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The Stokes boundary layer (SBL) is the oscillating flow above a flat plate. Its laminar flow
becomes linearly unstable at a Reynolds number of Re = U0

√
T0/ν ≈ 2511, where U0 is

the amplitude of the oscillation, T0 is the period of oscillation and ν is the fluid’s kinematic
viscosity, but turbulence is observed subcritically for Re � 700. The state space consists of
laminar and turbulent basins of attraction, separated by a saddle point (the ‘edge state’) and
its stable manifold (the ‘edge’). This work presents the edge trajectories for the transitional
regime of the SBL. Despite linear dynamics disallowing the lift-up mechanism in the
laminar SBL, edge trajectories are dominated by coherent structures as in other canonical
shear flows: streaks, rolls and waves. Stokes boundary layer structures are inherently
periodic, interacting with the oscillating flow in a novel way: streaks form near the plate,
migrate upward at a speed 2

√
π and dissipate. A streak-roll-wave decomposition reveals

a spatiotemporally evolving version of the self-sustaining process (SSP): (i) rolls lift fluid
near the plate, generating streaks (via the lift-up mechanism); (ii) streaks can only persist
in regions with the same sign of laminar shear as when they were created, defining regions
that moves upward at a speed 2

√
π ; (iii) the sign of streak production reverses at a roll

stagnation point, destroying the streak and generating waves; (iv) trapped waves reinforce
the rolls via Reynolds stresses; (v) mass conservation reinforces the rolls. This periodic
SSP highlights the role of flow oscillations in sustaining transitional structures in the SBL,
providing an alternative picture to ‘bypass’ transition, which relies on pre-existing free
stream turbulence and spanwise vortices.

Key words: transition to turbulence, nonlinear dynamical systems

1. Introduction
Oscillatory flows are ubiquitous in nature (Spalart & Baldwin 1987; Jensen, Sumer &
Fredsøe 1989), biomechanical systems (Ku 1997; Taylor & Draney 2004) and engineering
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applications (Gatti & Quadrio 2016; Adcock et al. 2021), with ongoing research
including a particular focus on transition to turbulence in oscillatory boundary layers
(Blennerhassett & Bassom 2008; Biau 2016; Xiong et al. 2020; Blondeaux, Pralits &
Vittori 2021; Gong et al. 2022). The canonical oscillating flow is the Stokes boundary
layer (SBL), the flow above a sinusoidally oscillating flat plate. The transition to turbulence
in this flow is complex (von Kerczek & Davis 1974; Blennerhassett & Bassom 2008;
Mujal-Colilles et al. 2016; Blondeaux & Vittori 2021); the SBL is a subcritical flow
that exhibits turbulent dynamics at Reynolds numbers Re = U0

√
T0/ν (where U0 is the

velocity oscillation amplitude, T0 is the oscillation period and ν is the fluid’s kinematic
viscosity) below the critical Reynolds number Rec ≈ 2511 at which the laminar solution
becomes linearly unstable to normal mode perturbations (Blennerhassett & Bassom 2002),
although convective linear instability occurs below this critical value in domains with a
large horizontal extent (Ramage et al. 2020; Pretty, Davies & Thomas 2021). The critical
Reynolds number found by Blennerhassett & Bassom (2002) is based upon a Floquet
analysis of perturbations growing over the whole oscillation cycle.

Ozdemir, Hsu & Balachandar (2014) summarised several theoretical, experimental and
numerical works on the SBL and categorised the flow into four regimes: (i) laminar
(Re < Rec1); (ii) disturbed laminar (Rec1 < Re < Rec2), where some disturbances such as
spanwise vortices are observed, but without enough growth to trigger transition; (iii)
intermittently turbulent (Rec2 < Re < Rec3), where some turbulent features such as bursts
of energy during the mid and late deceleration phases are observed, which laminarise
during the early acceleration phase; (iv) turbulent (Re > Rec3). Around the onset of
the intermittently turbulent regime, Ozdemir et al. (2014) observed a self-sustaining
transitional behaviour, and this has been described in terms of a ‘bypass’ transition in
which streamwise streaks triggered by free stream turbulence grow, form hairpin vortices
and then eject a spanwise vortex back into the free stream, which subsequently breaks
down to turbulence and reinitiates the cycle (Xiong et al. 2020; Gong et al. 2022). Mier,
Fytanidis & García (2021) and Fytanidis, García & Fischer (2021) reported that this self-
sustaining transitional behaviour is associated with a phase-lag between the wall-shear
stress and the laminar velocity, with disturbances growing during the deceleration phase
and decaying during the acceleration phase (see also Luo & Wu 2010), an observation in
agreement with the transitional cycles observed in other, wall-bounded oscillating flows
(Pier & Schmid 2017; Ebadi et al. 2019; Pier & Schmid 2021; Linot, Schmid & Taira
2024).

Crucially, however, such a ‘self-sustaining’ bypass transition relies upon turbulent
motions and strong spanwise vortices. This sets it apart from the coherent motions of the
vortex–wave interaction states (Hall & Smith 1991; Hall & Sherwin 2010), often realised
as ‘edge states’ controlling the transition to turbulence in steady wall–bounded shear flows
(Schneider & Eckhardt 2006; Skufca, Yorke & Eckhardt 2006; Kim & Moehlis 2008;
Duguet, Schlatter & Henningson 2009; Schneider, Marinc & Eckhardt 2010; Eaves &
Caulfield 2015) that follow the self-sustaining process (SSP) (Waleffe 1997) of streamwise
vortices created via the lift-up mechanism (Landahl 1980) and sustained by weak three-
dimensional waves. From a dynamical systems point of view, laminar and turbulent flows
can be seen as attractors in a high-dimensional state-space, whose basins of attraction are
separated by a manifold termed the ‘edge of chaos’ (or simply the ‘edge’) (Skufca et al.
2006), containing local attractors known as ‘edge states’. Characterisation of these edge
states offers an alternative view of the physics associated with transition to turbulence
which is self-contained, omitting the need to invoke pre-existing free stream turbulence
to initiate transition, and, in the case of steady shear flows, requiring only streamwise
vortices. Furthermore, the mechanisms underlying such states are also known to control
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important processes in the fully turbulent flow (see e.g. Kawahara, Uhlmann & van Veen
2012; Budanur et al. 2017).

In steady wall-bounded shear flows, these edge states rely on the lift-up mechanism, a
linear transient growth mechanism by which parcels of fluid are advected (‘lifted’) through
a shear flow, for example taking high-speed fluid and moving it to a low-speed region,
creating streamwise momentum defects. Continued advection leads to large transient
growth over a long (O(Re)) time scale, and is responsible for producing large-amplitude
(O(1)) streamwise streaks when realised at finite amplitude. A steady background shear
allows the lift-up mechanism to accumulate momentum defects in fixed locations over a
long period of time, and so it is often the linear mechanism with the largest, and longest
sustained, growth (Butler & Farrell 1992) and hence is integral to the SSP (Waleffe 1997).
However, in the SBL, the lift-up mechanism is not an optimal linear transient growth
mechanism (Biau 2016) since the laminar shear flow is periodically oscillating, preventing
momentum defects from accumulating in a single location, and reversing sign every half-
period. Instead, the Orr mechanism (Orr 1907) is dominant, which allows for moderate
growth as spanwise vortices are tilted by the background shear over a short time scale.
It is known that even small disruptions to the lift-up mechanism have the potential to
significantly affect edge state dynamics (Eaves & Caulfield 2015).

These observations raise the interesting question as to what self-sustaining
mechanism(s) edge states in the SBL utilise to balance dissipation (relaminarisation)
against instability (transition to turbulence). On the one hand, a traditional interpretation of
the SSP as using the lift-up mechanism due to its optimal linear growth would potentially
point to new, Orr-based edge states for the SBL. On the other hand, transitional SBL flows
are observed to consist of streamwise streaks (Sarpkaya 1993; Costamagna, Vittori &
Blondeaux 2003) and so perhaps some nonlinearity associated with the edge state
dynamics allows the lift-up mechanism enough ‘time’ to create large-amplitude streaks.
The most well-studied edge states have been steady, and so the different components of the
SSP act all together at the same time, however, in this second, lift-up based scenario, any
realisation of the SSP in the SBL would evolve periodically in order to accommodate
the alternating shear direction of the background flow, opening up the potential for
components of the SSP to act sequentially. In order to make some connection with the
bypass transition scenario, whatever mechanisms arise within the edge state dynamics
should shed light upon how boundary layer ejections could be initiated without resorting
to pre-existing turbulence.

In this work, we compute edge trajectories in the transitional regime of the SBL and
analyse their dynamics in order to determine the underlying physical mechanisms which
sustain them. We demonstrate that the edge states are periodically evolving versions of the
SSP, utilising the lift-up mechanism, and that a temporal interplay between the laminar
shear and streak nonlinearity results in streak migration away from the wall (non-turbulent
ejections) and sequential activation of different components of the flow. In § 2 we present
the equations of motion, the numerical model and the edge tracking algorithm. In § 3 we
provide an overview of the edge trajectory dynamics, which are examined in closer detail
in section § 4 which presents a complete analysis of the periodic self-sustaining process
(PSSP). Conclusions are drawn in § 5.

