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Abstract. In this paper, it is shown that for every lattice � ⊂ PSL2(R), there exists
a c > 0 such that for any 0 ≤ γ < c, the sequence ph(n1+γ ) equidistributes for any
p ∈ �\PSL2(R), where h is the horocycle flow. This makes modest progress towards
a conjecture of Shah and generalizes a result of Venkatesh [Sparse equidistribution
problems, period bounds, and subconvexity. Ann. of Math. (2) 172(2) (2010), 989–1094],
who established the same equidistribution for co-compact lattices. The proof uses a
dichotomy between good equidistribution estimates and approximability of {ph(t), t ≤ T }
by closed horocycles of small period.
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1. Introduction
Consider the (multiplicative) group G := PSL2(R) with a Haar measure μG. A lattice
� ⊂ G is a discrete subgroup such that the quotient X := �\G has a fundamental domain
in G of finite Haar measure. The Haar measure then descends to a finite measure μX. We
define the matrices

h(x) :=
(

1 x

0 1

)
, a(y) :=

(
y1/2 0

0 y−1/2

)
.

The geodesic flow at time t of p ∈ X is defined by gt (p) := pa(et ) and the horocycle flow
at time t is defined by ht (p) := ph(t).

While the orbit gt (p) for t → ∞ can behave quite irregularly depending on the initial
point, the horocycle orbit ht (p) is known to behave much more rigidly. Before we detail
the known results, we pin down some notation. We say that the orbit ht (p) equidistributes
with respect to μX if for any compactly supported, continuous function f on X,

lim
T →∞

1
T

∫ T

0
f (ph(t)) dt →

∫
f dμX.
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2 L. Streck

Similarly, we say that the orbit equidistributes along a sequence an ∈ R with respect to
μX if

lim
N→∞

1
N

N−1∑
n=0

f (ph(an)) dt →
∫

f dμX.

Lastly, a point p ∈ X is called periodic if there is a t0 ∈ R such that p = ph(t0). In this
case, the horocycle orbit will be trapped in the periodic orbit and will never equidistribute
with respect to μX; the system t �→ ph(t) is then isomorphic to the circle-rotation
x �→ x + t−1

0 on the torus R/Z. Below, we use ‘ph(an) equidistributes’ as a shorthand
for ‘for all non-periodic p ∈ X, ph(an) equidistributes with respect to μX’. It was shown
by Dani and Smillie that both ph(t) for t ∈ R and ph(n) for n ∈ N equidistribute.

It was subsequently asked what happens for sequences other than N. Margulis
conjectured that ph(pn), where pn is the nth prime number, should also equidistribute.
Shah conjectured that for any γ ≥ 0, ph(n1+γ ) would equidistribute. We remark that
these results follow for μX-almost every p ∈ X from the work of Bourgain in a much
more general context [1]. The challenge is really to establish equidistribution for all
non-periodic p ∈ X.

Venkatesh made progress on Shah’s conjecture by showing that for co-compact �,
there is a small c = c(�) > 0 such that for all 0 ≤ γ < c and all p ∈ X, ph(n1+γ )

equidistributes [9]. Venkatesh’s proof operates by controlling arithmetic sequences of the
type ph(sn) for n ∈ {0, . . . , N − 1} with s small compared with n. Controlling these
sparse sequences also means that the almost-primes equidistribute for co-compact �; that
is, for sufficiently big R, ph(q) equidistributes, where q runs over all numbers having
at most R many prime factors. That controlling sparse sequences is enough to control the
almost-primes can be seen either using sieve methods or using the pseudo-random measure
ν, introduced by Goldston and Yilmaz, and subsequently used by Green and Tao to show
that the primes contain infinitely long arithmetic progressions [3, 4] (see [6] for a proof
of the equidistribution of almost-primes using sieve methods and [7] for a proof using the
pseudo-random measure ν).

Using Venkatesh’s method in the case of a non-compact lattice, one can show that
ph(n1+γ ) and ph(q), q almost prime, equidistribute under the assumption of a Diophan-
tine condition on p [5, 10, 11]. This Diophantine condition assures that the horocycle orbit
ph(t) equidistributes with rate T −ε for all T, which is needed for Venkatesh’s argument.
Using the fact that for any point p, there are some times Ti → ∞ such that ph(t), t ≤ Ti

equidistributes with error T −ε
i , one can also deduce with the same method that the orbits

ph(n1+γ ) and ph(q), q almost prime, are dense.
However, showing equidistribution for all p is significantly harder, as there are p such

that there are times T for which the equidistribution of ph(t), t ≤ T is far worse than
polynomial. In this case, Venkatesh’s method cannot be applied.

