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When a liquid drop is placed on a highly superheated surface, it can be levitated
by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost
effect. The thermally insulating vapour film results in a severe reduction of the heat
transfer rate compared to experiments at lower surface temperatures, where the drop
is in direct contact with the solid surface. A commonly made assumption is that
this solid surface is isothermal, which is at least questionable for materials of low
thermal conductivity, resulting in an overestimation of the surface temperature and
heat transfer for such systems. Here we aim to obtain more quantitative insight into
how surface cooling affects the Leidenfrost effect. We develop a technique based on
Mach–Zehnder interferometry to investigate the surface cooling of a quartz plate by a
Leidenfrost drop. The three-dimensional plate temperature field is reconstructed from
interferometric data by an Abel inversion method using a basis function expansion
of the underlying temperature field. By this method we are able to quantitatively
measure the local cooling inside the plate, which can be as strong as 80 K. We
develop a numerical model which shows good agreement with experiments and
enables extending the analysis beyond the experimental parameter space. Based on
the numerical and experimental results we quantify the effect of surface cooling on
the Leidenfrost phenomenon. By focusing on the role of the solid surface we provide
new insights into the Leidenfrost effect and demonstrate how to adjust current models
to account for non-isothermal solids and use previously obtained isothermal scaling
laws for the neck thickness and evaporation rate.

Key words: boiling, drops, lubrication theory

1. Introduction
The evaporation time of a drop brought into contact with a hot solid plate strongly

depends on the solid temperature. For drops in contact with the plate (sessile drops),

† Email address for correspondence: m.a.j.vanlimbeek@utwente.nl
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FIGURE 1. (Colour online) Schematic illustration of a Leidenfrost drop on a heated plate.
The drop remains levitated by the vapour generated in the vapour film under the drop and
escaping radially.

this time decreases with increasing plate temperature, until a sudden increase is
observed. The temperature at which this increase happens is referred to as the
Leidenfrost temperature TL (Boerhaave 1732; Leidenfrost 1756). The increase is
caused by the formation of a vapour film under the drop. The film separates the drop
from the hot plate and the generated vapour is escaping radially from underneath
the drop (see figure 1). The viscous flow induces an over-pressure, strong enough to
maintain the drop levitating above the plate (Wachters, Bonne & van Nouhuis 1966;
Snoeijer, Brunet & Eggers 2009; Quéré 2013). The film also limits the heat transfer
towards the drop, resulting in a strongly reduced evaporation and thus an increased
lifetime of the drop (Biance, Clanet & Quéré 2003). Then, increasing the plate
temperature further above TL results again in a decrease in the lifetime of the drop.
In many cooling applications, like quenching processes, superconductor cooling, heat
exchangers and metal processing, the manifestation of the Leidenfrost effect is rather
unfavourable as the intended cooling performance becomes inadequate. Therefore,
the study of how TL depends on both the liquid and the solid material (Baumeister
& Simon 1973; Emmerson 1975) and roughness (Bernardin & Mudawar 1999; Kim
et al. 2011; Vakarelski et al. 2012) is of great importance.

The evaporation of a Leidenfrost drop requires (latent) heat, which is taken from
the plate. To estimate whether or not this influences the plate temperature, one
can compare the residence time with the characteristic cooling time scale of the
plate (Baumeister & Simon 1973), ranging from milliseconds to seconds. When the
residence time of the drop is short (impacting drops), most solids exhibit isothermal
conditions and remain at the initial plate temperature (Kim et al. 2011; Tran et al.
2012; Staat et al. 2015; Shirota et al. 2016). Some plate materials however do show
a signature of local cooling, despite the short exposure time to the evaporating
drop (Tran et al. 2013; Nair et al. 2014; van Limbeek et al. 2016). However, if the
residence time is of the order of seconds (sessile drops), these materials are subject to
a more substantial cooling by the evaporating drop and only good thermal conductors
such as copper still behave isothermally (Baumeister & Simon 1973). When constantly
feeding the drops, the system becomes time independent, i.e. all dynamical processes
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616 M. A. J. van Limbeek and others

