(
D′ − 𝑖𝜆S ′(·)

)
. �

Proposition 4.7 (cf. [Dun19, Proposition 5.10]). Let 𝑀 ′, D′ and S ′(·) be as in Proposition 4.6. Then
we have the equality [S ′(·)] ⊗𝐶0 (𝑀 ′) [D′] = Index

(
D′ − 𝑖𝜆S ′(·)

)
.

Proof. This follows basically from [Dun19, Proposition 5.10]; however, there it was assumed that the
graph norms of S ′(𝑥) are uniformly equivalent and that the weak derivative 𝑑S ′(·) is uniformly bounded.
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Together with the bounded propagation speed of D′, this implies the boundedness of
[
D′,S ′(·)

] (
S ′(·) ±

𝑖
)−1, as explained in Remark 3.2.3. The proofs given in [Dun19, §5.1] actually only rely on this

boundedness of
[
D′,S ′(·)

] (
S ′(·) ± 𝑖

)−1. As the latter is required by our assumption (B2), the proof of
[Dun19, Proposition 5.10] follows through and the statement follows. �

We are now ready to prove:

Theorem 3.5. Let M be a connected Riemannian manifold, and let {S (𝑥)}𝑥∈𝑀 andD satisfy assumptions
(A) and (B). Then there exists 𝜆0 > 0 such that for any 𝜆 ≥ 𝜆0, the 𝐾0(𝐴)-valued index of D𝜆S equals
the pairing of [S (·)] ∈ 𝐾1(𝐶0 (𝑀, 𝐴)) with [D] ∈ 𝐾1(𝐶0 (𝑀)).

Proof. From Proposition 4.6, we obtain a complete manifold 𝑀 ′ and a generalised Dirac-Schrödinger
operator satisfying assumptions (A) and (B), such that D′ has bounded propagation speed, and such
that Index

(
D′ − 𝑖𝜆S ′(·)

)
= Index

(
D − 𝑖𝜆S (·)

)
∈ 𝐾0(𝐴) (for 𝜆 sufficiently large). As in the proof of

[Dun19, Theorem 5.15], we have

[S (·)] ⊗𝐶0 (𝑀 ) [D] = [S (·) |𝑈 ] ⊗𝐶0 (𝑈 ) [D |𝑈 ] = [S ′(·)] ⊗𝐶0 (𝑀 ′) [D′] .

Moreover, we know from Proposition 4.7 that [S ′(·)] ⊗𝐶0 (𝑀 ′) [D′] = Index
(
D′ − 𝑖𝜆S ′(·)

)
. Altogether,

we conclude that

[S (·)] ⊗𝐶0 (𝑀 ) [D] = [S ′(·)] ⊗𝐶0 (𝑀 ′) [D′] = Index
(
D′ − 𝑖𝜆S ′(·)

)
= Index

(
D − 𝑖𝜆S (·)

)
. �

5. Proof of the main theorem

Let M, D and S (·) satisfy assumptions (A), (B) and (C), and consider the generalised Callias-type
operator D𝜆S . We will show that we can replace the manifold M by a cylindrical manifold R×𝑁 without
changing the index of D𝜆S . Thus, we can reduce the proof of our generalised Callias Theorem (Theorem
3.8) from the general statement to the case of a cylindrical manifold. This reduction is made possible
by the relative index theorem (Theorem 4.1).

Lemma 5.1. We may replace the collar neighbourhood C by a smaller collar neighbourhood 𝐶 ′ 


(−2𝜀′, 2𝜀′) × 𝑁 (with 0 < 𝜀′ < 𝜀) and the potential S (·) by a potential S ′(·) satisfying the following:

◦ for all 𝑥 ∈ 𝐾 \ 𝐶 ′: S ′(𝑥) = T ;
◦ for all 𝑥 = (𝑟, 𝑦) ∈ 𝐶 ′: S ′(𝑥) = 𝜚(𝑟)T +

(
1 − 𝜚(𝑟)

)
S (𝑦), for some function 𝜚 ∈ 𝐶∞(R) such that

0 ≤ 𝜚(𝑟) ≤ 1 for all 𝑟 ∈ R, 𝜚(𝑟) = 1 for all r in a neighbourhood of (−∞,−𝜀′], and 𝜚(𝑟) = 0 for all
r in a neighbourhood of [0,∞),

such that [S (·)] = [S ′(·)] ∈ 𝐾1(𝐶0 (𝑀, 𝐴)) and (for 𝜆 sufficiently large) Index
(
D − 𝑖𝜆S (·)

)
=

Index
(
D − 𝑖𝜆S ′(·)

)
∈ 𝐾0(𝐴).

Proof.

1. In a first step, we replaceS (·) by a potentialS ′′(·) which is of ‘product form’ near N. Let 0 < 𝜀′ < 𝜀/2
and let 𝜒 ∈ 𝐶∞(R) be such that 0 ≤ 𝜒(𝑟) ≤ 1 for all 𝑟 ∈ R, 𝜒(𝑟) = 1 for all |𝑟 | ≤ 2𝜀′, and 𝜒(𝑟) = 0
for all |𝑟 | > 3𝜀′. Consider the family {S ′′(𝑥)}𝑥∈𝑀 given by

S ′′(𝑥) :=

{
S (𝑥), 𝑥 ∈ 𝑀 \ 𝐶,

𝜒(𝑟)S (𝑦) + (1 − 𝜒(𝑟))S (𝑥), 𝑥 = (𝑟, 𝑦) ∈ 𝐶 
 (−2𝜀, 2𝜀) × 𝑁.

We choose 𝜀′ small enough such that 𝜒(𝑟)S (𝑦) + (1 − 𝜒(𝑟))S (𝑥) is invertible for all 𝑥 ∈

[−3𝜀′, 3𝜀′] × 𝑁 . Then S ′′(·) satisfies S ′′(𝑟, 𝑦) = S (𝑦) = S ′′(0, 𝑦) for all 𝑥 = (𝑟, 𝑦) in the collar
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neighbourhood 𝐶 ′ 
 (−2𝜀′, 2𝜀′) × 𝑁 of N. Connecting S (·) and S ′′(·) via a straight-line homotopy,
we obtain [S ′′(·)] = [S (·)]. Moreover, since S ′′(·) again satisfies assumptions (A) and (B), we can
apply Theorem 3.5: there exist 𝜆0, 𝜆

′′
0 such that for all 𝜆 ≥ max{𝜆0, 𝜆

′′
0 }, we have

Index
(
D − 𝑖𝜆S (·)

) 𝜆≥𝜆0= [S (·)] ⊗𝐶0 (𝑀 ) [D] = [S ′′(·)] ⊗𝐶0 (𝑀 ) [D]
𝜆≥𝜆′′0= Index

(
D − 𝑖𝜆S ′′(·)

)
.