Sarnak and Ubis were the first to show such a sparse equidistribution result for all
initial p. They showed that the almost-primes equidistribute for � = PSL2(Z), which
is not co-compact [6]. It was subsequently proved by the author that the almost-primes
equidistribute for all lattices � in PSL2(R) [7].
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On equidistribution of polynomial sequences 3

In this paper, the equidistribution of ph(n1+γ ) is established for small γ in the setting
of a general lattice. This generalises Venkatesh’s result from co-compact � to all lattices �

in PSL2(R) and makes (modest) progress on the conjecture of Shah.
We make this precise in the result below, which is the main result of this paper. For this,

we need some more notation and start by defining the metric dX. The group G = PSL2(R)

comes with a natural left-invariant metric dG (see for example [2, Ch. 9]). This metric
descends to X via dX(�g, �h) := infγ∈� dG(g, γ h). We also fix a point p0 ∈ X and define
dist(p) := dX(p, p0).

For two functions f , g : U → R, we write f 	 g or f = O(g) if there is a constant
C such that |f (x)| ≤ C|g(x)| for all x ∈ U , where U is some domain. In this paper, this
constant C implicit in the definition is always allowed to depend on the lattice � and the
choice of γ , but nothing else. We write f ∼ g if both f 	 g and g 	 f .

For a function f ∈ C4(X), let ‖f ‖W 4 be its Sobolev norm in the Hilbert space W 4,2

involving the fourth derivative and let ‖f ‖∞,j be the supremum norm of the jth derivatives.
Define

‖f ‖ := ‖f ‖W 4 + ‖f ‖∞,1 + ‖f ‖∞,0;

this norm is the same one Strömbergsson used to show his equidistribution result [8].
In his result, the equidistribution properties of a horocycle piece {ph(t), 0 ≤ t ≤ T } are
measured in terms of the parameter

r(p, T ) := T exp(−dist(glog T (p))),

which will be an important quantity to measure the equidistribution properties throughout
this paper; its significance and role in the proof will be discussed below in more detail. It
is well known that r(p, T ) → ∞ as T → ∞ for any non-periodic p.

We let β be the constant in Theorem 1.2; it ultimately comes from the rate of effective
mixing. The constant in Theorem 1.1 can be taken to be c = β/600.

THEOREM 1.1. For any lattice � ⊂ PSL2(R), there is a constant c = c(�) > 0 such that
for any 0 ≤ γ ≤ c, any non-periodic p ∈ X and any function f ∈ C4(X) with ‖f ‖ = 1,∣∣∣∣ 1

T

∑
n≤T

f (ph(n1+γ )) −
∫

f dμX

∣∣∣∣ 	 r−β/4,

where r = r(p, T 1+γ ).

To prove Theorem 1.1, we will split the range into different intervals and use Taylor
expansion on each one. On an interval [T0, T1], the function t1+γ will be approximately
equal to T

1+γ

0 + (1 + γ )T
γ

0 (t − T0), provided that T0 is not too small and that the range
is not too long. The question thus becomes how well ph(ns) for s ∼ T γ equidistributes.
To control these sparse arithmetic sequences, we need two results.

The first one is the following theorem, which is a straightforward consequence of
combining Strömbergsson’s equidistribution result [8] with Venkatesh’s method [9], as
performed, for example, by Zheng [10].
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4 L. Streck

THEOREM 1.2. [10, Theorem 1.2] Let � be a non-compact lattice in G. Let f ∈ C4(X)

with ‖f ‖ < ∞ and 1 ≤ s < T . Then,∣∣∣∣ s

T

∑
1≤j≤T/s

f (ph(sj)) −
∫

f dμX

∣∣∣∣ 	 s1/2r−β/2‖f ‖

for any initial point p ∈ X, where r = r(p, T ). The parameter 1
6 > β > 0 and the implied

constant depend only on �.

In the cases where r is big compared with T (say r ≥ T ε for some absolute ε), this
theorem in itself is enough to show equidistribution of the sequence ph(n1+γ ).