reach their steady-state regime and even a good thermal conducting plate can cool
down slightly. In the study of the Leidenfrost effect, the cooling of the plate is
often neglected as little quantitative data are available. Therefore, assuming the heater
set point to be the actual temperature under the drop results in those cases in a
non-negligible temperature (and evaporation rate) overestimation. For proper modelling
of Leidenfrost drops and the interpretation of experiments, the understanding of the
cooling of the plate is therefore of great importance.

Some studies focused on measuring the cooling by integrating thermocouples into
the solid plate (Aziz & Chandra 2000). However, this technique is intrusive and
limited by the finite size of the thermocouples. Furthermore, the technique only
results in a local (point) measurement and does not provide the complete temperature
field.

In this study we use interferometry to measure the three-dimensional temperature
field in a quartz plate which is cooled by an evaporating Leidenfrost drop. The
technique is an indirect method to measure temperature, concentration or pressure
fields by detecting minute variations in the refractive index (Zehnder 1891; Mach
1892). Our measurements are based on the fact that the refractive index of a solid
changes with temperature, which yields a change in the optical path length. From
the generated fringe patterns, obtained by a Mach–Zehnder interferometer, we can
measure these changes and obtain the entire temperature field in a non-intrusive way.

To reconstruct the three-dimensional temperature field from a single interferometric
projection, we develop a novel Abel inversion method, which presumes the
temperature field to be an axisymmetric solution of the steady-state heat equation
(i.e. the Laplace equation) inside the plate. On the one hand, these experimental
data, and in particular the measured temperature distribution at the plate surface, can
directly be used in Leidenfrost drop modelling, which generally amounts to the gas
phase only, as for an isothermal plate (Sobac et al. 2014). This enables calculating
the distribution of heat (and evaporation) fluxes and vapour film thicknesses. On
the other hand, these experimental data are also crucial for validating a more
complete Leidenfrost model, which includes heat conduction in the solid, and which
is developed and validated here. It allows us to explore the role of solid material
properties beyond experimental possibilities. Based on our findings we distinguish
four different limiting regimes, characterised by two non-dimensional numbers: a
Biot-like number indicating whether or not the cooling of the plate is significant,
and a geometric parameter describing the global shape of the fields. Finally, we give
insight into how the scaling laws proposed for isothermal substrates are modified in
the case of poor thermal conducting plates.

2. Experimental set-up and methods
2.1. Experimental set-up

Figure 2 shows a schematic illustration of the experimental set-up. A Leidenfrost
drop is created by placing a drop of ethanol on top of a hot solid plate with a
temperature well above the boiling point of ethanol (Tb = 79 ◦C). The substrate is
a rectangular quartz plate of dimensions 15 × 30 × 4.5 mm3 (width W × length ×
height Hs) placed above a brass element, which coupled with a heater, a control
loop feedback controller and a thermocouple, ensures a constant imposed temperature
at the bottom of the plate Timp. It is worth noting that quartz is a relatively poor
thermal conductor, with a thermal conductivity ks = 1.4 W m−1 K−1. The drop is
fed at a constant rate from a glass needle (250 µm inner diameter, 362 µm outer
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FIGURE 2. (Colour online) Schematic illustration of the experimental set-up (a) and the
top view of all the optical parts of the Mach–Zehnder interferometer (b). The laser beam
in (a) is orthogonal to the drawing plane and points towards the reader.

