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Abstract. Let X be an in®nite, locally ®nite, almost transitive graph with
polynomial growth. We show that such a graph X is the inverse limit of an in®nite
sequence of ®nite graphs satisfying growth conditions which are closely related to
growth properties of the in®nite graph X.
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1. Introduction and statement of main result. We think of a graph X as a set of
vertices, equipped with a symmetric, non re¯exive neighbourhood relation
E � E�X� � X� X, the edge set. Graphs considered in this paper are assumed to be
connected and to have bounded vertex degrees.

The natural distance between two vertices x; y 2 X (the minimal number of
edges on a path from x to y) is denoted by d�x; y�. An automorphism of X is a self-
isometry of X with respect to this metric. The automorphism group of X is denoted
by Aut�X�. The graph is called transitive if Aut�X� acts transitively on X, it is almost
transitive if Aut�X� acts on X with ®nitely many orbits.

For a vertex v, we write BX�v; n� for the subgraph induced by all x 2 X with
d�x; v� � n. The growth function of X with respect to v is

fX�v; n� � BX�v; n� �n � 0; 1; 2; . . .�:����
If X is transitive, fX�n� � fX�v; n� is independent of v. We say that X has polynomial
growth if there are constants c, d such that

fX�v; n� � c � nd; for all n

and for every vertex v. The results for ®nitely generated groups (Gromov [5]), tran-
sitive graphs (Tro®mov [10]) and locally compact groups (Losert [8]) imply that an
almost transitive graph with polynomial growth is very similar to a Cayley graph of
a ®nitely generated nilpotent group; see x2 below. In particular, for such a graph
there are constants 0 < c1 � c2 <1 and a nonnegative integer d such that for every
vertex v we have

c1 � nd � fX�v; n� � c2 � nd; for all n: �1�

We say that a graph X (®nite or in®nite, not necessarily almost transitive) has
the doubling property if there is a number (the doubling constant) A � 1 such that
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fX�v; 2n� � A � fX�v; n�; for all n �2�

and for every vertex v. If a locally ®nite graph X has polynomial growth, then it also
has the doubling property. If X is almost transitive then the doubling property also
implies that X has polynomial growth.

The purpose of the present note is to provide some new features of almost
transitive in®nite graphs by use of the doubling property and of coverings.

Given two graphs X1, X2, a covering map is a surjection ' : X2! X1 with the
property that for some r � 1 and each vertex v 2 X2, the restriction of ' to BX2

�v; r�
is a graph isomorphism onto BX1

�'v; r�. We then say that X2 is a covering graph of
X1, and that the covering has range r�'� � r.

Covering properties of transitive graphs with polynomial growth have been
studied by Godsil and Seifter [4]. Here, we extend and re®ne some of the results of
[4].

Theorem 1. Let X be an in®nite almost transitive graph with polynomial growth.
Then there is an increasing sequence X1, X2, X3; . . . of ®nite graphs such that

(a) each Xk is covered by X via a covering map 'k, where r�'k� ! 1;
(b) for each k > l, there is a covering map 'l;k from Xk onto Xl, and one has the

relations

'l;k � 'k � 'l

and, for k > l > m,

'm;l � 'l;k � 'm;k;

(c) each Xk has the doubling property with the same doubling constant �A.

We could interpret assertions (a) and (b) by saying that the sequence Xk

approximates the in®nite graph X. Thus, X is the projective limit of the Xk.
A ®nite graph X has Aÿ d moderate growth (Diaconis and Salo�-Coste [3]) if

the positive constants A and d satisfy

fX�v; n�
jX j �

1

A

n

diam�X�
� �d

; �3�

for every v 2 X and all n with 1 � n � diam�X�, where diam�X� is the diameter of X.
(Since X is ®nite, clearly such constants always exist; pick d � 1 and A large
enough.)

As was shown in [3, Lemma 5.1], a ®nite graph X which has the doubling
property for some constant A has Aÿ d moderate growth for d � logA= log 2.

If (a), (b), (c) hold, then of course X has the doubling property with constant �A.
However, given that X has doubling constant A, we do not know if in general one
can construct the Xk with the same doubling constant. (From our proof, we only get
�A � A.) As a consequence, we do not know whether the Xk may be constructed so
that they have moderate growth with exponent d equal to the degree of growth of X.