2. Picking 𝜚 as in the statement with 𝜀′ from step 1, we consider the potential S ′(·) given by

S ′(𝑥) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T , 𝑥 ∈ 𝐾 \ 𝐶 ′,

𝜚(𝑟)T +
(
1 − 𝜚(𝑟)

)
S (𝑦), 𝑥 = (𝑟, 𝑦) ∈ 𝐶 ′,

S ′′(𝑥), 𝑥 ∈ 𝑀 \ (𝐾 ∪ 𝐶 ′).

(5.1)

We note that S ′(·) again satisfies assumption (A) and therefore also defines a class [S ′(·)] ∈

𝐾1(𝐶0 (𝑀, 𝐴)). The difference S ′(𝑥) − S ′′(𝑥) is relatively S ′′(𝑥)-compact (by choice of T ) and
vanishes outside of K. Moreover, by assumption (A2), we know that

(
S ′′(𝑥) ± 𝑖

) (
T ± 𝑖

)−1 is norm-
continuous in x, and consequently, the family of inverses

(
T ±𝑖

) (
S ′′(𝑥)±𝑖

)−1 is also norm-continuous
in x. Therefore,

(
S ′(𝑥) − S ′′(𝑥)

) (
S ′′(𝑥) ± 𝑖

)−1 is norm-continuous in x. Hence, the family S ′(·) −

S ′′(·) is relatively S ′′(·)-compact, and it follows from Proposition A.11 that [S ′(·)] = [S ′′(·)] ∈

𝐾𝐾1(C, 𝐶0 (𝑀, 𝐴)) 
 𝐾1(𝐶0 (𝑀, 𝐴)).
Next, since S ′(·) again satisfies assumption (B), we can again apply Theorem 3.5, and as in step 1,

we obtain (for 𝜆 sufficiently large) that Index
(
D − 𝑖𝜆S ′(·)

)
= Index

(
D − 𝑖𝜆S ′′(·)

)
. �

Definition 5.2. Consider the cylindrical manifold R × 𝑁 , along with the pullback vector bundle FR×𝑁
obtained from F𝑁 → 𝑁 . We identify Γ∞

𝑐 (FR×𝑁 ) 
 𝐶∞
𝑐 (R) ⊗ Γ∞(F𝑁 ) and consider the essentially

self-adjoint elliptic first-order differential operator DR×𝑁 on FR×𝑁 given by

DR×𝑁 := −𝑖𝜕𝑟 ⊗ Γ𝑁 + 1 ⊗ D𝑁 .

Let 𝜚 ∈ 𝐶∞(R) be as in Lemma 5.1. We define the family {SR×𝑁 (𝑟, 𝑦)}(𝑟 ,𝑦) ∈R×𝑁 on E given by

SR×𝑁 (𝑟, 𝑦) := 𝜚(𝑟)T +
(
1 − 𝜚(𝑟)

)
S (𝑦).

The operator Γ𝑁 from assumption (C1) provides a Z2-grading on F𝑁 , yielding the decomposition
F𝑁 = F+𝑁 ⊕ F−𝑁 . By assumption, the essentially self-adjoint elliptic first-order differential operator
D𝑁 is odd with respect to this Z2-grading, and thus, D𝑁 defines an even K-homology class [D𝑁 ] ∈

𝐾0(𝐶 (𝑁)) ≡ 𝐾0(𝑁). Similarly, the ungraded operatorDR×𝑁 yields an odd K-homology class [DR×𝑁 ] ∈

𝐾1(𝐶0 (R × 𝑁)) ≡ 𝐾1(R × 𝑁). Furthermore, the operator −𝑖𝜕𝑟 on 𝐿2 (R) yields an odd K-homology
class [−𝑖𝜕𝑟 ] ∈ 𝐾

1(𝐶0 (R)) ≡ 𝐾1(R).

Lemma 5.3. The external product of [−𝑖𝜕𝑟 ] ∈ 𝐾1(𝐶0 (R)) with [D𝑁 ] ∈ 𝐾0(𝐶 (𝑁)) equals [DR×𝑁 ] ∈

𝐾1(𝐶0 (R × 𝑁)).

Proof. The statement follows from the description of the odd-even (internal) Kasparov product given
in [BMS16, Example 2.38] (noting that the argument remains valid in the simpler case of an external
Kasparov product). �

Theorem 5.4. Consider the cylindrical manifold R × 𝑁 with the operators DR×𝑁 and SR×𝑁 (·) from
Definition 4.2. Then, for 𝜆 sufficiently large,

Index
(
D − 𝑖𝜆S (·)

)
= Index

(
DR×𝑁 − 𝑖𝜆SR×𝑁 (·)

)
.
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Proof. Using Lemma 5.1, we may assume that the potential S (·) agrees with the potential SR×𝑁 (·) on
the collar neighbourhood C of N and that S (𝑥) = T for all 𝑥 ∈ 𝐾 \ 𝐶. We will then apply the relative
index theorem (Theorem 4.1) twice.

First, define 𝑉 := 𝑀 \ 𝐾 , and consider the manifolds

𝑀1 ≡ 𝑀 = 𝐾 ∪𝑁 𝑉, 𝑀2 := R × 𝑁 =
(
(−∞, 0] × 𝑁

)
∪{0}×𝑁

(
[0,∞) × 𝑁

)
.