diameter) connected to a syringe pump. The needle was placed at 0.5 mm from the
substrate for all experiments to ensure its tip to remain inside the drop. The feeding
rate allows to control the drop radius R (as viewed from the top). Since quartz
is transparent, one can utilise a Mach–Zehnder interferometer (see the figure 2b)
in order to visualise and measure the three-dimensional temperature field inside
the plate, making use of the temperature dependence of its refractive index. This
interferometer reveals optical path-length differences between the reference beam
and the measurement beam, the latter one passing through our plate. The fringes
resulting from combining the two beams are recorded using a camera (Photron SA7).
A He–Ne laser (λ= 633 nm) is used as a collimated light source. The beam quality
is improved by a spatial filter (consisting of a f = 7.5 mm aspheric focusing lens,
a 15 µm pinhole and a f = 100 mm plano-convex collimating lens) to remove the
spatially varying intensity noise of the laser beam. The used system also expands
the beam to ensure illumination of the complete quartz substrate. The interferometric
set-up operates in the finite-fringe-width mode (i.e. with a imposed spatial carrier
fringe, see § 2.2 and appendix A) to reduce the influence of noise and eliminate
ambiguities in post-processing. The steps to obtain the temperature field from the
interferograms will be explained in the following subsection.

2.2. Data processing
Figure 3 shows a typical interferometry experiment with an ethanol Leidenfrost drop
of size Rmax= 1.4 mm and heater temperature Timp= 330 ◦C. The various figures show
different steps in the data processing, to be discussed in this subsection.

The interferogram It (figure 3a) is decomposed into its phase ψt and magnitude Mt
(figure 3b) with a Fourier transform technique (Plotkowski, Hung & Gerhart 1985;
Matthys et al. 1988; Kreis 2005). Since all interferograms resulting from experiments
are subject to some noise which distorts the analysis process, a bandpass filter is used
to remove low frequency background intensity variation of the laser beam and high
frequency noise, a procedure made possible by the present use of the finite-fringe
mode (appendix A). A second advantage of the present mode over the infinite-fringe-
width mode (i.e. without imposing a spatial carrier fringe) is its ability of detecting
smaller phase variations and the unambiguous determination of the slope of phase
changes.

The temperature gradient in the substrate also makes the substrate appear to
be displaced slightly (of the order of 0.1 mm) due to the refraction of the light.
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FIGURE 3. (Colour online) Leidenfrost interferometry experiment with an ethanol drop
(R∼ `c, Timp = 330 ◦C), with interferogram It (a), magnitude Mt and (wrapped) phase ψt
(b), background corrected magnitude M and phase ψ (c) and the reconstructed temperature
field T(y, z) and drop contour (d). The wrapped phase is presented between −π (black)
and π (white) for (b,c). All images are on the same scale.

This apparent translation is determined by cross-correlating the magnitude image Mt

with a magnitude image from a reference interferogram taken at room temperature.
The magnitude is divided by the reference magnitude to obtain the magnitude image
M (figure 3c). The drop contour is obtained from this image with the Canny edge
detection algorithm (Canny 1986), from which the drop size R and the vapour film
radius Rc are extracted.

The phase from the reference interferogram is subtracted to isolate the phase change
ψ due to the temperature change (figure 3c). This removes disturbances by the optical
system such as inhomogeneities of the substrate width W (along the direction of the
laser beam), and other optical distortions.

To obtain the absolute phase difference φ we need to unwrap the wrapped phase
ψ ∈ [−π, π]. We use the unwrapping algorithm from Herráez et al. to unwrap
the phase images (Herráez et al. 2002; van der Walt et al. 2014), which excels in
preventing the propagation of errors from local noise.