Also, we cannot guarantee that the Xk are close to being transitive. However,
this is true in the following particular case.
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Theorem 2. Let X be an in®nite graph with polynomial growth and suppose that
there is a transitive group G < Aut�X� with ®nite vertex stabilizers. Then one can
construct the approximating sequence such that, for each k, some factor of G acts
transitively on the graph Xk.

2. Preliminary results. We ®rst gather the necessary material and preliminary
results.

Factor graphs and construction of coverings. We ®rst recall the construction of
factor graphs. Let H be a subgroup of Aut�X�. Then HnX is the graph whose vertices
are the orbits of H on X; two di�erent orbits Hx1, and Hx2 are neighbours in HnX if
and only if there are yi 2 Hxi, i � 1; 2, which are neighbours in X.

If G is a subgroup of Aut�X� and H is a normal subgroup of G, then G acts on
HnX by automorphisms; indeed, G=H is a subgroup of Aut�HnX�.

Factor graphs can be used to construct covering maps. We say that an orbit
O � Hx is a covering orbit if it contains no neighbour of x (that is, O contains no
pair of adjacent vertices), and any other orbit contains at most one neighbour of x.
Thus, the natural projection ' : X! HnX is a covering map if all orbits under H
satisfy these two properties.

More generally, factor graphs can be obtained by the use of block systems.
Given G � Aut�X�, a block system � is a G-invariant partition of X whose pieces are
called blocks. It gives rise to the factor graph �nX whose vertices are the blocks, and
two blocks are adjacent if they are connected by some edge in X. The action of G
gives rise to the homomorphic image G=� � Aut��nX�.

Structure of graphs and groups with polynomial growth. Let G be a discrete
group and S a ®nite, symmetric set of generators (not containing the identity). The
Cayley graph of G has vertex set X � G; two elements g, h are joined by an edge if
and only if gÿ1h 2 S. The group acts on the Cayley graph by left multiplication. The
growth function of the group G (with respect to S) is de®ned as the growth function
of the Cayley graph. The property of having polynomial growth is independent of
the choice of the generating set. The following fundamental result is due to Gromov
[5].

Proposition 1. A ®nitely generated group has polynomial growth if and only if it
has a nilpotent subgroup with ®nite index.

In particular, the growth degree d in formula (1) is an integer that is also inde-
pendent of the generating set and can be calculated by use of a formula due to Bass
[2]. Besides [2] and [5], a useful reference for the structure theory of nilpotent groups
is Hall [7].

Gromov's structure theorem has been extended to vertex transitive graphs with
polynomial growth by [10]. This can also be seen as a special case of Losert's [8]
classi®cation of topological groups with polynomial growth (cf. Woess [12]). We
brie¯y explain the following slight extension to almost transitive graphs.

Proposition 2. Let X be an almost transitive graph with polynomial growth. Then
there is a normal subgroup K of Aut�X� with the following properties.

GRAPHS WITH POLYNOMIAL GROWTH 3

https://doi.org/10.1017/S001708950001003X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950001003X


(a) The orbits of K on X are ®nite.
(b) The factor group Aut�X�=K is a ®nitely generated group with polynomial

growth.
(c) Aut�X�=K acts with ®nite vertex stabilizers on the factor graph KnX.

Proof. With the topology of pointwise convergence, the group G � Aut�X� is a
locally compact, totally disconnected Hausdor� topological group. Let Y1; . . . ;Ym

be the orbits of G on X. Let L be the subgroup of G consisting of all g 2 G that ®x
Y1 pointwise. This is a compact normal subgroup of G.

Let k � 2m� 1, and consider the graph X�k� with the same vertex set as X, where
two vertices are joined by an edge if 1 � d�x; y� � k. Then Y1 induces a connected
subgraph of X�k� that is locally ®nite and has polynomial growth with the same degree
as X. Now, G=L acts transitively on this graph as a closed subgroup of the auto-
morphism group. The argument of [12] (in the proof of Theorem 1) shows that G=L
is compactly generated and has polynomial growth (in terms of left Haar measure).
Consequently, also G has these two properties (see Guivarc'h [6, Theorem 1.4]).