On𝑀2, we consider the operatorD2 := DR×𝑁 and the potentialS2 (𝑟, 𝑦) := S (𝑦), satisfying assumptions
(A) and (B). We identify N in M with {0}×𝑁 in𝑀2. Cutting and pasting then gives us two new manifolds
𝑀3 = 𝐾 ∪𝑁

(
[0,∞) × 𝑁

)
and 𝑀4 =

(
(−∞, 0] × 𝑁

)
∪𝑁 𝑉 . Using the relative index theorem, we know

that Index
(
D1 − 𝑖𝜆S1(·)

)
+ Index

(
D2 − 𝑖𝜆S2(·)

)
= Index

(
D3 − 𝑖𝜆S3(·)

)
+ Index

(
D4 − 𝑖𝜆S4(·)

)
∈

𝐾0(𝐴) (for 𝜆 sufficiently large). Since S2(·) and S4(·) are invertible, we know from Proposition 4.5
that also D2 − 𝑖𝜆S2(·) and D4 − 𝑖𝜆S4(·) are invertible (for 𝜆 sufficiently large), and it follows that
Index

(
D − 𝑖𝜆S (·)

)
≡ Index

(
D1 − 𝑖𝜆S1(·)

)
= Index

(
D3 − 𝑖𝜆S3(·)

)
∈ 𝐾0(𝐴). Thus, we have replaced

the subset V by the half cylinder (0,∞) × 𝑁 , with the potential SR×𝑁 (𝑟, 𝑦) = S (𝑦) for all 𝑟 ∈ (0,∞).
Second, we can similarly apply the relative index theorem again to replace the subset 𝐾\

(
[−𝜀, 0] ×𝑁

)
by the half cylinder (−∞,−𝜀) × 𝑁 , equipped with the constant potential SR×𝑁 (𝑟, 𝑦) = T for all
𝑟 ∈ (−∞,−𝜀), 𝑦 ∈ 𝑁 . This completes the proof. �

We are now ready to prove our main theorem.

Theorem 3.8 (Generalised Callias Theorem). Let D𝜆S be a generalised Callias-type operator. Then we
have the equality

Index
(
D𝜆S

)
= rel-ind

(
𝑃+(S𝑁 (·)), 𝑃+(T (·))

)
⊗𝐶 (𝑁 ) [D𝑁 ] ∈ 𝐾0(𝐴),

where ⊗𝐶 (𝑁 ) denotes the pairing 𝐾1(𝐶 (𝑁, 𝐴)) × 𝐾
1(𝐶 (𝑁)) → 𝐾0(𝐴).

Proof. Consider the cylindrical manifold R × 𝑁 with the operators DR×𝑁 and SR×𝑁 (·) from Defini-
tion 4.2. From Proposition 2.8, we have the equality

rel-ind
(
𝑃+(S𝑁 (·)), 𝑃+(T (·))

)
= sf

(
{SR×𝑁 (𝑟)}𝑟 ∈[−𝜖 ,0]

)
.

Moreover, by [Dun19, Proposition 2.21], the spectral flow of the family {SR×𝑁 (𝑟)}𝑟 ∈[−𝜖 ,0] equals
[SR×𝑁 (·)] ⊗𝐶0 (R) [−𝑖𝜕𝑟 ], so we obtain

rel-ind
(
𝑃+(S𝑁 (·)), 𝑃+(T (·))

)
= [SR×𝑁 (·)] ⊗𝐶0 (R) [−𝑖𝜕𝑟 ] .

For𝐶∗-algebras A, B and C, recall the map 𝜏𝐶 : 𝐾𝐾 (𝐴, 𝐵) → 𝐾𝐾 (𝐴⊗𝐶, 𝐵⊗𝐶) given by the external
Kasparov product with the identity element 1𝐶 ∈ 𝐾𝐾 (𝐶,𝐶). Applying this with 𝐶 = 𝐶 (𝑁), we then
have the equalities

rel-ind
(
𝑃+(S𝑁 (·)), 𝑃+(T (·))

)
⊗𝐶 (𝑁 ) [D𝑁 ] =

(
[SR×𝑁 (·)] ⊗𝐶0 (R) [−𝑖𝜕𝑟 ]

)
⊗𝐶 (𝑁 ) [D𝑁 ]

= [SR×𝑁 (·)] ⊗𝐶0 (R×𝑁 ) 𝜏𝐶 (𝑁 ) ( [−𝑖𝜕𝑟 ]) ⊗𝐶 (𝑁 ) [D𝑁 ]

= [SR×𝑁 (·)] ⊗𝐶0 (R×𝑁 )

(
[−𝑖𝜕𝑟 ] ⊗ [D𝑁 ]

)
= [SR×𝑁 (·)] ⊗𝐶0 (R×𝑁 ) [DR×𝑁 ],

where the second and third equalities follow from the properties of the Kasparov product, and the fourth
equality is given by Lemma 5.3.
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Since the operators SR×𝑁 (·) and DR×𝑁 on the manifold R × 𝑁 satisfy the assumptions (A) and (B),
we may apply Theorem 3.5 to compute the Kasparov product on the manifold R × 𝑁 and obtain

[SR×𝑁 (·)] ⊗𝐶0 (R×𝑁 ) [DR×𝑁 ] = Index
(
DR×𝑁 − 𝑖𝜆SR×𝑁 (·)

)
.

Finally, from Theorem 5.4, we know that

Index
(
DR×𝑁 − 𝑖𝜆SR×𝑁 (·)

)
= Index

(
D − 𝑖𝜆S (·)

)
. �

A. Appendix

In this Appendix, we collect several statements regarding (mostly unbounded) operators on Hilbert 𝐶∗-
modules. Many of these statements are well-known for operators on Hilbert spaces, but they have not yet
appeared (to the author’s best knowledge) in the literature for operators on Hilbert 𝐶∗-modules. While
some of the proofs of these statements are similar to proofs in the Hilbert space context, we have for
completeness included detailed proofs in our Hilbert 𝐶∗-module context.

Throughout this Appendix, we consider a 𝐶∗-algebra A and a Hilbert A-module E. We start with
a basic lemma (well-known in the Hilbert space setting), whose proof given in, for example, [HS12,
Theorem 9.19], remains valid for adjointable operators on Hilbert 𝐶∗-modules.

Lemma A.1. Let 𝑇𝑛
∗𝑠
−→ 𝑇 ∈ L𝐴(𝐸) be a ∗-strongly convergent sequence of adjointable operators on E.

Then for any compact operator 𝐾 ∈ K𝐴(𝐸), we have norm-convergence 𝐾𝑇𝑛 → 𝐾𝑇 and 𝑇𝑛𝐾 → 𝑇𝐾 .

Proof. For any 𝜖 > 0, there exists a finite-rank operator 𝐹𝜖 =
∑𝑁

𝑗=1 𝜃𝜓𝑗 ,𝜑 𝑗 such that ‖𝐾 − 𝐹𝜖 ‖ < 𝜖 . For
each 𝜉 ∈ 𝐸 , we can estimate

‖(𝑇𝑛 − 𝑇)𝐹𝜖 𝜉‖ = ‖(𝑇𝑛 − 𝑇)
𝑁∑
𝑗=1
𝜓 𝑗 〈𝜑 𝑗 |𝜉〉‖ ≤

𝑁∑
𝑗=1

‖(𝑇𝑛 − 𝑇)𝜓 𝑗 ‖ ‖𝜑 𝑗 ‖ ‖𝜉‖.