Let x, y and z be the Cartesian coordinates along the width, length and height of the
quartz plate, respectively. The laser beam propagates in the x direction, while (y, z) is
the plane of the field of view. The interferometric phase φ(y, z) then depends on the
refractive index n(x, y, z) and the laser wavelength λ as

φ(y, z)=
2π

λ

∫
∞

−∞

1n(x, y, z) dx. (2.1)

Here 1n= n− n0, while n0 is chosen to be the refractive index value at the ambient
temperature T0. Since the refractive index of fused quartz increases linearly with
temperature, 1n = dn/dT1T , we can thus relate the change in phase to the change
in temperature, such that (2.1) becomes

φ(y, z)=
2π

λ

dn
dT

∫
∞

−∞

1Ts(x, y, z) dx, (2.2)

where Ts(x, y, z) is the temperature field in the solid substrate (quartz plate), while
1Ts = Ts − T0. A detailed description of our calibration experiment can be found in
appendix B, where we obtained dn/dT = (1.20 ± 0.01) × 10−5 K−1, which is in the
range of values measured for fused quartz with the method of minimum deviation at
λ = 633 nm (Malitson 1965; Toyoda & Yabe 1983). This experiment was also used

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

42
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.425


Leidenfrost drops cooling surfaces: theory and interferometric measurement 619

to determine how the temperature field depended on the heater temperature in the
absence of a drop for different heater set points.

The largest source of deviation in our measurements is potentially due to neglecting
the heating of air around the plate, which results in an underestimation of the change
in refractive index in the quartz. However, the refractive index of air decreases with
increasing temperature, with dn/dT of the order of −10−7 K−1 (Ciddor 1996), which
is two orders of magnitude smaller than the value of dn/dT for quartz, hence we judge
this influence to be negligible.

The final step is to reconstruct the three-dimensional temperature field 1Ts(x, y, z)
from the two-dimensional phase image φ(y, z) by Abel inversion (figure 3d) assuming
the field to be essentially axisymmetric, i.e. 1Ts(r, z) with r =

√
x2 + y2. The

temperature field 1Ts(r, z) is then usually obtained using the inverse Abel transform
of φ(y, z). However, since this procedure is sensitive to noise and exhibits diverging
behaviour near the origin, it is not quite suitable to be used on our experimental data.
Therefore, we propose a new inversion method based on the basis function expansion
method (Dribinski et al. 2002) for expressing the experimentally obtained phase field
φ(y, z) as a series expansion in terms of axisymmetric modes of 1Ts(r, z). The two
expansions will obviously be related by means of (2.2). 1Ts(r, z) is governed by
the steady-state heat (Laplace) equation ∇2(1Ts) = 0. Thus, a set of Fourier–Bessel
functions can be used for 1Ts(r, z), see appendix C, which when integrated according
to (2.2) yields the corresponding set of functions for φ(y, z). The coefficients of the
series expansions for 1Ts(r, z) and φ(y, z) herewith clearly coincide. They are
determined by fitting the experimental data for φ(y, z). Once the coefficients are
known, the temperature field 1Ts(r, z) gets fully determined too from its own series
expansion up to a constant. We fix this constant such that the average temperature
on the bottom of the substrate is equal to the heater set-point temperature Timp.

3. Formulation of the theoretical model

In order to model the experimental situation, we consider an axisymmetric
Leidenfrost drop levitating over a hot solid substrate. The present model is aimed
at predicting the quasi-steady state of such a drop (the slowest process being its
evaporation), including both its geometry and a possible cooling of the substrate.
The drop geometry is modelled by numerically matching the hydrostatic equilibrium
shape of a superhydrophobic drop (for the upper part) with the lubrication equation
solution for the vapour film underlying the drop (for the bottom part), quite similarly
to Sobac et al. (2014). However, unlike Sobac et al. (2014), the substrate is no
longer considered isothermal, and its cooling is accounted for by solving a heat
transfer problem therein. As in the experiment, the substrate is assumed to consist
of a horizontal plate (height Hs) with the temperature kept constant at its bottom
surface.