The result below will be used to deal with the case in which the equidistribution is bad.
It was proved by the author in [7] to show equidistribution of almost-primes. Its proof uses
ideas of Sarnak and Ubis [6] and has parallels to [8], whose proof in turn uses ideas going
back to Marina Ratner. This result encompasses the dichotomy mentioned in the abstract.

LEMMA 1.3. [7, Lemma 1.3] Let � be a lattice in G = PSL2(R) and let X = �\G. Let
p ∈ X and T ≥ 0. Let δ > 0 and K ≤ T .

There is an interval I0 ⊂ [0, T ] of size |I0| ≤ δ−1K2 such that: for all t0 ∈ [0, T ]\I0,
there is a segment {ξh(t), t ≤ K} of a closed horocycle approximating {ph(t0 + t),
0 ≤ t ≤ K} of order δ, in the sense that

for all 0 ≤ t ≤ K , dX(ph(t0 + t), ξh(t)) ≤ δ.

The period P = P(t0, p) of this closed horocycle is at most P 	 r(p, T ).
Moreover, one can assure P � η2r for some η > 0 by weakening the bound on I0 to

|I0| ≤ max(δ−1K2, ηT ).

2. On the behaviour of the equidistribution parameter in Theorem 1.2
Except for Lemma 1.3 itself, we will also need some of the other material in [7, Ch. 4] to
prove Theorem 1.1. We recall some of the material, going slightly beyond what is presented
in [7].

It is well known that G ∼= T1H, where H is the upper half-plane with the hyperbolic
metric. Then, X = �\G has as fundamental domain a set T1F , where F is a geodesic
polygon in H, that is, a polygon with finitely many vertices with the edges being pieces
of geodesics [2]. This fundamental polygon F has finitely many vertices touching the
boundary of the upper half-plane, either at the axis with imaginary part equal to zero
or at infinity. After identifying vertices that are in the same orbit under the action of �,
one gets the cusps of X, which we will denote by r1, . . . , rn. Any such cusp ri is in
1–1 correspondence to an element γi ∈ � with the property that γi fixes ri and that γi

is conjugated to h(1) (see [7, Lemma 3.1]). For each cusp, there are elements σi ∈ G such
that σiri = ∞ and σiγiσ

−1
i = h(1).

For g ∈ G, we define Y 0
i (g) := Im(σig), where

Im
((

a b

c d

))
:= 1

c2 + d2
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is the imaginary part of the the matrix projected to H. We also set for p = �gp ∈ X,
y0
i (p) := maxγ∈� Y 0

i (γgp).
It was shown in [7, Lemma 4.1] that there exist disjoint neighbourhoods Ci ⊂ X of

each cusp ri with K = X\ ∪ Ci being compact such that for any p ∈ Ci , exp(dist(p)) ∼
y0
i (p) (while of course exp(dist(p)) ∼ 1 for p ∈ K). Arguing as in the [7, proof of 1 in

Lemma 4.1], one also sees that if p = �gp ∈ Ci and gp is such that Y 0
i (gp) = y0

i (p), then
for any γ ∈ �, either Y 0

i (γgp) 	 1 or Y 0
i (γgp) = Y 0

i (gp) (which is the case in which
σiγgp = h(n)σigp and γ = (γi)

n for some n). This implies in particular that there is an
absolute constant C = C(�) such that if gp is such that Y 0

i (gp) ≥ C, then

Y 0
i (gp) ∼ y0

i (p) ∼ exp(dist(p)),

where the second equivalence holds because y0
i (p) ≥ C implies that p ∈ Ci for C

sufficiently big.
From the expression above, the reader sees the relation to the equidistribution

parameters

r(q, K) := K exp(−dist(glog K(q)))

appearing in Theorems 1.1 and 1.2.

Observation 2.1. There is an absolute c0 = c0(�) > 0 such that for any T and any p, if
there is a representative gp of p and an i such that for σigp =: ( a b

c d ), max(T 2c2, d2) ≤
c0T , then r(p, T ) ∼ max(T 2c2, d2).

Proof. We have that

2 max(T 2c2, d2) ≥ T (c2T + d2T −1) = Y 0
i (glog T (gp))−1T .

Thus, Y 0
i (glog T (gp)) ≥ 1

2c−1
0 , which shows that

exp(dist(glog T (p))) ∼ Y 0
i (glog T (gp))

by the argument above, provided that c0 is sufficiently small.