2. Methodology

2.1. Equations of motion
The SBL is the oscillatory flow above a flat plate, in which an oscillation of period
T0 is driven either by a sinusoidal oscillation in the velocity of the plate itself (in the
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x-direction) of magnitude U0 or a sinusoidal oscillation of the pressure gradient above a
stationary plate; in this work, we study the former, oscillating plate flow. These oscillations
set up a boundary layer against the plate whose thickness is determined diffusively, leading
to the characteristic length scale δ = √

νT0 in which ν is the kinematic viscosity of the
fluid. We decompose the instantaneous velocity into the sum of a laminar component
U = (U, 0, 0) and a perturbation velocity field u = (u, v, w), such that utot = U + u.
Using index notation, the dimensionless incompressible Navier–Stokes equations for this
flow read

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ Re

[
Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
+ uj

∂ui

∂xj

]
= − ∂p

∂xi
+ ∂2ui

∂xj∂xj
, (2.2)

where the Reynolds number is given by

Re = U0
√

νT0

ν
= U0

√
T0

ν
, (2.3)

which follows the definition adopted by Biau (2016). We note that this definition of
the Reynolds number is a factor of

√
π larger than that of von Kerczek & Davis

(1974), Ozdemir et al. (2014) and others, and is a factor of 2
√

π larger than that of
Blennerhassett & Bassom (2002), Ramage et al. (2020) and others; all values quoted here,
including the critical linear stability threshold Rec ≈ 2511 have been converted to match
(2.3). The boundary conditions are

utot
i = δ1iU (0, t) at y = 0, (2.4)

utot
i → 0 as y → ∞, (2.5)

where δij is the Kronecker delta.
The laminar flow U = (U (y, t), 0, 0) is directed along the x-axis and varies in the

vertical y-direction. The laminar flow is the well-known solution to the Stokes second
problem, and is given by

U (y, t) = cos(2π t − √
π y)e−√

π y . (2.6)

The laminar flow is periodic with period T = 1, and it has a (time-)shift–reflect symmetry

U (y, t + T/2) = −U (y, t). (2.7)

Local features of the laminar flow (such as maxima, minima, inflection points, etc.) move
upward away from the wall at a constant speed of 2

√
π .

With this laminar flow, the boundary conditions for the perturbation velocity are

ui = 0 at y = 0, (2.8)
ui → 0 as y → ∞. (2.9)

However, for numerical purposes a bounded domain is used, in which the streamwise x-
and spanwise z-directions are periodic, and a large wall-normal extent L y is chosen, at
which impenetrable and stress-free boundary conditions are applied,

v = 0 and
∂u

∂y
= ∂w

∂y
= 0 at y = L y . (2.10)

A schematic representation of the oscillating wall problem is presented in figure 1.
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Periodic lateral
boundaries Stress-free boundary

(∂u/∂y) = (∂w/∂y) = 0

Bottom wall

ui = 0

Oscilla
tion

Lx

Ly

Lz

U(y, t)

u(x, y, z, t)

y
xz

v = 0

Figure 1. Problem diagram for flow above an oscillating wall. The lateral boundaries (x and z) are periodic. In
the wall-normal direction, the perturbation velocity satisfies the no-slip condition, while the upper boundary is
impenetrable and stress free.

2.2. Numerical implementation and set-up
We solve (2.1–2.2) for the perturbation velocity ui with boundary conditions (2.8) and
(2.10) using the direct numerical simulation solver Diablo (Taylor 2008). This code
employs pseudospectral methods to compute spatial derivatives and uses a third-order
Runge–Kutta scheme for time integration, and a 2/3 dealiasing rule is applied to deal with
the nonlinear terms. The simulations are carried out in parallel using the message passing
interface library.

The equations are solved in a rectangular domain of size Lx = Lz = 8.2 and L y = 10.0.
The size of Lx (and also Lz) is chosen to match the wavenumber of the largest transiently
growing linear disturbance at Re = 1000 (Biau 2016). The periodic x-and z-directions are
discretised using a uniform grid with Nx = 64 and Nz = 32 Fourier modes, respectively.
Initial tests used the same resolution as Biau (2016), Nx = Nz = 128, but this was scaled
back for efficiency since turbulent scales do not need to be resolved in order to accurately
compute the much simpler edge trajectories, and there was no significant loss in accuracy
found when doing so. The y-direction is discretised using Ny = 241 grid points, which
are stretched away from the wall to ensure an efficient and accurate representation of
the structures near the wall. The results are insensitive to other values of Ny around this
choice. A narrower geometry with Lz = 4.1 and Nz = 16 is also briefly considered, and
the resulting dynamics are discussed in the next section.

2.3. Edge tracking
Trajectories along the edge manifold may be found by ‘edge tracking’ (Toh & Itano 2003;
Skufca et al. 2006; Schneider, Eckhardt & Yorke 2007; Kreilos et al. 2013), an iterative
procedure in which trajectories of initial conditions either side of the edge are computed
and bisected depending on how they evolve in time. To classify trajectories as leading to
laminar or turbulent flow, we use the L2-norm of the perturbation velocity field as a proxy
(E = 0 is the laminar state by construction),

E(u) = 1
VΩ

∫
Ω

1
2

u · u dΩ = 1
VΩ

∫
Ω

1
2

ui ui dΩ, (2.11)

where Ω = [0, Lx ) × [0, L y) × [0, Lz) and VΩ = Lx L y Lz . Starting with a pair of initial
conditions that lead to the laminar and turbulent states, and defining suitable upper and
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lower thresholds on E(u) for transition to turbulence (E∗
T ) and decay to the laminar state

(E∗
L ), we can iteratively define new initial conditions that remain near the edge for long

times. As the flow is oscillatory in nature, the threshold conditions are met if the average
energy of the flow remains above or below these thresholds for a defined time window
tavg.

If at time tn
0 we have an initial condition that evolves towards turbulence, un,0

T , and an
initial condition that evolves towards the laminar state, un,0

L , then a new initial condition
at this time, um

λ , is defined by linear interpolation:

um
λ = un,0

L + λm
(
un,0

T − un,0
L

)
. (2.12)

Iterative bisection, enumerated by m, is performed on the parameter λ over the interval
[0,1], which generates a set of initial conditions on the laminar and turbulent sides of the
edge (λ is increased if the trajectory from um

λ decays to the laminar state, and decreased
if it transitions to turbulence). As the bisection proceeds, the trajectories on either side of
the edge spend longer periods of time close to the edge and close to each other. The first
pair of initial conditions used to start the bisection process consisted of u0,0

T taken from
a minimal seed trajectory (for the definition of a minimal seed, see Kerswell (2018)) as
it approached the edge state on the turbulent side of the edge manifold (minimal seeds
in this problem will be reported at a later date), along with u0,0

L = 0, the laminar flow
state. Results using an alternative initialisation with u0,0

T taken as a random sample of
the turbulent flow did not show any qualitative difference; the former option for u0,0

T
was chosen when generating a long edge trajectory, owing to efficiencies associated with
initialising the algorithm already nearby to the edge.

Once the change in λ between two consecutive iterations is less than a threshold �λ∗,
it is no longer efficient to continue bisecting between the original two initial conditions
in (2.12) to track the edge. Instead, a new pair of laminar and turbulent initial conditions
for use in (2.12) are generated from the trajectories on either side of the edge. Letting mL
and mT be the number of initial conditions found on the laminar and turbulent sides of the
edge, respectively, un,mL

L is the most recently found initial condition on the laminar side of
the edge, with trajectory ulam(t), and un,mT

T is the most recently found initial condition on
the turbulent side of the edge, with trajectory uturb(t). We then set a new initial time tn+1

0 =
t∗ and new laminar and turbulent initial conditions for use in (2.12) as un+1,0

L = ulam(t∗)
and un+1,0

T = uturb(t∗), where t∗ is the last time for which |E(ulam(t)) − E(uturb(t))| <
�E∗. Different averaging times and threshold values were tested and tavg = 0.5, �λ∗ =
10−4, �E∗ = 10−6, E∗

L = 10−4 and E∗
T = 10−3 showed to be suitable for achieving an

accurate representation of flow dynamics in the vicinity of the edge. These values were
determined during the initial stages of investigating the edge trajectory; E∗

T was initially
set a little below the turbulent average value (which is readily estimated from a single
turbulent simulation), and E∗

L was set very low, at 10−8. These initial values allowed for a
short section of edge trajectory to be computed, after which the thresholds were adjusted
for efficiency to more closely sandwich the observed edge properties. The values were
regularly reviewed to ensure that they were not interfering with the computation of the
edge trajectory itself. A schematic representation of the bisection and start time shifting
procedure is presented in figure 2.
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ET
∗