Let us first focus on the shape of the drop, following Sobac et al. (2014). The upper
part of the drop is assumed to be an equilibrium shape, for which the Laplace pressure
locally balances (up to a constant) the hydrostatic pressure. This simply reads

γ κ + ρ`g(z− ztop)= γ κtop, (3.1)

where ρ` is the liquid density, γ is the surface tension and g is the gravitational
acceleration. Here, κ is the local curvature of the drop surface (a function of the
drop shape and its derivatives), while κtop (curvature at the top of the drop, z= ztop)
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is a free parameter controlling the drop size. For a given value of the top curvature
κtop, numerically integrating this differential equation from the symmetry axis yields
the corresponding equilibrium shape and in particular the value of the drop radius
R= R(κtop), defined in figure 1. Inversely, for any given R, one unambiguously finds
the corresponding equilibrium shape and κtop. Yet, the shape is hereby determined
just up to a vertical shift, for the value of ztop can fully be calculated only upon the
consideration of the underlying vapour film, as is explained hereafter.

This ‘upper equilibrium drop’ solution is assumed to be valid up to a (patching)
point located at r = Rp near the exit from the vapour film, where non-equilibrium
effects of evaporation and viscous pressure losses in the vapour flow now need to
be taken into account. In this ‘vapour layer region’ 0< r < Rp, the thickness of the
vapour film h(r) and its slopes h′(r) are assumed to be small enough so as to use
the lubrication approximation (in particular, h � R and |h′| � 1). The gas itself is
assumed to be composed of pure vapour (no air) and incompressible. Then, discarding
possible motions inside the drop, which is a feature of all similar models developed
thus far (Wachters et al. 1966; Snoeijer et al. 2009; Pomeau et al. 2012; Sobac et al.
2014), the excess pressure (over the ambient one) in the vapour film is found from
the normal stress balance at the drop surface as Pv = γ κtop + ρlg(ztop − h) − γ κ .
This excess pressure drives a Stokes flow (the maximum Reynolds number for the
parameters of the present study was found to be around 0.5, for more details see
appendix D) with a volumetric flux qv = −(∇Pv/12µv)h3, where µv is the vapour
dynamic viscosity. Note the coefficient 1/12 in the mobility factor, reflecting of the
no-slip conditions imposed at both the drop and solid interfaces. The no-slip condition
at the drop interface results from the large viscosity ratio between the vapour and
the drop and is generally assumed in the literature (Wachters et al. 1966; Biance
et al. 2003; Quéré 2013; Sobac et al. 2014). Assuming that heat is predominantly
transferred by conduction across the film (the Péclet number is estimated to be
approximately 0.4, for more details see appendix D), the local evaporation flux at the
interface is expressed as J =L−1kv1T/h, where kv is the vapour thermal conductivity,
L is the latent heat of vaporisation, 1T = TsΣ − Tsat is the superheat and TsΣ is the
temperature field of the substrate surface underneath the drop. Finally, the steady-state
vapour mass conservation under the thin-film hypothesis reads ∇ · (ρvqv)−J = 0 (at
steady state), where ρv is the vapour density. Combining these results and assuming
the axial symmetry yields the following lubrication equation for the film thickness

1
12

1
r
∂

∂r

(
ρv

µv
h3r

∂

∂r
(ρlgh+ γ κ)

)
−

kv1T
Lh
= 0, (3.2)

where the curvature κ is given by

κ =

∂2h
∂r2
+

1
r

(
1+

(
∂h
∂r

)2
)
∂h
∂r(

1+
(
∂h
∂r

)2
)3/2 , (3.3)

expressed in full (unlinearised) form to improve the accuracy of the patching of the
solution of (3.2) with the top part of the drop, as expressed by (3.1).