3. Proof of Theorem 1.1
We start by approximating t1+γ with sparse arithmetic sequences. More precisely, we write

t1+γ = T
1+γ

0 + (1 + γ )T
γ

0 (t − T0) + O(T −1/6)

on [T0, T0 + T 1/3] for T0 ≥ T 5/6 using Taylor expansion.
We will split into several cases. To govern in which case we are, we fix some ε > 0 and

impose that γ < (εβ/6). We will see at the end which value of ε makes everything work
(which will turn out to be ε = 1/100).

To apply the results about sparse equidistribution, we are thus tasked with evaluating
expressions of the form∣∣∣∣ 1

K

∑
n≤K

f (qh((1 + γ )T
γ

0 n)) −
∫

f dμX

∣∣∣∣
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6 L. Streck

for q = ph(T
1+γ

0 ) and T 1/6 ≤ K ≤ T 1/3, given some T0 ≤ T . In the case where
r(q, K) ≥ T ε, Theorem 1.2 is enough to deduce good equidistribution.

If r(q, K) ≤ T ε, then glog K(q) must lie in the neighbourhood Ci of some cusp ri , as
explained in the previous section. In this case, there is a (essentially unique) representative
gq of q such that r(q, K) ∼ max(K2c2, d2), where we set

(
a b

c d

)
:= σigq ,

now and for the next couple of pages.
One then has to split into two more cases. The distinction between these cases is

governed by

Wq :=
∣∣∣∣dc

∣∣∣∣.
The relevance of this Wq is that it measures the time it takes until one gets from bad to
good equidistribution again. More precisely, by Observation 2.1,

r(q, K) ∼

⎧⎪⎨
⎪⎩

d2, K ≤ Wq ,

d2 K2

W 2
q

, K ≥ Wq ,
(3.1)

as long as r(q, K) ≤ c0K .
This means that even if q and K are such that r(q, K) ≤ T ε, one has that

r(q, T εWq) ≥ T 2ε. Together with Theorem 1.2, this will be good enough to show
effective equidistribution under all assumptions except for those of Proposition 3.1. Under
those assumptions, which encompass the most interesting case, almost the entire horocycle
orbit {ph(t), t ≤ T 1+γ } is close to periodic horocycle orbits of small period. In this case,
one will need Lemma 1.3 to conclude.

PROPOSITION 3.1. Let � and γ < c be as in Theorem 1.1, and let ε = 1/100. Let p ∈ X

and T be such that r(p, T 1+γ ) ≤ T 4ε and Wp ≥ T 1−ε. Then, for f as in Theorem 1.1,
∣∣∣∣ 1
T

∑
n≤T

f (ph(n1+γ )) −
∫

f dμX

∣∣∣∣ 	 r−β/4.

To prove Theorem 1.1, we will first show how one can reduce its proof to Proposition 3.1
using Observation 2.1 and Theorem 1.2. We will then prove Proposition 3.1.

Proof of Theorem 1.1 assuming Proposition 3.1. Say we are given some t0 and set
q = ph(t

1+γ

0 ). If r := r(q, T 1/6) ≥ T ε, then we know by Theorem 1.2 that for any f with
‖f ‖ ≤ 1,

∣∣∣∣ 1
T 1/6

∑
n≤T 1/6

f (qh((1 + γ )t
γ

0 n)) −
∫

f dμX

∣∣∣∣ 	 T γ/2r−β/2 ≤ r−β/4,
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where we recall γ ≤ (εβ/6). We are thus done unless there is a q such that
r = r(q, T 1/6) ≤ T ε. As we saw in §2, then with c and d as defined previously,

r ∼ max(T 2/6c2, d2). (3.2)

If c2T 2/6 attains the maximum in (3.2), or equivalently, if Wq ≤ T 1/6, then r(q, T 1/4) ∼
T 1/6r ≥ T 1/6 by (3.1) and we are done by Theorem 1.2. We can thus assume Wq ≥ T 1/6.
The following claim shows how one can improve the lower bound on Wq further.

CLAIM 3.2. Let q = ph(t
1+γ

0 ) such that r ≤ T ε. Set W := Wq . If W ≤ T 1−ε, then for
K = W 1+ε and for f with ‖f ‖ ≤ 1,∣∣∣∣ 1

K

∑
0≤n≤K

f (ph((t0 + n)1+γ )) −
∫

f dμX

∣∣∣∣ 	 r−β/4.