Since𝑇𝑛𝜓 𝑗 converges to𝑇𝜓 𝑗 for each j, we obtain for n large enough that ‖(𝑇𝑛−𝑇)𝐹𝜖 ‖ < 𝜖 . Furthermore,
since𝑇𝑛 converges strongly to T, the uniform boundedness principle implies that there exists𝑀 ∈ (0,∞)

such that ‖𝑇𝑛‖ ≤ 𝑀 for all n. Thus, for n large enough, we obtain

‖𝑇𝑛𝐾 − 𝑇𝐾 ‖ ≤ ‖(𝑇𝑛 − 𝑇) (𝐾 − 𝐹𝜖 )‖ + ‖(𝑇𝑛 − 𝑇)𝐹𝜖 ‖ ≤ 𝜖 ‖𝑇𝑛 − 𝑇 ‖ + 𝜖 ≤ 𝜖 (𝑀 + ‖𝑇 ‖ + 1).

As 𝜖 > 0 was arbitrary, this proves 𝑇𝑛𝐾 converges to 𝑇𝐾 in norm.
Next, using that 𝑇𝑛, 𝑇 are adjointable, we can also estimate, for any 𝜉 ∈ 𝐸 ,

‖𝐹𝜖 (𝑇𝑛 − 𝑇)𝜉‖ = ‖

𝑁∑
𝑗=1
𝜓 𝑗 〈(𝑇

∗
𝑛 − 𝑇∗)𝜑 𝑗 |𝜉〉‖ ≤

𝑁∑
𝑗=1

‖𝜓 𝑗 ‖ ‖(𝑇
∗
𝑛 − 𝑇∗)𝜑 𝑗 ‖ ‖𝜉‖.

By assumption,𝑇∗
𝑛 also converges strongly to𝑇∗, so for n large enough, we obtain that ‖𝐹𝜖 (𝑇𝑛−𝑇)‖ < 𝜖 .

Then, proceeding as above, also 𝐾𝑇𝑛 converges to 𝐾𝑇 in norm. �

A.1. Interpolation

The following results are based on [Les05, Proposition A.1]. We follow the adaptation to the case of
operators on Hilbert 𝐶∗-modules as given in the proof of [LM19, Lemma 7.7].

Proposition A.2. Let T be an invertible positive regular self-adjoint operator on E. Let S be a densely
defined symmetric operator on E with Dom 𝑆 ⊃ Dom𝑇 . Then the following statements hold:
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1. 𝑆𝑇−1 is bounded and adjointable, and 𝑇−1𝑆 is densely defined and bounded and extends to an
adjointable operator 𝑇−1𝑆 with (𝑇−1𝑆)∗ = 𝑆𝑇−1.

2. The operator 𝑇−1𝑆𝑇 is densely defined, and its adjoint equals (𝑇−1𝑆𝑇)∗ = 𝑇𝑆𝑇−1.
3. If 𝑇−1𝑆𝑇 or 𝑇𝑆𝑇−1 is bounded and extends to an adjointable operator, then in fact both 𝑇−1𝑆𝑇 and
𝑇𝑆𝑇−1 are bounded and extend to adjointable operators, and ‖𝑇𝑆𝑇−1‖ = ‖𝑇−1𝑆𝑇 ‖.

4. The operator 𝑇− 1
2 𝑆𝑇− 1

2 is bounded and extends to an adjointable operator, and its norm satisfies the
inequality ‖𝑇− 1

2 𝑆𝑇− 1
2 ‖ ≤ ‖𝑆𝑇−1‖.

Proof.

1. Since S is closable and Ran𝑇−1 ⊂ Dom 𝑆, it is a consequence of the closed graph theorem that 𝑆𝑇−1

is bounded. For all 𝜓 ∈ Dom 𝑆 and 𝜉 ∈ 𝐸 , we have 〈𝑇−1𝑆𝜓 |𝜉〉 = 〈𝜓 |𝑆𝑇−1𝜉〉, which shows that 𝑇−1𝑆
has a densely defined adjoint and is therefore closable. Moreover, on the dense subset Dom 𝑆, 𝑇−1𝑆
agrees with the adjoint (𝑆𝑇−1)∗. Thus, 𝑆𝑇−1 is bounded and has a densely defined adjoint, which
implies that 𝑆𝑇−1 is in fact adjointable with (𝑆𝑇−1)∗ = 𝑇−1𝑆.

2. Since T is regular and self-adjoint, Dom𝑇2 is dense in E, so Dom(𝑇−1𝑆𝑇) = Dom(𝑆𝑇) ⊃ Dom(𝑇2) is
also dense. Let 𝜉 ∈ Dom(𝑇𝑆𝑇−1) and 𝜂 ∈ Dom(𝑇−1𝑆𝑇). Then 𝑇−1𝜉 ∈ Dom 𝑆 with 𝑆𝑇−1𝜉 ∈ Dom𝑇 ,
and 𝜂 ∈ Dom𝑇 with 𝑇𝜂 ∈ Dom 𝑆. Consequently,

〈𝑇𝑆𝑇−1𝜉 |𝜂〉 = 〈𝑆𝑇−1𝜉 |𝑇𝜂〉 = 〈𝑇−1𝜉 |𝑆𝑇𝜂〉 = 〈𝜉 |𝑇−1𝑆𝑇𝜂〉,

so 𝜉 ∈ Dom(𝑇−1𝑆𝑇)∗ and 𝑇𝑆𝑇−1 ⊂ (𝑇−1𝑆𝑇)∗. For the converse, consider 𝜉 ∈ Dom(𝑇−1𝑆𝑇)∗ and
𝜂 ∈ Dom(𝑇2) ⊂ Dom(𝑇−1𝑆𝑇). Then

〈(𝑇−1𝑆𝑇)∗𝜉 |𝜂〉 = 〈𝜉 |𝑇−1𝑆𝑇𝜂〉 = 〈𝑇−1𝜉 |𝑆𝑇𝜂〉 = 〈𝑆𝑇−1𝜉 |𝑇𝜂〉.

Since Dom𝑇2 is a core for T, the above equality continues to hold for all 𝜂 ∈ Dom𝑇 . Thus,
𝑆𝑇−1𝜉 ∈ Dom𝑇∗ = Dom𝑇 and𝑇𝑆𝑇−1𝜉 = 𝑇∗𝑆𝑇−1𝜉 = (𝑇−1𝑆𝑇)∗𝜉, which shows (𝑇−1𝑆𝑇)∗ ⊂ 𝑇𝑆𝑇−1.