Now, by [8], G has a compact normal subgroup K such that G=K is a Lie group.
As G is totally disconnected, G=K must be zero-dimensional. That is, G=K is a
®nitely generated, discrete group with polynomial growth that acts on the factor
graph KnX as a closed subgroup of the automorphism group. In particular G=K
must act with ®nite vertex stabilizers. &

Formula (1) has been proved in [2] for ®nitely generated groups with a nilpotent
subgroup of ®nite index. By Propositions 1 and 2, this extends to almost transitive
graphs with polynomial growth. Indeed, the (integer) growth degree of X in (1)
coincides with that of the group Aut�X�=K.

More group theory. Let G be a subgroup Aut�X�. If the stabilizer Gv in G of any
vertex v of X consists of the identity only, then we say that G acts semiregularly on
X. If G in addition acts transitively on X then G is said to act regularly on X. In this
case we also know that X is a Cayley graph of G.

The so called ``Contraction Lemma'' of Babai [1] will be a useful tool in the
study of almost transitive graphs.

Lemma 1. If a group G acts semiregularly on a graph X, then X is contractible
onto a Cayley graph of G.

Indeed, below we shall also use the method of Babai's proof. We shall fre-
quently use the following simple and well known group-theoretical lemma.

Lemma 2. Let G be a ®nitely generated group and H a subgroup of G with ®nite
index. Then the intersection of all conjugates of H in G is a normal subgroup of G with
®nite index.

The following holds even for polycyclic groups; see e.g. Wolf [11].

Proposition 3. Every ®nitely generated nilpotent group has a torsion-free sub-
group of ®nite index.
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The next lemma, possibly known to specialists, will be crucial in our construc-
tion of coverings. If g1; . . . ; gk are elements of a group G, then we write (as usual)
hg1; . . . ; gki for the subgroup of G that they generate.

Lemma 3. Let N be a ®nitely generated nilpotent group acting semiregularly and
almost transitively on the in®nite graph X. Then, for each m, there is a torsion-free
normal subgroup N�m� of ®nite index such that

d�x; g�x�� � m for all x 2 X and all g 2 N�m�; g 6� id:

Proof. By Proposition 3, N contains a torsion-free subgroup N0 of ®nite index. If
N acts almost transitively on X, then N0 also acts almost transitively on X. Hence we
can assume that N itself is torsion-free. Since nilpotent groups have a nontrivial
center, the center of N then contains elements of in®nite order. As N acts semi-
regularly on X, we conclude that the center of N always contains an in®nite cyclic
subgroup.

We now proceed by induction on the growth degree d of N (equivalently of X).
If d � 1, then we know in addition that N contains an in®nite cyclic subgroup of

®nite index that is central in N (for otherwise d � 1 cannot hold). For N�m�, we may
take a suitable subgroup of the latter.

Let d > 1. We choose a central element a of in®nite order and write A � hai. By
semiregularity, each Ax, x 2 X, is in®nite. As a is central and N acts with ®nitely
many orbits, there are only ®nitely many isomorphism types among the Ax, x 2 X.
Hence, we may choose q 2 N such that d�x; aq�x�� � m.

The group ~N � N=haqi then acts semiregularly and almost transitively on the
factor graph ~X � haqinX. Its growth degree is less than d and, by the induction
hypothesis, we can ®nd a torsion-free normal subgroup ~N�m� of ~N such that
d� ~x; ~g� ~x�� � m, for all ~x 2 ~X and all ~g 2 ~N�m�, ~g 6� id. Let N�m� � �ÿ1� ~N�m��, where �
is the natural projection of N onto ~N. Let g 2 N�m�, g 6� id and x 2 X.

Case 1. g�x� 2 haqix. By semiregularity, g 2 haqi and we are done.
Case 2. Otherwise, ~g � ��g� is di�erent from the identity, and d�x; g�x�� �

d� ~x; ~g� ~x�� � m. &

3. Proofs. To prove Theorem 1, we proceed in several steps. Theorem 2 will
then become obvious from the details of the proof.

Step 1. We assume that Aut�X� contains a ®nitely generated nilpotent group G
which acts almost transitively.

By Proposition 3 and Lemma 2, G has a torsion-free normal subgroup N with
®nite index. It acts almost transitively and, as was shown in [9], N must also act
semiregularly on X.

We ®rst construct a normal subgroup N1 of N with ®nite index, such that X
covers N1nX.