Proof of Claim 3.2. Fix some W 1+ε ≥ s ≥ W 1+ε/2 and note that then c2s2 ∼
W−2s2d2 � d2. Thus,

r(qh(s), T 1/3) ∼ max(T 2/6c2, (d + cs)2) ∼ max(T 2/6c2, c2s2)

= c2s2 ∼
(

s

W

)2

r ≥ rWε ≥ rT ε/6,

where the first equivalence is due to Observation 2.1, which is applicable because
(s/W)2r 	 T 3ε. Applying Theorem 1.2 shows that∣∣∣∣ 1

T 1/3

∑
n≤T 1/3

f (ph(t
1+γ

0 + s)h((1 + γ )(t0 + s)γ n)) −
∫

f dμX

∣∣∣∣
	 T γ/2T −εβ/12r−β/2 ≤ r−β/2.

Now, we use Taylor approximation as above to split the orbit of (t0 + n)γ with n ≤ K into
different ranges [s, s + T 1/3] and note that for all but a W−ε/2T γ proportion of s, one has
(t0 + s)1+γ − t

1+γ

0 ≥ W 1+ε/2. As W−ε/2T γ ≤ T −ε/12 ≤ r−β/4, the claim is shown.

We have thus shown the conclusion of Theorem 1.1 unless there is a q = ph(t0) such
that r(q, T 1/6) ≤ T ε and Wq ≥ T 1−ε. We let c and d be as defined above and note that
in the case considered, r(q, T 1/6) ∼ max(c2T 1/3, d2) = d2 by definition of Wq . By (3.1),
this implies that

r(q, T 1+γ ) 	 d2 T 2(1+γ )

W 2
q

	 T 4ε.

Lastly, to get an error term in r(p, T 1+γ ) instead of r(q, T 1+γ ), we note that gqh(−t
1+γ

0 )

is a representative of p and that because (d − ct
1+γ

0 )2 	 d2T 2(1+γ )W−2 	 T 4ε,

r(p, T 1+γ ) ∼ max(c2T 2(1+γ ), (d − ct0)
2) 	 T 4ε,

where the first equivalence is due to Observation 2.1. We have thus reduced the proof of
Theorem 1.1 to the assumptions of Proposition 3.1.
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It now only remains to show Proposition 3.1, which is the main part of the proof of
Theorem 1.1.

Proof of Proposition 3.1. Let p and T be given such that r := r(p, T 1+γ ) ≤ T 4ε and
W := Wp ≥ T 1−ε. Here, W = |d/c|, with c and d as defined in Observation 2.1. We
also let g := gp and σi be as in Observation 2.1. We invoke Lemma 1.3 to split the orbit
[0, T 1+γ ] into pieces of length K = T 1/3. As in [7, proof of Lemma 1.3 in Ch. 4], we now
parametrize the orbit using the equation

σigh(W + s) = lh(s) = h

(
α − Rs

s2 + 1

)
a

(
R

s2 + 1

)
k(−arccot s),

where l := σigh(W) =: (α + iR, −i) is the highest point of the horocycle orbit and

k(θ) =
(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)

is the (subsequently unimportant) rotation component.
Given an M ≤ T , we then have that ph(M1+γ + t), t ≤ T 1/3 is at distance at most

O(T −1/6) from the orbit on a periodic horocycle ξh(t), t ≤ T 1/3 with its period being
equal to y−1, where

y := R

(M1+γ − W)2 + 1
.

By the second clause in Lemma 1.3, we can assume r � y−1 � δ2r except on an interval
of proportion δ, where δ is to be chosen later. Using Taylor approximation on t1+γ , we
thus want to bound∣∣∣∣ (1 + γ )Mγ

T 1/3

∑
(1+γ )Mγ n≤T 1/3

f (ξh((1 + γ )Mγ n)) −
∫

f dμX

∣∣∣∣.

However, we may run into problems here: if for example y−1 = (1 + γ )Mγ , the points do
not equidistribute at all in the periodic horocycle. To deal with this and related obstructions,
we proceed similarly to in [7, the proof of Claim 5.2]. For notational convenience, we set
s := (1 + γ )Mγ . Let q ∈ N with y−1 ≤ q ≤ ys−1T 1/3 be such that∣∣∣∣sy − a

q

∣∣∣∣ ≤ y−1s

qT 1/3

for some a coprime to q (such q exists by the pigeonhole principle). The problem case
occurs if q is small compared with y−1. If, however, q is sufficiently big, there are so
many distinct points in the interval [0, y−1] that they cannot help being dense enough to
approximate

∫ 1
0 f (ξh(ty−1)) dt by force, as we show now.