If

Edge trajectory

t

If

then mT → mT + 1then n → n + 1

EL
∗

�E∗

t0n

tavg

t0n + 1

E(uL
n,0)

E(uT
n,mT)

E(uL
n,mL)

λT
mT < ··· < 10 < ··· < λL

mL

E (u)

E(uT
n,0)

E(uT
n + 1,0)

E(uturb (t))

E(uL
n + 1,0)

E(ulam(t))

〈E (u)〉tavg

〈E(u)〉tavg
 > ET

∗|λT
mT − λL

mL| < �λ∗

If |E(ulam (t∗)) − E(uturb (t∗))|6    �E∗

then t0n + 1 = t∗

t∗

3

2 1

Figure 2. Bisection algorithm scheme. Block 1 indicates that when the energy, averaged over a time window
of size tavg, is larger than E∗

T or smaller than E∗
L , then λ is scaled down or up, respectively. Block 2 shows that

when two consecutive values of λ are closer than �λ∗, a new starting point is chosen to reinitialise the bisection
process. Block 3 shows how the new starting point is chosen. The latest turbulent and laminar trajectories
remain nearby for an extended period, until the energy difference between them is larger than �E∗. The last
time for which the energy difference is below �E∗ is the new starting point.

3. Edge tracking results
Following the procedure described in § 2.3, a set of edge trajectories was generated for
the baseline simulation, whose energies E(u) are shown in figure 3. The results show
that, near the edge, the energy is oscillatory with a dominant frequency of T/2 caused by
the back-and-forth forcing of the wall (see figure 3b). However, the energy on the edge is
not periodic (see figure 3a), indicating that the edge state is not a simple periodic orbit,
but rather a chaotic saddle, albeit of a strong oscillatory nature. A total simulated time of
approximately 50 periods allows for a detailed description of the dynamics on the edge.
Here we focus on t > 16, after the edge trajectory has settled onto the edge state.

To provide a better understanding of the energy dynamics, an energy evolution equation
is derived by projecting (2.2) onto the perturbation velocity field ui to obtain the local
kinetic energy density defined as e = (1/2)ui ui . The energy transport equation reads

∂e

∂t
= −uj

∂p

∂xj
− Re

[
ui

∂

∂xj

(
uiUj + ujUi + uj ui

)]+ ∂2e

∂xj∂xj
− ∂ui

∂xj

∂ui

∂xj
. (3.1)

Defining the average operator 〈·〉xi as 〈a〉xi = (1/Lxi )
∫ Lxi

0 a dxi , where i = 1, 2, 3 for
x, y and z, respectively, the total energy E is given by E = 〈e〉x,y,z ≡ 〈e〉Ω . Integrating
(3.1) over the whole domain, taking into account the boundary conditions and the
incompressibility condition (2.1) leads to the global energy balance equation

dE

dt
=
〈
−Re uv

∂U

∂y

〉
Ω

−
〈
∂ui

∂xj

∂ui

∂xj

〉
Ω

≡P(t) −D(t), (3.2)

where P(t) is the instantaneous production rate, and D(t) is the instantaneous dissipation
rate. The production term has the general form of a stress (−Re uv) acting on a strain
rate (∂U/∂y), from which the energy transfer process from the laminar velocity gradient
(induced by the oscillation) to the perturbation velocity field is clear. Furthermore, the
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0.5

3.0

2.5

2.0

1.5

1.0

(a)

E 
(u

)

0.2

0

1.2

1.0

0.8

0.6

0.4

(b)

E 
(u

)

×10−3

×10−3

tavg

tavg

Edge trajectory

(dashed line)

Edge trajectory

(dashed line)

ET
∗

EL
∗

ET
∗

EL
∗

(b)

ET
∗

EL
∗

t
16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

t
24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5

Figure 3. (a) Kinetic energy of the different trajectories bisected to follow the edge. The first (transient) 16
time units of edge tracking are omitted. The red trajectories lead to turbulence and the blue ones relaminarise.
The inferred edge trajectory is shown with a dashed black line. The thresholds for classifying trajectories as
laminar (E∗

L ) and turbulent (E∗
T ) are marked with horizontal dashed lines. The time window over which the

energy is averaged is shown near t = 22. (b) A detailed version of (a) for 23.5 < t < 28.

oscillation period of T/2 observed in the energy is in agreement with the period T of
∂U/∂y provided that uv is also periodic with period T (and zero mean).

Figure 4 plots time series of the production and dissipation, and shows that they are in
phase, but that there are stages within the T/2 cycle when production is dominant and
stages when the dissipation is dominant. This observation is in broad agreement with
previous work on transitional behaviour in the Stokes layer, which indicates a growth
of flow disturbances during the deceleration phase (which is, accordingly, a production-
dominated phase) and their decay during the acceleration phase (Luo & Wu 2010; Ozdemir
et al. 2014). A closer comparison between these observations and the transitional regime
of Ozdemir et al. (2014) is made in § 4.4. The behaviour of the edge trajectory suggests the
presence of an internal self-sustained dynamics that balances the energy transfer among
structures in the flow. To further understand the dynamics along the edge, figure 5 plots
snapshots of 〈e〉x on the y–z plane at times t1 = 21.11, t2 = 21.25, t3 = 21.35, t4 = 21.50,
t5 = 21.58 and t6 = 21.67, which cover a total time just over T/2.

Figure 5(a–d) (times t1 to t4) show a well-defined region in the y–z plane that
concentrates most of the kinetic energy of the flow, which modifies its shape and migrates
upwards over time. This region is located around (and just above) the instantaneous
location of a local maximum in the absolute value of laminar shear, |τ	| = |∂U/∂y|, and
rises with it. We label this location ymin

τ	
(given that ∂U/∂y < 0). In figure 5(d) the region

of concentrated kinetic energy reaches a height y ≈ 2 and begins to spread out. After t = t4
a new region of concentrated energy is formed near the wall, seen in figure 5(e, f ) (times
t5 and t6), and the process repeats, although this new region aligns with the location of
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Figure 4. (a) Time-series of production rate (red) and dissipation rate (blue) for 20 < t < 30. (b) A detailed
plot for 21 < t < 22 showing that within half a period, there is a production-dominated (P–D, red) stage and
a dissipation-dominated (D–D, blue) stage. The right-hand axis plots the magnitude of the wall velocity Ub =
U (0, t) (grey dashed). The sign of the wall acceleration, d|Ub(t)|/dt , is shown to correspond with the P–D and
D–D stages. The times of the six snapshots in figure 5 are indicated with dotted lines.

maximal positive laminar shear, labelled ymax
τ	

. Figure 5(g) plots the vertical distribution
of the x–z averaged energy 〈e〉x,z over an extended period of time, demonstrating that this
basic T/2 cycle repeats indefinitely, with flow structures periodically forming a little above
the plate, rising, and dissipating around y � 3.

The location of the flow structures in the spanwise direction varies sporadically in time,
as can be seen in figure 5(h), which shows the spanwise distribution of the x–y averaged
energy 〈e〉x,y . The time window studied in figure 5(a–f ) contains flow structures located in
a region around the centre of the spanwise domain, while the time window between t = 23
and t = 26 contains the same structures located around the (periodic) spanwise boundaries.
This ‘jumping’ of the structure by an amount Lz/2 is characteristic of a spatially localised
structure which nevertheless feels the influence of its periodically located neighbours,
owing to the domain size Lz being too small for the structure to evolve entirely freely,
but large enough for it to appear essentially isolated for extended periods (Khapko et al.
2016). These jumps are associated with elevated energy E during a single half-period T/2
in figure 3, as there are essentially two structures side by side, and are distributed randomly
in time. If the domain size Lz were large enough, then the jumps would presumably cease
since the structure can evolve entirely independently, although this may instead induce
a spanwise drift (Khapko et al. 2013). Nevertheless, we shall treat the structure as an
essentially isolated object in the following analysis, as this is a reasonable approximation
for much of the flow evolution between jumps.