The system is characterised by large spatial temperature variations, the typical
values of 1T being generally rather comparable with the absolute temperature itself.
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As the liquid and gas properties are temperature dependent, a relevant question is
therefore at what temperature they should be evaluated in our formulation. This is
more straightforward for the liquid properties: as the drop supposedly remains at (or
near to) Tsat, they are just taken at Tsat. As for the vapour properties, a simplified
treatment similar to Sobac et al. (2014) will be used, evaluating physical properties
locally at the mean temperature of the vapour film, (TsΣ(r)+ Tsat)/2. Thus, the effect
of a temperature variation at the top of the substrate due to the cooling enters here
not only through a position-dependent superheat 1T(r), but also through the vapour
properties which vary along r. The vapour properties themselves are calculated as
in Sobac et al. (2015b). For instance, at a temperature of 200 ◦C, the values of the
vapour mass density, dynamic viscosity and thermal conductivity of ethanol vapour are
ρv = 1.187 kg m−3, µv = 1.436× 10−5 Pa s and kv = 0.023 W m−1 K−1, respectively.

Four boundary conditions are needed to supplement (3.2) and (3.3): the symmetry
conditions at r=0, i.e. h′(0)=0 and κ ′(0)=0, while at r=Rp the solution must match
with the earlier obtained upper equilibrium shape of the drop, i.e. we require the
continuity of h′(r) and of κ(r). The continuity of h(r) itself here merely amounts to
finding the appropriate vertical shift of the upper equilibrium shape, i.e. to determining
the value of ztop.

The temperature distribution TsΣ(r) at the top of the solid substrate is obtained by
solving the heat conduction equation in the plate coupled with (3.2). Assuming quasi-
steadiness and a constant thermal conductivity ks of the solid, the temperature field
Ts(r, z) in the solid is governed by the axisymmetric Laplace equation

1
r
∂

∂r

(
r
∂Ts

∂r

)
+
∂2Ts

∂z2
= 0. (3.4)

The following boundary conditions finally close the problem: the symmetry condition
∂rTs= 0 at r= 0, an imposed temperature at the substrate bottom, i.e. Ts= Timp at z=
−Hs, and heat fluxes continuity at r=Rs and z=0. At the plate sides, an experimental
evaluation of heat losses to the air due to convection proved them to be negligible.
Consequently, an insulating condition will be imposed thereat, i.e. ∂rTs = 0 at r= Rs.
For mathematical simplicity, the plate is assumed to be cylindrical with radius Rs in
the model, while it is rectangular in the experiment. Rs is taken as half the plate width,
i.e. Rs = 7.5 mm. This is expected to have just a minor impact on the results given
that the drop remains small enough compared to the horizontal extent of the plate.

At the top of the plate (z= 0, see figure 1), two zones are distinguished depending
on the position with respect to the patching point. Right below the drop (0< r 6 Rp),
the heat flux lost by the substrate is equal to the heat flux consumed by the drop
for its evaporation, J L = kv(r)(TsΣ(r) − Tsat)/h(r). Outside the ‘patching perimeter’
(Rp< r<Rs), the heat loss by the substrate is due to natural convection in the air, here
described by Newton’s law of cooling αconv(TsΣ(r) − T∞), where T∞ is the ambient
temperature far from the plate and αconv is the convective heat transfer coefficient. The
value of αconv is determined from the experiments in the absence of the drop as αconv=

28 W m−2 K−1 (see § 4.2). Clearly, with the heat distribution defined in this way the
flux generally proves to be discontinuous at r = Rp. For numerical convenience, we
use an exponential smoothing to yield

−ks∂zTs|z=0 =


kv(r)

Ts(r)− Tsat

h(r)
for r 6 Rp

αconv(Ts(r)− T∞)(1− eB(Rp−r))

+

(
kv(Rp)

Ts(Rp)− Tsat

h(Rp)

)
eB(Rp−r) for r> Rp,

(3.5)
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FIGURE 4. (Colour online) Temperature field inside the quartz plate under static
Leidenfrost drops of ethanol of different sizes. For each presented case, the numerical
result (left half) is juxtaposed with the experimental measurement (right half) for
comparison. On the latter, the arrows indicate the direction and relative magnitude of the
heat flux. The imposed temperature at the bottom of the substrate is Timp = 330 ◦C. The
lengths are normalised with the capillary length `c, i.e. 1.56 mm for ethanol at Tsat.

where B is a parameter whose value is determined by demanding in addition
continuous differentiability at r= Rp.