CLAIM 3.3. If q ≥ y−3, then∣∣∣∣ s

T 1/3

∑
sn≤T 1/3

f (ξh(sn)) −
∫ 1

0
f (ξh(ty−1)) dt

∣∣∣∣ 	 y 	 δ−2r−1,

where q, s, y and ξ all depend on M.
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Proof of Claim 3.3. (The argument in the proof of this claim was suggested by Adrián
Ubis.) We set F(t) := f (ξh(ty−1)), which is one periodic. Because the function f is
1-Lipschitz with respect to the hyperbolic metric, the function F is y−1-Lipschitz. We
wish to show ∣∣∣∣ s

T 1/3

∑
sn≤T 1/3

F(nsy) −
∫ 1

0
F(t) dt

∣∣∣∣ 	 y.

For this, we note that as for any n,
∣∣∣∣sny − n

a

q

∣∣∣∣ ≤ n
y−1s

qT 1/3 ,

we have

s

T 1/3

∑
sn≤T 1/3

F(nsy) = O

(
y−2

q

)
+ s

T 1/3

∑
sn≤T 1/3

F

(
n

a

q

)

= O

(
y−2

q

)
+ O

(
qs

T 1/3

)
+ 1

q

q−1∑
j=0

F

(
ja

q

)

by the periodicity of F. As a is coprime to q, it does not play a role in the last average and
can be dropped. Furthermore, for any t ≤ (1/q),

F

(
j

q

)
= O

(
y−1

q

)
+ F

(
j

q
+ t

)
,

so

1
q

q−1∑
j=0

F

(
j

q

)
= O

(
y−1

q

)
+ 1

q

q−1∑
j=0

∫ 1

0
F

(
j + t

q

)
dt

= O

(
y−1

q

)
+

∫ 1

0
F(t) dt .

As both y−2q−1 and qsT −1/3 are O(y), this implies the claim.

By Strömbergsson’s result [8],
∣∣∣∣y

∫ y−1

0
f (ξh(t)) dt −

∫
f dμX

∣∣∣∣ 	 yβ 	 (δ−2r−1)β ,

so we see from Claim 3.3 that∣∣∣∣ (1 + γ )Mγ

T 1/3

∑
n≤T 1/3

f (ξh((1 + γ )Mγ n)) −
∫

f dμX

∣∣∣∣ 	 (δ2r)−β

unless there is a q ≤ y−3 ≤ r3 and a coprime to q such that∣∣∣∣(1 + γ )Mγ y − a

q

∣∣∣∣ 	 Mγ y−1T −1/3 ≤ rT −1/3+γ .
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To conclude the proof of Theorem 1.1, we just have to show that this is a very exceptional
occurrence.

Fortunately, this is what one would expect: if we let

Iq,a :=
{
v ∈ R :

∣∣∣∣v − a

q

∣∣∣∣ ≤ rT −1/3+γ

}

denote the problem intervals for q ≤ r3 and (a, q) = 1, we note that they are proportional
to rT −1/3+γ . Moreover, given distinct intervals Iq1,a1 , Iq2,a2 , the gap between them is at
least of order r−6, as

∣∣∣∣a1

q1
− a2

q2

∣∣∣∣ ≥ 1
q1q2

≥ r−6.

As r 	 T 4ε, this means that the set E := ⋃
q≤r3,(a,q)=1 Iq,a makes up only a tiny

proportion of the entire range. Unless the function

G(t) := tγ R

(t1+γ − W)2 + 1
= tγ y

is highly concentrated on a small part of its range, our problem case {t ≤ T :
(1 + γ )G(t) ∈ E} will thus only occur on a negligible proportion of [0, T ]. The following
claim shows that G does not behave in this unusual manner.

CLAIM 3.4. For all but a O(δ + δ−5r7T −1/3+γ ) proportion of t ≤ T , there does not exist
q ≤ r3 such that

∣∣∣∣(1 + γ )G(t) − a

q

∣∣∣∣ ≤ rT −1/3+γ .