To provide a more detailed characterisation of the three-dimensional nature of these
structures, figure 6(a–d) plot isosurfaces of high-speed streaks (uSmax = 0.5max{u}) and
low-speed streaks (uSmin = 0.5min{u}) at times t2 to t5. The x-averaged energy 〈e〉x is
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Figure 5. (a–f ) Snapshots of 〈e〉x in the y–z plane for six times t1 = 21.11, t2 = 21.25, t3 = 21.35, t4 = 21.50,
t5 = 21.58 and t6 = 21.67. To the right of each snapshot is the corresponding instantaneous laminar velocity U
(teal) and normalised shear (2π)−1/2(∂U/∂y) (red) with black dots at its maximum and minimum. (g) Time-
evolution of the average vertical distribution of energy 〈e〉x,z and its instantaneous maximum (red dashed).
(h) Average spanwise distribution of energy 〈e〉x,y .

shown on the plane x = 0, and the height of maximal energy (ymax{〈e〉x }) is plotted on
the planes x = 0 and z = Lz . The instantaneous laminar flow profile is shown on the
planes z = 0 and z = Lz (shifted to be centred at x = Lx/2) for reference. These figures
show that the streamwise structures are streak-like, and instantaneously (at least visually)
carry the majority of the energy of the perturbed flow, as in the SSP (Hall & Smith 1991;
Waleffe 1997). Indeed, the streamwise velocity is O(1) within these streaks whilst typical
cross-stream velocities are O(10−3). Within a single half-period T/2 (times t2 to t4), a
single streak with u > 0 dominates the perturbation energy. In the following half-period
(t5) the streak is replaced by one of the opposite sign (u < 0) and the dynamics of the
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Figure 6. (a–d) Snapshots of high-speed (uSmax = 0.5max{u}, purple) and low-speed (uSmin = 0.5min{u},
orange) streamwise velocity isosurfaces, at times t = t2, t3, t4 and t5. Streamwise-averaged perturbation energy
〈e〉x is plotted on the plane x = 0. The instantaneous height of maximum perturbation energy (ymax{〈e〉x }) is
plotted on the planes x = 0 and z = Lz with a dotted line. The instantaneous laminar flow is plotted on the
planes z = 0 and z = Lz (centred at x = Lx/2). (e) Time evolution of the x, z-averaged perturbation energy
〈e〉x,z , its instantaneous global maximum (continuous line) and oblique lines (dashed) with slope 2

√
π . Dotted

blue and red lines indicate locations of zero laminar shear, labelled y− and y+, defined in § 4.1.

new streak are essentially the same as the first. This goes some way to explaining the
apparent T/2 period within the energy budget; the flow itself has a period of T , but the
reflection symmetry after a time T/2 results in preperiodic motions that are not apparent
in positive-definite quantities such as the energy.

Figure 6(e) shows the instantaneous vertical distribution of the x–z-averaged kinetic
energy, 〈e〉x,z , along with the locations of its global maximum and oblique lines of slope
2
√

π , showing that the laminar flow propagation speed controls the spatial location of
these nonlinear structures on the edge. The no-slip boundary condition (u = 0 at y = 0)
prevents the streaks from forming at the wall, and instead they begin to form around y ≈
1/4 and reach substantial amplitude at y ≈ 1. As the streaks migrate upwards, they begin
to lose a substantial amount of energy around y ≈ 2 and essentially do not propagate into
y � 3 (this will be demonstrated explicitly in the following section). Although the laminar
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Figure 7. (a) Snapshot at t = 20.35 of high and low speed streaks, as in figure 6 for the narrower domain.
(b) The corresponding perturbation energy from edge tracking.

flow, and hence also the energy production rate P , decays exponentially away from the
wall, there is nothing inherently preventing these streaks from continuing to propagate
to y → ∞ while viscously decaying through D; therefore, there must be some further
dynamics contained within the other flow components that essentially cut off the streaks
beyond a maximum height. The exact physical mechanisms driving these observations will
be explained in the following section. A supplementary movie accompanying figure 6 is
available, which shows the streak dynamics and includes a jump of the streaks from the
centre of the domain to the spanwise boundaries.

Edge tracking was also performed at a higher Reynolds number of Re = 1200 using the
same computational set-up, and the dynamics were qualitatively similar to those at Re =
1000. Due to the moderate Reynolds numbers used and the small gap between them, no
clear scaling of flow structures with Re was observed. Another set of edge tracking results
were computed in a narrower domain with half the spanwise extent (Lz = 4.1, using the
same spatial and temporal resolution) for Re = 1000, to see whether or not a truly periodic
edge state could be identified. However, the edge trajectory in this case is significantly
more chaotic than in the wider domain, and no period of nearly periodic motion can be
identified for further analysis of the flow structures. Figure 7 shows a snapshot of the flow
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in the narrow domain, from which it is seen that the structures are similar to those of the
wider domain discussed above. However, the flow is too confined, and alternating signed
streaks ‘compete’ for space as they form and migrate upwards, and a consistent pattern of
dynamics does not clearly emerge. The next section will focus entirely on the wide domain
with Re = 1000 and demonstrate that rolls in the y–z plane, which sustain the streamwise
streaks during their migration, span the entire domain, and it is likely that these rolls do
not have enough room in the narrow domain to establish a periodic sustained flow.

4. The periodic self-sustained process
To fully understand the streak dynamics, including their creation, migration, growth and
sudden decay, we analyse the effect of wall-oscillation on the SSP, by decomposing the
full perturbation velocity into its streak, roll and wave (SRW) components. The average of
the velocity field over the x-direction, U = 〈u〉x , can be decomposed into streak and roll
components as U =U s +Ur ≡ (U , 0, 0)s + (0, V,W)r . The full perturbation velocity
field can be expressed as

u =U s +Ur + û = (U , 0, 0)s + (0, V,W)r + (û, v̂, ŵ)w (4.1)

where the subscript s denotes the streak velocity, the r subscript denotes the roll
velocity and the w subscript and hat decoration denotes the remaining part of the fully
three-dimensional velocity field. Introducing this decomposition into (2.2), we obtain
momentum equations for U , V and W ,

∂U
∂t

+ Re Uj
∂U
∂xj

= −Re

{
V ∂U

∂y
+ ∂

〈
ûûj

〉
x

∂xj

}
+ ∂2U

∂xj∂xj
, (4.2)

∂V
∂t

+ Re Uj
∂V
∂xj

= −∂P

∂y
− Re

∂
〈
v̂ûj

〉
x

∂xj
+ ∂2V

∂xj∂xj
, (4.3)

∂W
∂t

+ Re Uj
∂W
∂xj

= −∂P

∂z
− Re

∂
〈
ŵûj

〉
x

∂xj
+ ∂2W

∂xj∂xj
, (4.4)

where P ≡ 〈p〉x is the the x-averaged pressure. Mass conservation within the SRW
decomposition reads

∂V
∂y

+ ∂W
∂z

= 0 and
∂ ûi

∂xi
= 0, (4.5)

and momentum equations for the wave components û can be obtained by subtracting (4.2–
4.4) from (2.2), though the resulting equations are not needed here.

4.1. Cycle description and energy transport dynamics
To unveil the dynamics among streaks, rolls and waves, we analyse the evolution of
the energy within the SRW-decomposition. Defining the streak energy density as Es ≡
(1/2)U2, the roll energy density as Er ≡ (1/2)(V2 +W2), and the x-averaged wave energy
density as Ê ≡ 〈(1/2)|û|2〉x , we have by construction that the x-averaged total perturbation
energy density E ≡ 〈e〉x is given by E = Es + Er + Ê , given that the cross-terms vanish.
The SRW momentum equations (4.2–4.4) may be converted into evolution equations for
the streak energy density and roll energy density, and an equation for the x-averaged wave
energy density can be constructed by observing that (∂Ê/∂t) = (∂E/∂t) − (∂Es/∂t) −
(∂Er/∂t). These equations are presented in the Appendix.
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The energy density evolution equations contain flux terms which move energy within
the domain, in addition to production from the laminar flow, transfer between rolls, streaks
and waves, and dissipation terms. To better elucidate the key mechanisms sustaining the
motion, we integrate the equations over the whole domain to give evolution equations for
the total streak Es = 〈Es〉Ω , roll Er = 〈Er 〉Ω and wave Ê = 〈Ê〉Ω energies,

dEs

dt
= 〈P	→s〉Ω − 〈Ts→w〉Ω − 〈Ds〉Ω, (4.6)

dEr

dt
= 〈Tw→r 〉Ω − 〈Dr 〉Ω, (4.7)

dÊ

dt
= 〈P	→w〉Ω + 〈Ts→w〉Ω − 〈Tw→r 〉Ω − 〈Dw〉Ω. (4.8)

The production (P), transfer (T ) and dissipation (D) terms are also given in the Appendix.
Their indices indicate the source and the destination of the transferred energy (in the case
of P and T ) or the component which is dissipating energy (in the case of D), where the
laminar flow is denoted by 	. For example, the term

P	→s ≡ −ReUV ∂U

∂y
(4.9)

corresponds to the production of perturbation energy by the laminar flow, creating streaks
U (and mediated by the vertical roll component V). This is the process that creates streaks
via the so-called lift-up mechanism, which forms part of the SSP (Waleffe 1997). The
volume-average of each energy component in (4.6–4.8) are plotted in figure 8 along with
the total energy E whose evolution in terms of these components is

dE

dt
=P(t) −D(t) ≡ (〈P	→s〉Ω + 〈P	→w〉Ω) − (〈D	〉Ω + 〈Dr 〉Ω + 〈Dw〉Ω). (4.10)

Figure 8 clearly shows a scale difference in energy and energy transfer rate terms
between rolls, streaks and waves. Figure 8(a) shows that the most energetic component is
the streaks, with energy that is almost indistinguishable from the total energy. The second
most energetic structures are the waves, which have an average energy around one and
a half orders of magnitude smaller than the streaks, and the rolls are the least energetic
structures with average energy around two orders of magnitude smaller than the streaks.
This hierarchy is as expected from vortex-wave interaction theory (Hall & Smith 1991),
albeit with relative sizes that do not match the high Reynolds number asymptotic theory,
owing to the relatively modest Reynolds number used here (see Hall & Sherwin 2010).