The problem given by (3.2)–(3.4) with the formulated boundary conditions is
discretised in a standard way by second-order finite differences. The resulting
nonlinear algebraic system of equations for the values of h, κ , Ts at the grid points
as well as the values of ztop and B is solved by the Newton–Raphson method. It
is checked a posteriori that the choice of the patching point Rp has no significant
influence on the results.

Finally, one has to note that, aside the above presented ‘full’ model, a ‘partial’
modelling will also be tested here. It consists in skipping the computation of the
substrate temperature field and rather borrowing the measured substrate temperature
distribution TsΣ(r) from the experiment, using it directly in (3.2) for the calculation
of the vapour film thickness profile.

4. Results and discussion
4.1. Experimental observations and numerical validation

Figure 4 shows the temperature fields inside the quartz plate for four different drop
sizes and for an imposed temperature at the plate bottom Timp = 330 ◦C. For each
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FIGURE 5. (Colour online) Profiles of the substrate surface temperature (a) and of the
vapour film thickness (b) for Timp = 330 ◦C and four different drop sizes. Three cases
are shown in panel (b) for each drop size according to the way the substrate surface
temperature profile is handled in the model: fully isothermal substrate at Timp (dashed
lines), borrowed from the experiment (solid lines), and calculated in the framework of
the full model (dot-dashed lines). The top panel presents both experimental and numerical
results, the latter calculated from the full model.

size, the left half of the diagram shows the numerical results while the right half
corresponds to the experimental data. A strong cooling of the substrate underneath
the Leidenfrost drop is observed. The cooling proves to be roughly one third of the
‘ideal’ superheat Timp− Tsat' 250 K, and generally depends on the heater temperature.
The temperature field in the plate also depends on the drop size, as observed in
figure 4. As the drop becomes larger, the global shape of the temperature field
appears to change from a locally rather spherical shape in the drop vicinity to a more
one-dimensional field (as will be discussed in more detail in § 4.2).

The experimental and numerical results appear to compare fairly well as highlighted
by the iso-temperature contours in figure 4 and the temperature profiles at the
top of the plate in figure 5(a). In the latter figure, even if the agreement is
overall quite satisfactory, the data reveal a systematic mismatch of 15 % between
experimental and numerical results and further deviate in the centre. In particular,
the numerically predicted maximum substrate cooling (with respect to Timp = 330 ◦C)
is here approximately 80 K, while the measured one is approximately 95 K. On
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the one hand, the mentioned mismatch can partly be attributed to the uncertainty
in our calibration. On the other hand, the deviation in the centre may further be
related to oscillatory lateral motions of the Leidenfrost drops around the needle.
These are actually always present in our experiments and likely to give rise to higher
evaporation rates, and hence to stronger substrate cooling, as a larger area of the
plate is affected by the evaporating drop. Besides, evaporation rate determination
based only on the vapour film (ignoring the contribution of the upper part of the
drop), even if it indeed remains the principal contribution, is nonetheless known to
systematically underestimate the global evaporation rates (Biance et al. 2003; Sobac
et al. 2015b; Maquet et al. 2016).

At the same time, this moderate discrepancy is not deemed to be due to the
presence of the needle in the experiment (and the absence thereof in the modelling),
as a numerical study revealed that the bottom shape of the drop is barely affected by
the presence of the needle for a given drop radius (as viewed from the top) in the
range considered here (see appendix E). It is interesting to note that in our studied
parameter regime the minimum substrate temperature due to the cooling is practically
unaffected by the drop size, either experimentally or theoretically. Moreover, the
theoretical results highlight that the substrate surface temperature drop is maximum
right below the neck, i.e. at the location where the vapour film is the thinnest. This
feature is apparently smoothed out in the extraction of the experimental temperature
profiles at the substrate surface but can still be observed from figure 4 in terms of
the heat flux, which at the top of the substrate proves indeed to be maximum just at
the neck location.