3. Assuming 𝑇−1𝑆𝑇 is adjointable, it follows from 2 that 𝑇𝑆𝑇−1 = (𝑇−1𝑆𝑇)∗ is also bounded and
adjointable. Similarly, assuming 𝑇𝑆𝑇−1 is adjointable, it follows from 2 that 𝑇−1𝑆𝑇 = (𝑇𝑆𝑇−1)∗ is
also bounded and adjointable.

4. For simplicity, we assume that ‖𝑇−1‖ ≤ 1. For 𝜉, 𝜂 ∈ Dom𝑇 and 0 ≤ Re𝑧 ≤ 1, consider the operator
𝑃𝑧 := 𝑇−𝑧𝑆𝑇−1+𝑧 and the function

𝑓 (𝑧) := 〈𝑃𝑧𝜉 |𝜂〉 = 〈𝑇−𝑧𝑆𝑇−1+𝑧𝜉 |𝜂〉.

f is weakly holomorphic on the strip 0 < Re𝑧 < 1. Moreover, from the estimate

⟪𝑃𝑧𝜉⟫ ≤ ⟪𝑆𝑇
−1+𝑧𝜉⟫ ≤ ‖𝑆𝑇−1‖2⟪𝑇 𝑧𝜉⟫ ≤ ‖𝑆𝑇−1‖2⟪𝑇𝜉⟫,

we obtain that ‖ 𝑓 (𝑧)‖ ≤ ‖𝑆𝑇−1‖ ‖𝑇𝜉‖ ‖𝜂‖, so f is a bounded function.
Now consider a bounded linear functional 𝜑 : 𝐴 → C with ‖𝜑‖ ≤ 1. Since the function 𝜑 ◦ 𝑓 is

holomorphic and bounded on the strip 0 ≤ Re𝑧 ≤ 1, it follows from the Hadamard 3-line Theorem
that 𝜑◦ 𝑓 is bounded by its suprema on the boundary Re𝑧 ∈ {0, 1}. On this boundary Re𝑧 ∈ {0, 1}, we
have ‖𝑃𝑧 ‖ = ‖𝑃0‖ = ‖𝑆𝑇−1‖, so from the Hadamard 3-line Theorem, we obtain for all 0 ≤ Re𝑧 ≤ 1
that ��𝜑 ( 𝑓 (𝑧))�� = ��𝜑 (〈𝑃𝑧𝜉 |𝜂〉

) �� ≤ sup
𝑤 ∈C:Re𝑤=0,1

��𝜑 (〈𝑃𝑤𝜉 |𝜂〉
) ��

≤ sup
𝑤 ∈C:Re𝑤=0,1

��〈𝑃𝑤𝜉 |𝜂〉
�� ≤ ‖𝑆𝑇−1‖ ‖𝜉‖ ‖𝜂‖.
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Since there exists a bounded linear functional 𝜑 with
��𝜑 ( 𝑓 (𝑧))�� = ‖ 𝑓 (𝑧)‖, it follows that also�� 𝑓 (𝑧)�� ≤ ‖𝑆𝑇−1‖ ‖𝜉‖ ‖𝜂‖. Taking the supremum over all 𝜉 and 𝜂 with ‖𝜉‖ = ‖𝜂‖ = 1, we conclude

that 𝑃𝑧 is bounded and extends to an adjointable operator 𝑃𝑧 satisfying ‖𝑃𝑧 ‖ ≤ ‖𝑆𝑇−1‖. �

Corollary A.3. Let T be an invertible positive regular self-adjoint operator on E. Let 𝐹 = 𝐹∗ ∈ L𝐴(𝐸)

and assume that the operator 𝑇− 1
2 𝐹𝑇

1
2 is bounded and extends to an adjointable operator. Then

‖𝐹‖ ≤ ‖𝑇− 1
2 𝐹𝑇

1
2 ‖ = ‖𝑇

1
2 𝐹𝑇− 1

2 ‖.

Proof. We note that 𝑇 1
2 is also an invertible positive regular selfadjoint operator. Certainly, Dom 𝐹 =

𝐸 ⊃ Dom𝑇 1
2 , and since 𝑇− 1

2 𝐹𝑇
1
2 is bounded (and extends to an adjointable operator), we know

from Proposition A.2.3 that also 𝑇 1
2 𝐹𝑇− 1

2 is bounded (and extends to an adjointable operator) and
‖𝑇

1
2 𝐹𝑇− 1

2 ‖ = ‖𝑇− 1
2 𝐹𝑇

1
2 ‖.

Now consider the symmetric operator 𝑆 := 𝑇 1
2 𝐹𝑇

1
2 . We have just seen that 𝑆𝑇−1 = 𝑇

1
2 𝐹𝑇− 1

2 is
bounded (i.e., Dom𝑇 ⊂ Dom 𝑆). Hence, by Proposition A.2.4, we find that

‖𝐹‖ = ‖𝑇− 1
2 𝑆𝑇− 1

2 ‖
𝐴.2.4
≤ ‖𝑆𝑇−1‖ = ‖𝑇

1
2 𝐹𝑇− 1

2 ‖
𝐴.2.3
= ‖𝑇− 1

2 𝐹𝑇
1
2 ‖.

�

A.2. Convergence of unbounded operators

The following result generalises one of the statements in [Les05, Proposition 2.2], regarding convergence
of unbounded operators with respect to certain topologies, to the context of regular operators on Hilbert
𝐶∗-modules.

Proposition A.4. Let D be a regular selfadjoint operator on E. We view the domain𝑊 := DomD ⊂ 𝐸
as a Hilbert A-module with the graph norm. Let T and 𝑇𝑛 (for all 𝑛 ∈ N) be regular selfadjoint operators
on E with Dom𝑇 = DomD and Dom𝑇𝑛 = DomD for all 𝑛 ∈ N.

If (𝑇𝑛 − 𝑇) (D + 𝑖)−1 converges in norm to 0 as 𝑛 → ∞, then also 𝐹𝑇𝑛 − 𝐹𝑇 converges in norm to 0
as 𝑛→ ∞.

Proof. The proof is similar to the Hilbert space proof given in [Les05, Proposition 2.2]. For complete-
ness, we include the details here.