Figure 8(b) shows that the scale differences persist among the energy transfer terms. The
largest two terms in the energy budget are the production term transferring energy from
the laminar flow to the streaks through the lift-up mechanism, 〈P	→s〉Ω , and the streak
dissipation, 〈Ds〉, which dissipates most of this energy, and is almost exactly in phase with
and of the same magnitude as 〈P	→s〉Ω . The small amount of streak energy gained from
production which is not dissipated is transferred to the waves via 〈Ts→w〉Ω . This transfer
rate is around an order of magnitude smaller than the streak production and dissipation,
and is responsible for powering the smaller amplitude waves. In turn, this energy transfer
to the waves is balanced almost entirely by the wave dissipation 〈Dw〉Ω , which is of a
similar magnitude as 〈Ts→w〉Ω and in phase with it. The waves receive little energy via
production from the laminar flow, 〈P	→w〉Ω . This production term oscillates somewhat
randomly between positive and negative values (backscatter onto the laminar flow) and
essentially averages to zero over long periods of time; the laminar flow is stable to linear
waves at this Reynolds number (and in this geometry). This production term essentially
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Figure 8. (a) Time series of energy components Eα : E (black); Es (red); Er (green); Ê (blue). (b) Time
series of individual production, transfer and dissipation terms (labelled Ėα→β ): 〈P	→s〉Ω (light red circles);
〈P	→w〉Ω (dark red squares); 〈Ts→w〉Ω (light green upwards triangles); 〈Tw→r 〉Ω (dark green diamonds);
〈Ds〉Ω (dark blue crosses); 〈Dr 〉Ω (mid bue filled circles); 〈Dw〉Ω (light blue downwards triangles). (c,d) The
same as (a) and (b) for 20.75 � t � 21.9. Dashed sections of 〈P	→w〉Ω are negative values.

plays no meaningful role in the wave dynamics as its average magnitude is around an order
of magnitude smaller than either the transfer to the waves from the streaks, 〈Ts→w〉Ω , or
the wave dissipation, 〈Dw〉Ω . The waves lose a small amount of energy to the rolls, via the
transfer term 〈Tw→r 〉Ω , which is also an order of magnitude smaller than either 〈Ts→w〉Ω
or 〈Dw〉Ω . The transfer from the waves to the rolls, 〈Tw→r 〉Ω , is of the same magnitude
and nearly in phase with the roll dissipation, 〈Dr 〉Ω .
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Figure 9. Schematic representation of the energy transfer cycle for the PSSP. The input of energy comes from
the laminar flow formed from the plate oscillation. This is transferred to the streaks via the lift-up mechanism
due to the action of the rolls (the role of the roles is purely advective; no energy is transferred). Streaks dissipate
most of the energy and what remains is transferred to the waves through linear instability. Waves dissipate most
of this energy and what remains is transferred to the rolls through Reynolds stresses and the cycle repeats.

A closer visualisation of the time series is plotted in figure 8(c,d) for 20.8 � t � 22. In
figure 8(c), it can be seen that the reduction in total streak energy leads to an increment
in the total wave energy, which in turn leads to an increment in the total roll energy. The
‘cascade’ process is indicated with a tricoloured arrow in the plot, and indicates that the
energy transfers first between the streaks and the waves, and second between the waves
and the rolls. Furthermore, as the rolls begin to gain energy, there is a subsequent increase
in the streak energy, as expected from the lift-up mechanism, and the cycle repeats. In
summary, each flow component receives and loses the majority of its energy from a single
source, as in the SSP of Waleffe (1997), but the periodic nature of the structures presented
here more readily reveals the flow of energy through the system than in other, steady,
realisations of the SSP. Additionally, it is often not made explicit that most of the energy
at every step of the SSP is dissipated, with only a little being transferred to the next part of
the cycle; the largest sink of energy is the streaks and the smallest is the rolls. This cycle
is presented schematically in figure 9, which echoes the well-known figure of Waleffe
(1997), but includes energy sinks (dissipation) and indicates the main flow of energy using
different pathway thicknesses and circle sizes for each component of the flow.

This view of the global energies and energy transfer rates does not provide any
information on the mechanistic flow processes and flow structures involved in this cycle.
It also does not explain exactly how the flow manages to organise itself periodically, for
example why the nonlinear streaks move upward at a speed dictated by the linear laminar
flow, why they stop after a finite distance and how the waves and rolls manage to create
further streaks close to the wall. An explanation based upon the spatial evolution of the
various flow components and spatial distribution of the energy transfer rates during the
cycle is needed.
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4.2. Streak and roll dynamics
Figure 10 shows the distribution in the y–z plane of the energy transfer components P	→s ,
Ds , Tw→r and Dr , which are responsible for supplying and dissipating energy within
the streaks and rolls, at the times t1, t2, t3 and t4 indicated in figure 8(c,d). Overlain
on each panel are instantaneous roll streamlines and contours of high streak energy
(Es � 0.25 maxΩ {Es}). The laminar velocity and (scaled) shear profiles are displayed to
the right of each plot to relate the stage of the PSSP with the stage of the wall oscillation.
These profiles are plotted alongside a profile of the normalised strain-rate magnitude of
the rolls, whose magnitude is defined as

|S| = Re

√√√√2

[(
∂V
∂y

)2

+ 1
2

(
∂V
∂z

+ ∂W
∂y

)2

+
(

∂W
∂z

)2
]
, (4.11)

which is normalised via |S∗| = |S|/ maxΩ {S}.
The roll streamlines in figure 10 show that the overall shape of the rolls is persistent

throughout the time interval t1 � t � t4, forming recirculation cells of O(1) size. These
cells only slightly modify their shape over time, remaining located in the same areas
throughout the cycle; their magnitude alone oscillates in time. They form a narrow channel
around z ≈ Lz/2 of upward roll velocity, and the streaks form, grow and migrate upward in
this channel. The channel ends at a stagnation point (in the y–z plane) around y = ySP � 3
which appears to present a barrier for the upward migrating streak. The roll velocity is
horizontal away from the stagnation point at (y, z) ≈ (ySP, Lz/2) and gradually turns
upward, or downward back towards the wall, at the spanwise extremities of the domain.

It is apparent from the roll structure that the streaks reside largely in a region for which
V > 0 around z = Lz/2 below the stagnation point at y = ySP. In order for the streak
production rate P	→s = −ReUV(∂U/∂y) to be positive in this region, we therefore require
that the combination U(∂U/∂y) < 0 since the sign of V is fixed. As such, a positive streak
(U > 0) can only grow when the laminar shear is negative (∂U/∂y < 0) and vice versa.
This observation, along with the fact that the laminar flow U (y, t) is periodic, and that
its features propagate upward at a speed 2

√
π , goes some way to explaining the streak

migration.
To make this notion precise, we detail key features of the laminar profile. Heights with

zero laminar shear are denoted y± such that the laminar shear transitions from negative
to positive through y+ (i.e. ∂2U/∂y2|y=y+ > 0) and vice versa. Locations of maximum
and minimum laminar shear are denoted y∗±. This notation is illustrated in figure 11. We
introduce the cycle time 0 � ξ < 1, where the total time is t = kT + ξ with T = 1 and k an
integer, and consider the evolution of y±(ξ) and y∗±(ξ). A laminar shear minima appears
at the wall when ξ = 0 and for 0 � ξ < 1 is located at y∗−(ξ) = 2

√
πξ . After half a cycle, at

ξ = T/2 = 1/2, a laminar shear maxima appears at the wall and for 1/2 � ξ < 1 is located
at y∗+(ξ) = √

π(2ξ − 1). Above the wall at the beginning of the cycle, the laminar shear
changes sign at y+ = 3

√
π/4. As time advances, this location of zero shear is given by

y+(ξ) = √
π(2ξ + 3/4). When ξ = 1/8, another location where the laminar shear changes

sign appears at the wall, and for 1/8 � ξ < 1 is located at y−(ξ) = √
π(2ξ − 1/4). When