Before we show the claim, we show how it implies Proposition 3.1. The claim implies
that at most a small proportion of the intervals we split [0, T ] into when applying Taylor
approximation will be bad; for the others, we know equidistribution from Claim 3.3.
Collecting all the different error terms together,

∣∣∣∣ 1
T

∑
n≤T

f (ph(n1+γ )) −
∫

f dμX

∣∣∣∣ 	 δ + δ−5r7T −1/3+γ + (δ−2r−1)β ,

where the error terms come from, in that order, Lemma 1.3 and Claim 3.4, the contribution
of the problem intervals Iq,a on which the sequence ξ(1 + γ )Mγ n does not equidistribute
in the periodic horocycle, and the comparison with

∫
f dμX on the good intervals. Setting

δ = r−1/10 takes care of the first and third terms, while, recalling that r 	 T 4ε, we can
control the second term by setting ε = 1/100. This concludes the proof of Proposition 3.1
(and thus also the proof of Theorem 1.1) with only Claim 3.4 left to be shown.

Proof of Claim 3.4. To show this claim, we use the following simple lemma, whose proof
is left to the reader as an exercise.
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LEMMA 3.5. Let I ⊂ R be an open interval and let G : I → R be continuously
differentiable such that 0 < c ≤ |G′(t)| ≤ C for all t ∈ I . Let θ > 0 and let a1 < b1 <

a2 < · · · <an−1 <bn−1 <an be real numbers with the property that bi −ai ≤ θ(ai+1 −bi)

for all 1 ≤ i < n. Then, for E := (a1, b1) ∪ · · · ∪ (an−1, bn−1),

|{t ∈ I : G(t) ∈ E}| ≤ 2θCc−1|I |
provided that |I | ≥ θCc−1.

To apply this to the function

G(t) = tγ R

(t1+γ − W)2 + 1
= tγ y

in which we are interested, we need to calculate its derivative. We see that

dy

dt
(t) = −2(1 + γ )tγ (t1+γ − W)R

((t1+γ − W)2 + 1)2 = −2y(1 + γ )tγ (t1+γ − W)

(t1+γ − W)2 + 1

and thus

G′(t) = ytγ−1
(

γ − 2(1 + γ )t1+γ (t1+γ − W)

(t1+γ − W)2 + 1

)
.

We recall that in Lemma 1.3, we exclude an interval J0 of proportion δ to assure
r−1 	 y 	 δ−2r−1. We also exclude a set J1 comprising two intervals of proportion
δ to assure t ≥ δT and |W/t1+γ − 1| ≥ δ. This assures that r−1T γ−1 	 ytγ−1 	
δ−3r−1T γ−1 on the range [0, T ]\(J0 ∪ J1). If we can bound the expression in the bracket
in a similar manner up to factors of powers of δ−1, the claim will follow from Lemma 3.5.

To do this, we note that for t ∈ [0, T ]\J1,∣∣∣∣ 1
(t1+γ − W)2 + 1

− 1
(t1+γ − W)2

∣∣∣∣ = O(δ−4T −4(1+γ )),

which implies

G′(t) = ytγ−1
(

γ + 2(1 + γ )

W/t1+γ − 1
+ O(δ−4T −2)

)
.

We set J2 := {t : |W/t1+γ − (1 − (2 + γ )/γ )| ≥ δ}, which is the interval of proportion δ

on which the second term roughly cancels out the first. We then have that

δ 	 γ

∣∣∣∣ W

t1+γ
− 1

∣∣∣∣
−1∣∣∣∣ W

t1+γ
− 1 + (2 + γ )

γ

∣∣∣∣ =
∣∣∣∣γ + 2(1 + γ )

W/t1+γ − 1

∣∣∣∣ 	 δ−1

on [0, T ]\(J1 ∪ J2), which implies that

δr−1T γ−1 	 |G′(t)| 	 δ−4r−1T γ−1

on [0, T ]\(J0 ∪ J1 ∪ J2). We can now apply Lemma 3.5 to each of the intervals left.
Recalling that each problem interval Iq,a is of length rT −1/3+γ and the gap between any
two successive intervals is of size at least 0.9r−6, we find that

1
T

|{t ∈ [0, T ]\(J0 ∪ J1 ∪ J2) : (1 + γ )G(t) ∈ E}| 	 δ−5r7T −1/3+γ ,
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where, as before, E = ⋃
q≤r3,(a,q)=1 Iq,a . This shows Claim 3.4, which was the last

missing piece in the proof of Theorem 1.1.
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