We pick 0 < 𝜖 < 1
2 . Since DomD = Dom𝑇 , we know that (D + 𝑖) (𝑇 + 𝑖)−1 is bounded, so there

exists an 𝑁0 ∈ N such that for all 𝑛 ≥ 𝑁0, we have��(𝑇 − 𝑇𝑛) (𝑇 + 𝑖)−1�� ≤ 𝜖 and
��(𝑇 + 𝑖)−1(𝑇 − 𝑇𝑛)

�� ≤ 𝜖 .
Consequently, the operator (𝑇 + 𝑖)−1(𝑇𝑛 + 𝑖) = 1− (𝑇 + 𝑖)−1(𝑇 −𝑇𝑛) is invertible, and from the Neumann
series, we obtain the norm bound

��(𝑇𝑛 + 𝑖)−1(𝑇 + 𝑖)
�� ≤ ∞∑

𝑘=0
𝜖 𝑘 =

1
1 − 𝜖

< 2.

Thus, for all 𝜓 ∈ 𝐸 , we have (in the 𝐶∗-algebra A) the inequality

⟪(𝑇𝑛 + 𝑖)
−1𝜓⟫ ≤

1
(1 − 𝜖)2 ⟪(𝑇 + 𝑖)−1𝜓⟫,

or equivalently, we have the operator inequality

(1 + 𝑇2
𝑛 )

−1 ≤
1

(1 − 𝜖)2 (1 + 𝑇2)−1.
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Furthermore, from the estimate
��(𝑇 + 𝑖)−1(𝑇𝑛 + 𝑖)

�� ≤ 1 + 𝜖 , we similarly obtain the operator inequality

(1 + 𝑇2)−1 ≤ (1 + 𝜖)2(1 + 𝑇2
𝑛 )

−1.

Thus, taking square roots, we have

1
1 + 𝜖

(1 + 𝑇2)−
1
2 ≤ (1 + 𝑇2

𝑛 )
− 1

2 ≤
1

1 − 𝜖
(1 + 𝑇2)−

1
2 .

Subtracting (1 + 𝑇2)−
1
2 yields

−
𝜖

1 + 𝜖
(1 + 𝑇2)−

1
2 ≤ (1 + 𝑇2

𝑛 )
− 1

2 − (1 + 𝑇2)−
1
2 ≤

𝜖

1 − 𝜖
(1 + 𝑇2)−

1
2 ,

from which we obtain the norm estimate��(1 + 𝑇2)
1
4 (1 + 𝑇2

𝑛 )
− 1

2 (1 + 𝑇2)
1
4 − 1

�� ≤ 𝜖

1 − 𝜖
.

In particular, (1 +𝑇2)
1
4 (1 +𝑇2

𝑛 )
− 1

2 (1 +𝑇2)
1
4 is bounded. Since also (1 +𝑇2)−

1
4𝑇𝑛 (1 +𝑇2)−

1
4 is bounded

by Proposition A.2.4, the estimate��(1 + 𝑇2)−
1
4 𝐹𝑇𝑛 (1 + 𝑇2)

1
4
�� ≤ ��(1 + 𝑇2)−

1
4𝑇𝑛 (1 + 𝑇2)−

1
4
�� ��(1 + 𝑇2)

1
4 (1 + 𝑇2

𝑛 )
− 1

2 (1 + 𝑇2)
1
4
��

shows that (1+𝑇2)−
1
4 𝐹𝑇𝑛 (1+𝑇2)

1
4 is bounded. Thus, we can use Corollary A.3 to estimate the difference

of the bounded transforms of T and 𝑇𝑛 (for all 𝑛 ≥ 𝑁0):

��𝐹𝑇 − 𝐹𝑇𝑛
�� 𝐴.3

≤
��(1 + 𝑇2)−

1
4
(
𝐹𝑇 − 𝐹𝑇𝑛

)
(1 + 𝑇2)

1
4
��

≤
��(1 + 𝑇2)−

1
4
(
𝑇 − 𝑇𝑛

)
(1 + 𝑇2)−

1
4
��

+
��(1 + 𝑇2)−

1
4𝑇𝑛

(
(1 + 𝑇2)−

1
2 − (1 + 𝑇2

𝑛 )
− 1

2
)
(1 + 𝑇2)

1
4
��

𝐴.2.4
≤

��(𝑇 − 𝑇𝑛
)
(1 + 𝑇2)−

1
2
��

+
��(1 + 𝑇2)−

1
4𝑇𝑛 (1 + 𝑇2)−

1
4
�� ��1 − (1 + 𝑇2)

1
4 (1 + 𝑇2

𝑛 )
− 1

2 (1 + 𝑇2)
1
4
��

𝐴.2.4
≤ 𝜖 +

��𝑇𝑛 (1 + 𝑇2)−
1
2
�� 𝜖

1 − 𝜖

≤ 𝜖 + (1 + 𝜖)
𝜖

1 − 𝜖
= 𝜖

(
1 +

1 + 𝜖

1 − 𝜖

)
≤ 4𝜖,

where we used that 𝜖 < 1
2 . We note that this inequality still holds for all 𝑛 ≥ 𝑁0. Since 0 < 𝜖 < 1

2 was
arbitrary, this proves that

��𝐹𝑇 − 𝐹𝑇𝑛
�� → 0 as 𝑛→ ∞. �

A.3. Relatively compact perturbations

In this subsection, we study relatively compact perturbations of regular self-adjoint operators. Propo-
sitions A.6 and A.7 below are well-known facts for operators on Hilbert spaces but appear not to be
present in the literature on Hilbert 𝐶∗-modules.

Definition A.5. Let T be a regular self-adjoint operator on E. A densely defined operator R on E is
called relatively T-compact if Dom(𝑇) ⊂ Dom(𝑅) and 𝑅(𝑇 ± 𝑖)−1 is compact.

The assumption Dom(𝑇) ⊂ Dom(𝑅) implies that R is also relatively T-bounded. In fact, relative T-
compactness implies that the relative T-bound can be chosen to be arbitrarily small. This is a well-known
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fact for operators on Hilbert spaces; we show next that this fact remains true on Hilbert 𝐶∗-modules, by
adapting the proof of [HS12, Theorem 14.2].

Proposition A.6. Let T be a regular self-adjoint operator on E, and let R be relatively T-compact. Then
for all 𝜖 > 0, there exists 𝐶𝜖 ≥ 0 such that for all 𝜓 ∈ Dom(𝑇), we have

‖𝑅𝜓‖ ≤ 𝜖 ‖𝑇𝜓‖ + 𝐶𝜖 ‖𝜓‖.