ξ = 5/8, a final zero shear location appears at the wall and its location is given by y+(ξ) =√
π(2ξ − 5/4).
These locations are illustrated at four times within the cycle in figure 11. They divide

the region around z ≈ Lz/2 below the stagnation point into locations where the production
term P	→s can create positive streaks (∂U/∂y < 0, coloured pink) and locations where it
can create negative streaks (∂U/∂y > 0, coloured blue). These regions are also overlain on
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Figure 10. Distribution in the y–z plane of the energy transfer components P	→s , Tw→r , Ds and Dr at times
t1 to t4, normalised by each of their maximum values across the time window t1 � t � t4. Roll streamlines are
coloured by the local roll energy. Red contour lines show high streak energy (Es � 0.25 maxΩ {Es}). Shaded
production windows (PWs) are shown for negative and positive streaks (PW−, blue; PW+, pink). To the right of
the panels are the laminar velocity (teal) and normalised shear (orange) along with the profile of the normalised
roll strain rate |S∗| (grey dashed) defined in (4.11) through the roll stagnation point, labeled by ySP and a filled
white circle.
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Figure 11. Schematics of four different stages of the streak development and upward migration at the centreline
between the roll recirculation cells. Light pink and blue represent PWs, regions of the flow where the production
term P	→s is positive. In darker pink and blue, streak development bands (SDBs) are presented. These are
subregions of the PWs where P	→s is of substantial size, and therefore regions where streaks develop. The
PWs and SDBs migrate upwards at a speed of 2

√
π according to the locations of y±(ξ) defined in the text and

can sustain positive (PW+, SDB+, U > 0) and negative (PW−, SDB−, U < 0) streaks. In (a), there is a PW−
between y+ and ySP which is intentionally omitted for clarity of the discussion.

the energy transfer term distributions and laminar flow profiles in figure 10. The schematics
in figure 11 make a further distinction within each region; for a substantial production
term we require that both ∂U/∂y and V are large enough to provide a meaningful energy
input to the streaks. We therefore expect to have reduced streak growth around y = y±
(where ∂U/∂y is small) and around y = 0 (where V is small). This defines SDBs which
are indicated with a darker shade in figure 11.

To relate this scheme to the dynamics observed in figure 10, at the beginning of the
cycle (ξ = 0) the region 0 < y < y+(0) = 3

√
π/4 has negative laminar shear ∂U/∂y < 0

and positive vertical roll velocity V > 0 around z ≈ Lz/2, meaning that a positively signed
streak (U > 0) grows in this region. However, due to the no-slip condition at y = 0 (the
boundary conditions ensure that V ∝ y2 near the wall), V is too weak near the wall to
produce large values of P	→s . The streak therefore grows to a spatial extent of O(1) within
a SDB, with its lower edge a little separated from the wall.

A little after the beginning of the cycle, at ξ1 = 0.11, the laminar shear maxima y∗−(ξ)

has moved upwards to the lower edge of the streak, as shown in figure 10(a). At this
time, the streak has essentially not moved from its initial position at ξ = 0, but has become
stronger and larger (c.f. figures 8c and 6e, respectively) and the production P	→s is centred
in the middle of the streak. There is substantial dissipation Ds in a ring around the streak,
owing to increased streak velocity gradients.
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The total streak dissipation is lower than the total production (〈Ds〉Ω < 〈P	→s〉Ω ) for
ξ1 � ξ � ξ2 = 0.25 and so the streak continues to grow in magnitude during this period.
However, it starts to migrate upwards, as do the concentrations of Ds and P	→s , as can
be seen in figure 10(b). After ξ = 1/8, the region 0 � y < y−(ξ) has positive laminar
shear ∂U/∂y > 0 and positive vertical roll velocity V > 0, so that any positively signed
streak velocity U > 0 in this region experiences negative production P	→s , i.e. the lift-
up mechanism acts to destroy the streak in 0 � y < y−(ξ). This ultimately means that
the streak cannot exist (with a significant amplitude for any significant period of time)
outside of y−(ξ) < y < y+(ξ). This region with positive production migrates upward at
speed dy−/dξ = dy+/dξ = 2

√
π , and hence so does the streak. Interestingly, the streak

advection term ReV(∂U/∂y) in (4.2) has an advection velocity ReV around two to three
times larger than 2

√
π within and around the streak (depending on the time during the

cycle), so that the streak is effectively hindered from migrating upward with the roll
advection since any part of the streak crossing the upper edge of the SDB at y+ is subject
to destruction from P	→s < 0.

As this upward migration proceeds, the magnitude of the laminar shear decreases
exponentially in time; within y−(ξ) < y < y+(ξ), we have |∂U/∂y|�√

πe−2ξ . The streak
energy saturates at a time ξ2 < ξ < ξ3 = 0.35 (see figure 8c) and at ξ3 the total streak
dissipation is larger than the production (〈Ds〉Ω > 〈P	→s〉Ω ). Throughout the period of
growth and uplift, ξ1 < ξ < ξ3, the centre of the streak and its production remain above
the location of the minimum laminar shear, y∗−(ξ). Instead, the streak centres itself in the
middle of the production region y−(ξ) < y < y+(ξ). This can be seen in figure 10(b,c) in
which y∗−(ξ) is located around a quarter of the way up the streak (it is straightforward to
show that y+ − y− = 4(y∗ − y−)).

However, the ultimate fate of the streak is not to be gradually lost to dissipation while
continuing to move upwards as the production rate continues to decrease exponentially.
Instead, the upward migration of the PW y−(ξ) < y < y+(ξ) eventually moves the centre
of the streak on top of the roll velocity stagnation point, see figure 10(d) at ξ4 = 0.5. The
streak is essentially ripped apart in the stagnation point due to the high strain rate in this
region (a peak of global strain-rate magnitude is observed around the stagnation point in
figure 10a–d and its magnitude is around 15 when the streak crosses it), substantial wave
activity is created (see figure 8c,d), and the local streak dissipation rapidly destroys what
remains. Meanwhile, a new streak is formed close to the wall, below y−(ξ4) = 3

√
π/4,

in which the laminar shear is positive (∂U/∂y > 0) and the vertical roll velocity is (still)
positive (V > 0), and so the production term P	→s produces a negatively signed streak in
this region (U < 0). The cycle then repeats itself during 0.5 � ξ < 1, with the sign of the
streak reversed from the description above.

This description of the streak cycle requires that the roll velocity magnitude is sufficient
for the lift-up mechanism to act against the laminar shear in the correct way. The rolls are
sustained by energy transfer from the waves (Tw→r ), and dissipate energy in regions where
vertical and spanwise velocity gradients are concentrated (Dr ). Figure 10(a–c) show that
the roll dissipation is concentrated around the stagnation point in a ‘figure-eight’ pattern
throughout most of the cycle. This is the location where the streamlines change direction
from vertical to horizontal most rapidly, and therefore where the largest gradients are
expected to be located. The magnitude of the dissipation decreases from ξ1 to ξ4. At the
end of the (single) streak cycle, ξ = ξ4 = 0.5, there is also dissipation in the area between
the old streak and the new streak, within which W changes sign. This dissipation region
is also present at time ξ1, between the previous streak and the new streak that has just
developed.

1022 A10-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
72

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10725


Journal of Fluid Mechanics

Just after the beginning of the cycle, at ξ1, there is a peak in the transfer from the waves to
the rolls, Tw→r (figure 10a). This is from wave activity associated with the final destruction
of the previous streak at the stagnation point. As such, the energy transfer from waves to
rolls is concentrated around the stagnation point, and acts primarily to accelerate the rolls
horizontally (W) away from the stagnation point. This energy transfer takes the form of
a wave Reynolds stress (see the Appendix), and a detailed description of which terms
contribute to this Reynolds stress is given in the next section. Mass conservation ensures
that this local forcing enhances the rotation of the entirety of the cells, and concentrates
the streamlines within the stagnation point. At the intermediate times ξ2 and ξ3, the energy
transfer from the waves decays (figure 10b,c) which leads to the streamlines receding from
the stagnation point, and expanding the dissipation pattern away from it.

By the end of the cycle at ξ = ξ4, the total energy transfer from the waves to the
rolls, 〈Tw→r 〉Ω , is halfway to its maximum value (see figure 8d), and its distribution
starts resembling that observed at time ξ1 (see figure 10d). This reflects the fact that the
destruction of the old streak is underway by time ξ4, and waves are already being produced.

4.3. Waves
To complete the description of the PSSP, the distribution of the wave energy density, Ê ,
the transfer from the streaks to the waves, Ts→w, and the wave dissipation, Dw, must
be explored. At high Reynolds number, wave energy, and its transfer terms, are expected
to concentrate along lines of constant total streamwise velocity, U + U = c, where c is
the (real) phase speed of the waves (so-called critical layers). Figure 12 shows the wave
energy components Ê , Ts→w, Tw→r and Dw at the same times t1 to t4 along with contour
lines of constant total streamwise velocity (critical layer candidates). The timing and
spatial distribution of the wave energy and its transfer terms agree with the dynamics
deduced when analysing the rolls. In particular, the wave energy Ê is high during the
streak destruction period of the cycle (figure 12a,d), and the energy concentrates around
the stagnation point where this destruction occurs. As expected, the wave dissipation Dw

is also high during these periods and overlaps spatially with the wave energy. A closer
inspection of figure 12(c,d) indicates that, in the lead-up to the streak destruction, the wave
energy concentrates in the region between the upper part of the streak and the stagnation
point. This indicates that the streak begins to lose stability (to waves) before it completely
overlaps with the region of largest strain rate.