If N itself has this property, then we are done. Otherwise, some among the
orbits O1 � Nx1; . . . ;Oq � Nxq of N on X are not covering orbits. Consider the
(®nite) set W consisting of the xj, 1 � j � q, and all their neighbours, and let
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m � max d�v;w� j v;w 2W
� 	

: �4�

By Lemma 3, we can ®nd a normal subgroup N1 of N with ®nite index such that
d�x; g�x�� � m, for all x 2 X and g 2 N1, g 6� id. Consequently, all orbits of N1 are
covering orbits.

Starting with N1, we shall now construct a descending sequence

N1 .N2 . . . .

of normal subgroups of N with ®nite index, such that

d�x; g�x�� � k �m for all x 2 X and all g 2 Nk; g 6� id; �5�

where m is as in (4).
Inductively, suppose that we already have Nkÿ1. Lemma 3, applied to Nkÿ1,

guarantees the existence of a ®nite index subgroup N0k which satis®es (5) and is
normal in Nkÿ1. In view of Lemma 2, we may set Nk � \g2NgN0kgÿ1.

Each Nk induces a covering, as this is true for N1. We de®ne Xk � NknX, and
write 'k for the natural projection X! Xk. By (5), r�'k� � k �m. This proves (a)
(under our restricted hypotheses). Also, if k > l, then the natural projection 'l;k of
Xk onto �Nl=Nk�nXk � Xl satis®es the assertion of (b).

We now prove property (c) and ®rst assume in addition that N acts transitively
on X. Then X is a Cayley graph of N with respect to some ®nite symmetric gen-
erating set S. Consider the ®nite graphs X1, X2; . . . constructed as above. By con-
struction, each Xk is the Cayley graph of the group N=Nk with respect to 'k�S�. Then
we can apply [6, Lemma 1.1] to see that every graph Xk has the doubling property
with the same constant A0 � A2, where A is the doubling constant of X; compare
with [3, Theorem 5.2]. [The latter theorem says that for a Cayley graph of a nilpo-
tent group, the doubling constant holds with constant A0 depending only on the
degree nilpotency and the vertex degree. From the proof one sees that one may
choose A0 � A2.]

Now let X be a graph upon which N acts almost transitively. Then, since N also
acts semiregularly on X, the graph X is contractible onto a Cayley graph of N, by
Lemma 1. Following the proof of this result, this contraction is done as follows: one
can choose a ®nite tree T0 which contains exactly one vertex of each orbit of N on X.
Then consider the images T1, T2; . . . of T0 under the elements of N. Since N acts
semiregularly on X, these trees are pairwise disjoint. Contracting them leads to a
Cayley graph ~X of N.

Let X1, X2; . . . be the ®nite graphs constructed from X as above. Then the
groups N=Nk act semiregularly on the Xk, respectively. Since the Tj, j � 0, contain
exactly one vertex of each orbit of N on X, the images of the Tj under the considered
covering maps are trees which contain exactly one vertex of each orbit of N=Nk on
Xk, respectively. If we now contract these ®nite trees in the graph Xk, k � 1, we
obtain a graph ~Xk. This coincides with the graph obtained by ®rst contracting the
®nite trees Tj, j � 0, in X and then constructing the quotient of ~X with respect to the
group ~Nk; that is, Nk viewed as a subgroup of Aut� ~X�.

Since the ~Xk have the doubling property with the same constant A0, the Xk have
the doubling property with the same constant �A, where we may choose �A � A0 T0jj .
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Intermediate step: proof of Theorem 2. Under the assumptions of Theorem 2, G
must be ®nitely generated with polynomial growth. From Propositions 1 and 3 we
know that G has a ®nitely generated torsion-free nilpotent subgroup N with ®nite
index. In view of Lemma 2, we can now choose our subgroups Nk such that they are
not only normal in N, but also in G. Hence the factor graphs Xk are transitive. &

Step 2. General case. If X is any almost transitive graph, then we know from
Proposition 2 that a ®nitely generated nilpotent group Aut�X�=K acts with ®nitely
many orbits on KnX. Hence our assertions hold for X � KnX. To prove that (a), (b)
and (c) also hold for X, we set � : Aut�X� ! Aut�X�=K, the natural projection.

Let N again denote a ®nitely generated torsion-free nilpotent group acting with
®nitely many orbits on ~X. By ~X1; ~X2; . . . we denote the ®nite graphs which we obtain
from ~X as above.