Proof. We note that the operators (𝑇 − 𝑖) (𝑇 − 𝑖𝑛)−1 converge ∗-strongly to 0 as 𝑛 → ∞ (this follows,
for example, from [KL12, Lemma 7.2]). We can write

𝑅(𝑇 − 𝑖𝑛)−1 = 𝑅(𝑇 − 𝑖)−1(𝑇 − 𝑖) (𝑇 − 𝑖𝑛)−1.

Since 𝑅(𝑇 − 𝑖)−1 is compact and (𝑇 − 𝑖) (𝑇 − 𝑖𝑛)−1 ∗𝑠
−→ 0, the operator 𝑅(𝑇 − 𝑖𝑛)−1 converges to 0 in norm

by Lemma A.1. Thus, given any 𝜖 > 0, we can choose n large enough such that ‖𝑅(𝑇 − 𝑖𝑛)−1‖ < 𝜖 .
Then for any 𝜓 ∈ Dom(𝑇), we have

‖𝑅𝜓‖ ≤ ‖𝑅(𝑇 − 𝑖𝑛)−1‖ ‖(𝑇 − 𝑖𝑛)𝜓‖ ≤ 𝜖 ‖(𝑇 − 𝑖𝑛)𝜓‖ ≤ 𝜖 ‖𝑇𝜓‖ + 𝜖𝑛‖𝜓‖,

where 𝐶𝜖 := 𝜖𝑛 is independent of 𝜓. �

Proposition A.7. Let T be a regular self-adjoint operator on E, and let R be a symmetric operator on E
which is relatively T-compact. Then 𝑇 + 𝑅 is also regular and self-adjoint on Dom(𝑇 + 𝑅) = Dom(𝑇).

Proof. By Proposition A.6, we have for any 0 < 𝑎 < 1 that ‖𝑅𝜓‖ ≤ 𝑎‖𝑇𝜓‖+𝐶𝑎 ‖𝜓‖ for all𝜓 ∈ Dom(𝑇).
It then follows from the Kato-Rellich Theorem on Hilbert𝐶∗-modules ([KL12, Theorem 4.5]) that𝑇 +𝑅
is also regular and self-adjoint with Dom(𝑇 + 𝑅) = Dom(𝑇). �

The following result generalises [Les05, Proposition 3.4] to the context of regular operators on
Hilbert 𝐶∗-modules.

Proposition A.8. Let T be a regular self-adjoint operator on E, and let R be a symmetric operator on
E which is relatively T-compact. Then 𝐹𝑇 +𝑅 − 𝐹𝑇 is compact.

Proof. The proof is similar to the Hilbert space proof given in [Les05, Proposition 3.4] but requires
minor adaptations. For completeness, we include the details here.

1. We first prove a special case: assume that R is compact and Ran 𝑅 ⊂ Dom𝑇 . In this case, it suffices
to show the compactness of 𝐹𝑇 +𝑅 − 𝐹𝑇 − 𝑅

(
1+ (𝑇 + 𝑅)2)− 1

2 = 𝑇
(
1+ (𝑇 + 𝑅)2)− 1

2 −𝑇
(
1+𝑇2)− 1

2 . We
note that (𝑇 + 𝑅)2 −𝑇2 = 𝑇𝑅 + 𝑅(𝑇 + 𝑅) is well-defined on Dom𝑇 = Dom(𝑇 + 𝑅). We can then use
the integral formula (1 + 𝑇2)−

1
2 = 1

𝜋

∫ ∞

0 𝜆−
1
2 (1 + 𝜆 + 𝑇2)−1 d𝜆 (and similarly for 𝑇 + 𝑅) along with

the resolvent identity to rewrite

𝑇
(
1 + (𝑇 + 𝑅)2)− 1

2 − 𝑇
(
1 + 𝑇2)− 1

2

=
1
𝜋

∫ ∞

0
𝜆−

1
2𝑇

(
1 + 𝜆 + 𝑇2)−1 (

𝑇2 − (𝑇 + 𝑅)2) (1 + 𝜆 + (𝑇 + 𝑅)2)−1 d𝜆

= −
1
𝜋

∫ ∞

0
𝜆−

1
2𝑇

(
1 + 𝜆 + 𝑇2)−1 (

𝑇𝑅 + 𝑅(𝑇 + 𝑅)
) (

1 + 𝜆 + (𝑇 + 𝑅)2)−1 d𝜆.

Observing that the integrand is compact and of order O(𝜆−
3
2 ), we see that the integral converges

in norm to a compact operator, and we conclude that 𝐹𝑇 +𝑅 − 𝐹𝑇 is compact.
2. We now prove the general case by reducing to the special case. For 𝑛 ∈ N, consider compactly

supported continuous functions 𝜙𝑛 ∈ 𝐶𝑐 (R) satisfying 0 ≤ 𝜙𝑛 (𝑥) ≤ 1 for all 𝑥 ∈ R, 𝜙𝑛 (𝑥) = 1
if |𝑥 | ≤ 𝑛, and 𝜙𝑛 (𝑥) = 0 if |𝑥 | ≥ 𝑛 + 1. Using continuous functional calculus, we construct the
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operators 𝜙𝑛 (𝑇) ∈ L𝐴(𝐸), and we note that Ran 𝜙𝑛 (𝑇) ⊂ Dom𝑇 (since 𝜙𝑛 is compactly supported).
We now consider the operators

𝑅𝑛 := 𝜙𝑛 (𝑇)𝑅𝜙𝑛 (𝑇) = 𝜙𝑛 (𝑇)︸︷︷︸
bounded

𝑅(𝑇 − 𝑖)−1︸�������︷︷�������︸
compact

(𝑇 − 𝑖)𝜙𝑛 (𝑇)︸����������︷︷����������︸
bounded

,

and we note that 𝑅𝑛 is compact with Ran 𝑅𝑛 ⊂ Dom𝑇 . Thus, the special case applies to 𝑅𝑛.
As 𝑛 → ∞, the operators 𝜙𝑛 (𝑇) converge strongly (hence, by self-adjointness, ∗-strongly) to

the identity (see, for example, [KL12, Lemma 7.2]). Since 𝑅(𝑇 − 𝑖)−1 is compact, it follows from
Lemma A.1 that 𝑅𝑛 (𝑇 − 𝑖)−1 converges in norm to 𝑅(𝑇 − 𝑖)−1. From Proposition A.4, we therefore
obtain that 𝐹𝑇 +𝑅𝑛 converges in norm to 𝐹𝑇 +𝑅. Since 𝐹𝑇 +𝑅𝑛 − 𝐹𝑇 is compact by the special case, we
conclude that also 𝐹𝑇 +𝑅 − 𝐹𝑇 is compact. �

Proposition A.9. Let T be a regular self-adjoint operator on E, and let R be a symmetric operator on E
which is relatively T-compact. Let 𝑓 ∈ 𝐶 (R) be a continuous function for which the limits lim𝑥→±∞ 𝑓 (𝑥)
exist. Then 𝑓 (𝑇 + 𝑅) − 𝑓 (𝑇) is compact.