Since the laminar flow decays exponentially away from the wall (|U |� 0.1 for y � 1.3),
but the streaks are O(1) before they dissipate, contours of total streamwise velocity U + U
in the vicinity of the streak are strongly shaped by the streak velocity U and are similar to
contours of the streak velocity alone for y � 2. During the middle part of the cycle, when
the streak is rising from its initial position towards the stagnation point (figure 12b,c) this
results in open contours of U + U bending up and around the streak. However, at the end
of the cycle (and beginning of the next cycle), a region of closed contours forms around the
stagnation point (figures 12d and 12a). The waves are most active during this time, and so
they become ‘trapped’ in this region by the closed total streamwise velocity contours. This
trapping causes the transfer to the rolls, Tw→r , to be focused around the stagnation point.

Figure 13 shows the two transfer terms, Ts→w and Tw→r , in more detail around the
stagnation point when the waves are most active at time t1. The transfer from the waves to
the rolls, Tw→r , is focused around the contour c = −0.075, and so the waves are essentially
stationary during the relatively short time that they are active, since they would otherwise
take a time Lx/c ≈ 110 to traverse the streamwise length of the domain. Figure 8(d) shows
that Ts→w and Tw→r are in phase, so that the energy transfer from streak to waves and then
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from waves to rolls takes place almost simultaneously within this closed contour region.
However, figure 13 shows that the spatial distribution of the two terms is different; transfer
to the waves (Ts→w) is centred in a region just below the stagnation point, but transfer
to the rolls (Tw→r ) ejects fluid horizontally away from the stagnation point, as discussed
above.
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∂〈ûv̂〉/∂y

∂〈v̂v̂〉/∂y ∂〈ŵv̂〉/∂y
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Figure 13. (a i, b i) A reproduction of figure 12(a) at t = t1 of (a) Ts→w and (b) Tw→r in more detail around
the stagnation point. The thicker dotted line corresponds c = −0.075. (a ii, b ii) Vertical profiles of the SRW
Reynolds stress terms that contribute to the energy transfer terms at the three spanwise locations zL , zC and zR
shown in (a i) and (b i).

To complete the picture of the wave dynamics, figure 13 also plots vertical profiles at
three spanwise (z) locations (through the stagnation point, zC , to its left, zL , and to its
right, zR) of the streak and roll velocities, along with wave Reynolds stress divergence
terms. Figure 13(a) shows that, in the centre of the streak, large streak velocity combines
with the spanwise gradient of the spanwise–streamwise wave Reynolds stress (∂〈ûŵ〉/∂z)
to control the energy transfer from streaks to waves, Ts→w (see the profiles for z = zC ).
Physically, this represents waves extracting streamwise momentum from the streaks and
redistributing it into spanwise wave momentum. The profiles observed at z = zL and
z = zR in figure 13(b) show that the spanwise roll velocity W combines with the spanwise
gradient of the spanwise–spanwise wave Reynolds stress (∂〈ŵŵ〉/∂z) to control Tw→r .
This represents waves depositing spanwise momentum back into the mean flow (in this
case, the rolls). In particular, although the streak velocity U changes sign every half-period
and the symmetries of the (linearised) wave equations ensure that 〈ûŵ〉 changes sign also,
the fact that the transfer from waves to rolls, Tw→r , is dominated by the sign-definite term
〈ŵŵ〉 means that the roll velocity W does not change sign, and by extension neither does V
due to continuity, resulting in the rolls maintaining their flow direction instead of reversing
every half-period. This description helps to clarify how the waves mediate the transfer of
energy from the streaks to the rolls, allowing the latter to persist and drive the cycle via
the lift-up mechanism.

4.4. Wall stresses
The PSSP dynamics described above have an effect on the shear stresses 〈τ 〉x,z exerted
on the wall by the flow. Figure 14(a) plots time series of the average laminar, streak and
roll shear stress at y = 0, showing that these three components of the total shear stress are
separated by four orders of magnitude, with the laminar shear stress being larger than the
streak shear stress, which is in turn larger than the roll shear stress. The streak shear stress
is almost periodic, alternating between positive and negative values with a period of T and
a phase-shift of approximately T/2 with respect to the laminar shear stress. The roll shear
stress is irregular and remains negative for most of the time window.
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Figure 14. (a) Average shear stress 〈τ 〉x,z at the wall due to the laminar (orange), streak (red) and roll (teal)
flows for 20 < t < 30. Dashed lines indicate negative values. (b) Power of energy transfer from the plate to
the fluid due to the laminar (orange) and streak (red) flows. Dashed, negative values indicate that the plate is
transferring energy to the fluid.

A closer inspection of the phase-shift between the laminar and streak-induced shear
stresses in figure 14(a) reveals two types of motion within the edge dynamics. During
20 � t � 22 and 23 � t � 25, the phase-shift between the two shear stresses is close to
T/2. At the other times in the figure, the streak-induced shear stress shifts slightly earlier
by around T/8 and changes shape; rather than being nearly symmetric around each local
peak value, the peaks become skewed to earlier times. Two such features, at t ≈ 22.5 and
t ≈ 25.5 correspond to jumps of the structure by Lz/2. However, the period 26 � t � 30
contains no such jumps and yet contains the same shear stress pattern. This period is
associated with slightly elevated total perturbation energy (c.f. figures 3a and 5g,h) and
streak and wave energies (c.f. figure 8a and the supplementary movie). The effect of
this T/8 shift during this more energetic period, though small, is slightly delayed total
shear stress peaks, along with slightly elevated shear stresses leading up to and during
the laminar shear stress reversals. Within transitional turbulence, which is significantly
more energetic than these edge dynamics, Ozdemir et al. (2014) observe more exaggerated
versions of these two features when Re ≈ 1063. This suggests that the dynamics presented
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Figure 15. Power of energy transfer from the plate to the fluid for 20 < t < 21 (indicated by 0 < ξ < 1 with
k = 20) for the laminar (yellow) and streak (red) flows. Negative values indicate energy transfer from the plate
to the fluid. At the bottom of the plot, the sketches show the direction of the plate velocity and the laminar
shear force exerted on the plate.

herein may relate directly to some key processes of transitional turbulence, though future
detailed investigation of this hypothesis is necessary.

To analyse the influence of the PSSP on the energy input needed to maintain the plate
oscillation, figure 14(b) shows the non-dimensional power per unit area of the laminar and
perturbation velocity fields at y = 0. These powers are given by

PU

ρνU0
≡ P∗

U =
〈

Re U
∂U

∂y

∣∣∣∣
y=0

〉
x,z

≡ ReU
∂U

∂y

∣∣∣∣
y=0

, (4.12)

PU
ρνU0

≡ P∗
U =

〈
Re U

∂u

∂y

∣∣∣∣
y=0

〉
x,z

≡
〈

Re U
∂U
∂y

∣∣∣∣
y=0

〉
z

, (4.13)

where PU and PU are the dimensional power associated with the laminar and the
perturbation streak flows, respectively. The figure shows that both the laminar and the
streak powers are periodic with a period of T/2. Similarly to their shear stresses,
the laminar and streak power are out of phase with each other.

Figure 14(b) also shows that positive and negative power values are different in
magnitude; the laminar power has larger negative peaks than positive peaks and so is a
net consumer of energy, whereas the streak power has larger positive peaks than negative
peaks and so is a net contributor of energy to the plate motion. The back-and-forth motion
of the plate must overcome the inertia of the fluid in order to repeatedly reverse its
direction, and so the average energy transfer over each cycle must be from the plate to the
fluid. However, there are periods within each cycle during which energy is instantaneously
transferred back to the plate, as the inertia of the fluid drives the plate in the same direction
as it travels. These windows are short; the laminar flow shear force Fτ	

is in the same
direction as the plate velocity U for 1/8 < ξ < 1/4 and 5/8 < ξ < 3/4 (for a total of 1/4
of the whole cycle), as shown in figure 15. Furthermore, the power of energy transfer from
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the laminar flow back to the plate is substantially smaller than during the rest of the cycle
when the laminar flow gains energy from the plate. On the other hand, the perturbation
streak flow is a net contributor to the plate energy (albeit at a substantially lower power),
reducing the total energy consumption. The relative timing during the cycle means that
the streak inertia contributes most to reducing the power transfer from the plate when the
laminar shear force is most strongly opposed to the plate motion.