Let Ni be the normal subgoup of N that leads to ~Xi. By
Ni � N0

i .N
1
i . . . . .Ns�1

i � idf g we denote the derived series of Ni. Clearly
Nj

i=N
j�1
i � Znj for some nj and all j; 0 � j � s. By ~amj�1 ; . . . ; ~amj�1

� 	
we denote a free

generating set of Nj
i=N

j�1
i , where m0 � 0, mj�1 �

Pl�j
l�0 nl.

If the group Ni � N0
i .N

1
i . . . . .Nr�1

i � idf g leads to the graph ~Xi, then we
obtain the same graph ~Xi if we construct it step by step as follows. If �r denotes the
imprimitivity system induced by the orbits of Nr

i on
~X, then ~Yr is the quotient of ~X

with respect to �r. Of course Mr � Ni=N
r
i acts almost transitively on ~Yr and we can

repeat the same with ~Yr and the orbits of the last nontrivial member of the derived
series of Mr on ~Yr. Then the group Mrÿ1 � Ni=N

rÿ1
i acts almost transitively on ~Yrÿ1

etc. We ®nally obtain a graph ~Y0 which is isomorphic to ~Xi.
We now in addition construct the graphs ~Yk; r � k � 0, step by step. Let

~amr�1 ; . . . ~amr�1 denote the free generators of the abelian group Nr
i . If we now con-

struct the graph ~W1 as the quotient of ~X with respect to the orbits of ~amr�1 on
~W0 � ~X, then the graph ~W2 as the quotient of ~W1 with respect to the orbits of

~amr�1ÿ1= ~amr�1 on
~W1 etc. it is again obvious that the graph ~Wnr�1 is isomorphic to ~Yr.

Then we apply the same construction with respect to the orbits of the free
generators of Nrÿ1

i =Nr
i on

~Yr which leads to ~Yrÿ1. Repeating this we ®nally obtain
the graph ~Xi again. Hence there is a sequence of automorphisms id � ~amr�1�1,
~amr�1 ; . . . ; ~amr

; . . . ; ~amrÿ1�1; . . . ; ~am1
; ~am1ÿ1; . . . ; ~a1 and a sequence of graphs ~X � ~W0,

~W1; . . . ; ~Wmr�1 such that by successively reducing the orbits of ~ak=h ~ak�1; . . . ; ~amr�1�1i,
mr�1 � k � 1, on ~Wmr�1ÿk to single vertices, we obtain a graph isomorphic to ~Xi

again.
By amr�1 ; . . . ; a1 we denote preimages of the ~amr�1 ; . . . ; ~a1 under �

ÿ1 respectively.
Of course these preimages are not unique; we simply choose exactly one preimage al
for each ~al; 1 � l � mr�1. We now construct the graphs X �W0, W1; . . .Wmr�1 � Xi

by successively taking quotient graphs with respect to the orbits of the amr�1�1ÿl,
1 � l � mr�1 on Wlÿ1.

Let � now denote the imprimitivity system induced by the orbits of K on X. The
al are automorphisms of X whose orbits contain at most one vertex of each block of
�. Therefore, and because the ~al induce a covering map from ~X onto ~Xi, it follows
that each Wl is covered by X. Hence the ®nite graph Xi �Wmr�1 that we ®nally
obtain is also covered by X. Applying this construction of covering maps to in®-
nitely many nilpotent groups N1, N2; . . . ; it immediately follows that the range of
the covering maps obtained this way tends to in®nity.
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Note that in our construction the al � a
�i�
l also depend on Ni. Now we explain

how they are chosen inductively with respect to i.
Let Xi�1, and Xi be two of the ®nite graphs obtained in this way; that is Xi

corresponds to Ni and Xi�1, to Ni�1. The orbits of Ni�1 on ~X are suborbits of the
orbits of Ni on ~X by the construction of Lemma 3 and Step 1. Furthermore each
orbit of Ni on ~X splits into ®nitely many orbits of Ni�1 on ~X. Therefore we can also
choose the a

�i�1�
l such that their orbits on X are suborbits of the orbits of the a

�i�
l

which proves (b).
Let m now denote the maximal cardinality of the blocks of � and let �A be the

doubling constant of the graphs ~X1, ~X2; . . .. Then A � m �A clearly is a doubling
constant for all graphs X1, X2; . . ., which proves (c). &
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