Proof. The statement clearly holds for constant functions, and by Proposition A.8 also for the ‘bounded
transform function’ 𝑏 ∈ 𝐶 (R) given by 𝑏(𝑥) := 𝑥(1 + 𝑥2)−

1
2 . It remains to prove the statement for

functions 𝑓 ∈ 𝐶0 (R) vanishing at infinity, and for this, it suffices to consider 𝑓 (𝑥) = (𝑥 ± 𝑖)−1. But for
the latter, the statement follows immediately from the resolvent identity and compactness of 𝑅(𝑇 ± 𝑖)−1:

(𝑇 + 𝑅 ± 𝑖)−1 − (𝑇 ± 𝑖)−1 = −(𝑇 + 𝑅 ± 𝑖)−1𝑅(𝑇 ± 𝑖)−1. �

The following result partly generalises [Les05, Corollary 3.5] to the context of regular operators on
Hilbert 𝐶∗-modules, under somewhat stronger assumptions.

Corollary A.10. Let T be a regular self-adjoint operator on E, and let R be a symmetric operator on
E which is relatively T-compact. Assume that T and 𝑇 + 𝑅 are both invertible. Then the difference of
positive spectral projections 𝑃+(𝑇 + 𝑅) − 𝑃+(𝑇) is compact.

Proof. Since T and 𝑇 + 𝑅 are invertible, there exists an 𝜖 > 0 such that (−𝜖, 𝜖) does not intersect with
the union spec(𝑇) ∪ spec(𝑇 + 𝑅) of the spectra of T and 𝑇 + 𝑅. Then the positive spectral projections
can be defined via continuous functional calculus (i.e., we can take 𝜒 ∈ 𝐶 (R) with 𝜒 |(−∞,−𝜖 ] ≡ 0 and
𝜒 |[𝜖 ,∞) ≡ 1 and see that 𝑃+(𝑇) = 𝜒(𝑇) and 𝑃+(𝑇 + 𝑅) = 𝜒(𝑇 + 𝑅)). The statement then follows from
Proposition A.9. �

A regular operator T on E is called Fredholm if there exists a parametrix Q such that (the closure of)
𝑄𝑇 − 1 and 𝑇𝑄 − 1 are compact operators on E. We recall that an odd resp. even regular self-adjoint
Fredholm operator T on a possibly Z2-graded Hilbert A-module E yields a well-defined class [𝑇] in
𝐾𝐾0(C, 𝐴) 
 𝐾0(𝐴) resp. 𝐾𝐾1 (C, 𝐴) 
 𝐾1(𝐴); for details of the construction, we refer to [Dun19,
§2.2].

Our last result shows that this K-theory class is stable under relatively compact perturbations.

Proposition A.11. Let T be a regular self-adjoint Fredholm operator on E, and let R be a symmetric
operator on E which is relatively T-compact. Then

1. 𝑇 + 𝑅 is also regular, selfadjoint and Fredholm, and any parametrix for T is also a parametrix for
𝑇 + 𝑅.

2. [𝑇 + 𝑅] = [𝑇] ∈ 𝐾𝐾 𝑝 (C, 𝐴) 
 𝐾𝑝 (𝐴) (where 𝑝 = 0 if 𝑅,𝑇 are odd, and 𝑝 = 1 otherwise).
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Proof.

1. We first note that 𝑇 + 𝑅 is also regular and selfadjoint by Proposition A.7. If 𝑄 ∈ L𝐴(𝐸) is a
parametrix for T, then it is also a parametrix for 𝑇 + 𝑅 since

(𝑇 + 𝑅)𝑄 − 1 = (𝑇𝑄 − 1) + 𝑅(𝑇 − 𝑖)−1(𝑇 − 𝑖)𝑄

is compact. Similarly, also 𝑄(𝑇 + 𝑅) − 1 is compact.
2. Let 𝑇𝑡 := 𝑇 + 𝑡𝑅, and consider the operator 𝑇• = {𝑇𝑡 }𝑡 ∈[0,1] on the Hilbert 𝐶 ([0, 1], 𝐴)-module
𝐶 ([0, 1], 𝐸). Since 𝑡 ↦→ 𝑇𝑡𝜓 is continuous for each 𝜓 ∈ Dom(𝑇), we know that 𝑇• is regular and
self-adjoint ([DM20, Lemma 1.15]).

If𝑄 ∈ L𝐴(𝐸) is a parametrix for T, then by 1, it is also a parametrix for𝑇𝑡 for each 𝑡 ∈ [0, 1] since
𝑡𝑅 is relatively T-compact. Consequently, noting that 𝑡 ↦→ 𝑡𝑅𝑄 is norm-continuous, the constant
family 𝑄• = {𝑄}𝑡 ∈[0,1] is a parametrix for 𝑇•. Hence, 𝑇• is a regular self-adjoint Fredholm operator
on the Hilbert 𝐶 ([0, 1], 𝐴)-module 𝐶 ([0, 1], 𝐸) and therefore a homotopy between T and 𝑇 + 𝑅 (in
the sense of [Dun19, Definition 2.13]). Thus, [𝑇] = [𝑇 + 𝑅] by [Dun19, Proposition 2.14]. �

In the Z2-graded case, where we have a decomposition 𝐸 = 𝐸+ ⊕ 𝐸− and T is odd (i.e., maps
𝐸± → 𝐸∓), the class [𝑇] ∈ 𝐾𝐾0 (C, 𝐴) corresponds to the 𝐾0(𝐴)-valued index of 𝑇+ := 𝑇 |𝐸+

: 𝐸+ → 𝐸−

under the isomorphism 𝐾𝐾0(C, 𝐴) 
 𝐾0(𝐴). Thus, in this case, the above result translates into the
stability of the 𝐾0(𝐴)-valued index under relatively compact perturbations.
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