5. Conclusions
In this work, we characterised and analysed the flow structures of an edge state in the
oscillatory SBL. We used direct numerical simulations to perform edge tracking of the
manifold that separates flow trajectories which either relaminarise or become turbulent.
The edge was tracked for approximately 40 diffusive time units for Re = 1000. The edge
dynamics are organised into streak-like structures of size O(1), which originate a little
above the oscillating wall and migrate upward at a speed of 2

√
π (the phase speed

of travelling features of the laminar flow), dissipating around y � 3. This behaviour is
repeated cyclically (twice within each wall-oscillation cycle), and results in alternating
production- and dissipation-dominated phases within each period. The formation and
upward motion of the structures occurs predominantly during the wall deceleration
phase, and their loss of coherence and eventual dissipation near y � 3 occurs during the
acceleration phase. These structures are isolated in the spanwise direction for much of the
edge state trajectory, sporadically duplicating and occupying the entire spanwise extent
of the flow domain before a new spanwise localised state emerges. We focussed on the
localised flow periods in order to understand and describe the dynamics of the edge.

We performed a SRW decomposition of the velocity field in order to interpret the cycle
using flow components which comprise the well-known SSP (Hall & Smith 1991; Waleffe
1997), and in doing so detailed a periodic, spatially evolving version of the typically
steady or confined SSP. The rolls are composed of four counter-rotating recirculation
cells of diameter ≈ Lz/2 that converge into a stagnation point at a height ySP � 3. The
rolls are persistent, only slightly modifying their shape over the cycle, and this relatively
unchanging flow component allows for the so-called PSSP to be generated.

The stages of the cycle can be summarised as follows: (i) at the beginning of the
cycle, the rolls lift high-velocity fluid near the oscillating wall upward to create a large
velocity defect, creating and sustaining the streaks; (ii) once a streak has formed, it can
only continue to grow and exist within a region having the same sign of laminar shear as
when it was created, and regions of constant laminar shear sign migrate upward at a speed
of 2

√
π , thus controlling the upward migration of the streaks; (iii) the upward moving

streaks eventually reach the stagnation point at ySP � 3 and cannot be transported any
further owing to a reversal in the sign of the streak production rate, and are instead torn
apart by the stagnation point, dissipating while transferring a small amount of energy
to the waves; (iv) lines of constant total streamwise velocity (potential critical layers)
trap the waves in the vicinity of the stagnation point, and the waves transfer a small
amount of energy to the rolls via a Reynolds stress directed in the spanwise direction away
from the stagnation point; (v) mass conservation within the roll system ensures that the
upwards roll velocity where the streaks are created maintains its energy against dissipation,
thus sustaining the cycle by creating a new (oppositely signed) streak. The dynamics of
the edge at Re = 1200 are qualitatively similar to those at Re = 1000, although no clear
scaling between the two Reynolds numbers was observed, due to their modest size and
small separation. Additionally, edge dynamics in a narrower domain at Re = 1000 were
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somewhat chaotic due to their confinement, although qualitatively similar structures were
observed.

Finally, a brief analysis of the effect of the edge dynamics on the wall shear stress and
power consumption was performed. The shear stress exerted by the streaks contributes
(slightly) to reducing the energy needed to move the plate, and this effect occurs when the
laminar flow is extracting energy from the plate with the most power.

The PSSP unveils a fundamental mechanism by which streaks may be raised away from
the laminar boundary layer, growing during the deceleration phase and with a phase-lag to
the laminar flow. Were this process to occur at a slightly larger amplitude away from the
edge state, then presumably adjacent streaks would readily combine into hairpin vortices
and deliver spanwise ejections into the free stream which break down to turbulence, as in
the observed bypass transition process. This work therefore provides evidence towards
a key component of bypass transition, that of streak growth and regeneration, being
fundamentally tied to physics within the boundary layer itself and its self-contained
interaction with the background laminar flow. Confirmation of this would require an
analysis of the linear stability properties of the edge trajectory, or the computation of
its optimally growing disturbances (see, e.g. Andersson, Berggren & Henningson 1999;
Luchini 2000; Cherubini & De Palma 2015; Firano et al. 2015). A careful analysis of
such disturbances for this fully three-dimensional, time-varying edge trajectory represents
a significant future endeavour. We also note that the streaks presented here bear some
resemblance to those found in other oscillating shear flows, particularly large laminar
separation bubbles (Gaster 1966; Pauley, Moin & Reynolds 1990) and structures associated
with their slow mode of oscillation (Cherubini et al. 2010a, 2010b; Rodríguez et al. 2021;
Verdoya et al. 2021; Malmir et al. 2024). However, a direct comparison between these
objects is not easily made within the current work.

It remains to be seen how the structures in the PSSP scale with Reynolds number
and to what extent the structures in fully developed Stokes-layer turbulence resemble the
edge state PSSP described herein. Repeated, extensive attempts were made to converge
dynamics on the edge to a periodic orbit using a Newton–GMRES–hookstep solver but to
no avail, potentially suggesting that any coherent edge state structures are quasiperiodic.
Though computationally expensive, a fully localised edge trajectory in a large domain
should be sought. Not only would such a structure be most physically relevant, it may
also represent truly periodic behaviour if the quasiperiodicity of the results presented
here owe their origin to interactions between neighbouring streaks through the periodic
boundaries. Nevertheless, the current identification and full description of periodic self-
sustaining motion within the oscillating SBL sets the groundwork for interpreting its
structural dynamics alongside better studied steady or confined shear flows.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10725
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Appendix. Energetics of the SRW decomposition
Projecting the streak momentum equation (4.2) onto the streak velocity field U , we obtain

∂Es

∂t
+ ReUj

∂Es

∂xj
= −Re

(
UV ∂U

∂y
+ U

∂
〈
ûûj

〉
x

∂xj

)
+ ∂2Es

∂xj∂xj
− ∂U

∂xj

∂U
∂xj

, (A1)

where Es = (1/2)U2 is the streak energy density. Projecting (4.3) onto V and (4.4) onto
W , and summing the resulting equations, we obtain

∂Er

∂t
+ ReUj

∂Er

∂xj
= −∂

(
UjP

)
∂xj

− Re

(
V

∂
〈
v̂ûj

〉
x

∂xj
+W

∂
〈
ŵûj

〉
x

∂xj

)

+ ∂2Er

∂xj∂xj
− ∂V

∂xj

∂V
∂xj

− ∂W
∂xj

∂W
∂xj

, (A2)

where Er = (1/2)(V2 +W2) is the roll energy density.
By construction, E = Es + Er + Ê , where E = 〈e〉x is the x-averaged total energy density

and Ê = 〈(1/2)|û|2〉x is the x-averaged wave energy density, given that the cross-term
〈U · û〉x in E vanishes since U does not depend on x and 〈û〉x = 0. Therefore, the equation
for the waves kinetic energy density Ê can be obtained from (∂ Ê/∂t) = (∂E/∂t) −
(∂Es/∂t) − (∂Er/∂t), which leads to

∂ Ê
∂t

+ ReUj
∂ Ê
∂xj

= −∂〈ûj p̂〉x

∂xj
− Re

[
〈ûv̂〉x

∂U

∂y
+ 〈ûi ûj 〉x

∂Ui

∂xj
+
〈
ûi

∂(ûi ûj )

∂xj

〉
x

]

+ ∂2Ê
∂xj∂xj

−
〈
∂ ûi

∂xj

∂ ûi

∂xj

〉
x

. (A3)

Integrating these equations over the whole domain gives evolution equations for the total
streak Es ≡ 〈Es〉Ω , roll Er ≡ 〈Er 〉Ω and wave Ê ≡ 〈Ê〉Ω energies, and defines production
(P), transfer (T ) and dissipation (D) rates associated with the laminar (	), streak (s), roll
(r ) and wave (w) components of the flow,

dEs

dt
=
〈
−Re UV ∂U

∂y︸ ︷︷ ︸
P	→s

〉
Ω

−
〈

Re U
(

∂〈ûv̂〉
∂y

+ ∂〈ûŵ〉
∂z

)
︸ ︷︷ ︸

Ts→w

〉
Ω

−
〈 (

∂U
∂y

)2

+
(

∂U
∂z

)2

︸ ︷︷ ︸
Ds

〉
Ω

, (A4)

dEr

dt
=
〈
−Re

[
V
(

∂〈v̂v̂〉
∂y

+ ∂〈v̂ŵ〉
∂z

)
+W

(
∂〈ŵv̂〉

∂y
+ ∂〈ŵŵ〉

∂z

)]
︸ ︷︷ ︸

Tw→r

〉
Ω

−
〈 (

∂V
∂y

)2

+
(

∂V
∂z

)2

+
(

∂W
∂y

)2

+
(

∂W
∂z

)2

︸ ︷︷ ︸
Dr

〉
Ω

, (A5)
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dÊ

dt
=
〈
−Re ûv̂

∂U

∂y︸ ︷︷ ︸
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〉
Ω

+
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Re U
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Ts→w

〉
Ω

−
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(A6)
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