The cooling of the substrate due to the presence of a Leidenfrost drop is expected
to affect the vapour film underneath the drop as compared to the corresponding
isothermal substrate situation. As the cooling implies TsΣ < Timp, with the local
superheat TsΣ − Tsat then being lower than its ideal value Timp − Tsat, one can expect
a reduction in both the evaporation rates and vapour film thicknesses (and hence an
increase in the lifetime of the drops). This can already be qualitatively confirmed
based on the scaling laws established by Sobac et al. (2014) for isothermal substrates,
according to which h ∼ (TsΣ − Tsat)

1/3 in the neck region and h ∼ (TsΣ − Tsat)
1/6 in

the vapour pocket, both tending to decrease with diminishing superheat. The global
evaporation rate of the drop, (−Ṁ), as mostly determined by evaporation through
the vapour film, is given by (−Ṁ) = (2π/L)

∫ Rp

0 (kv(TsΣ − Tsat)/h)r dr, and is then
also expected to decrease. The relatively small exponents in the mentioned scaling
laws indicate that the vapour film thickness is apparently not modified too drastically
as compared to the isothermal substrate case, but a more essential effect can be
expected, quite conversely, in terms of the evaporation rates. These speculations
are partly confirmed in figure 5(b) that shows the numerically predicted profiles
of the vapour layer for the cases considered in figure 4. The results of the full
model (dot-dashed lines) are compared to the corresponding results for an isothermal
substrate with TsΣ ≡ Timp (dashed lines). The results obtained by considering in the
model the experimental temperature profile at the top of the substrate instead of
fully solving for the temperature field in the plate are also provided (solid lines).
One observes a close agreement between the full model and the one based on
TsΣ adopted from the experiment. In contrast, these numerical and ‘experimental’
vapour film thicknesses manifest quite an appreciable reduction of approximately
17 % relative to the isothermal substrate case. As far as the global evaporation rates
are concerned, the reduction is estimated to be approximately 26 %, which points to
the importance of incorporating the effect of cooling into Leidenfrost modelling for
not so highly conductive substrates.
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4.2. Cooling strength criterion
As already mentioned in § 3, the measurement of the temperature field in our quartz
plate in the absence of any drop enables estimating the value of the heat transfer
coefficient αconv assuming heat losses at the top of the plate to be describable by
Newton’s cooling law αconv(TsΣ − T∞). Whether or not any significant temperature
gradient emerges in the plate as a result can be characterised by an appropriate Biot
number (essentially a dimensionless form of the heat transfer coefficient). The heat
balance across the plate surface can be written as

Timp − TsΣ0 =
αconvHs

ks
(TsΣ0 − T∞)≡ Bi∞(TsΣ0 − T∞), (4.1)

where Bi∞ is the Biot number quantifying heat losses to the surroundings. Hence

TsΣ0 =
Timp + Bi∞T∞

1+ Bi∞
with Bi∞ =

αconvHs

ks
, (4.2)

where the subscript ‘0’ refers to the temperature in the absence of the drop. The
smaller Bi∞, the more the heat transfer through the plate is limited by heat exchange
with the surroundings without any noticeable temperature difference in the plate. It is
interesting to note that, in principle, one cannot here go too far into the opposite limit
of extremely poor thermal conducting substrates (Bi∞ � 1) due to the risk of TsΣ0
actually falling below Tsat = 79 ◦C (for ethanol) so that effectively no superheating
exists. In our experimental set-up, with ks = 1.4 W m−1 K, Hs = 4.5 mm, Timp =

330 ◦C and T∞ = 22 ◦C, Timp − TsΣ0 = 25 ◦C was measured (in the absence of any
drop). Thus, we obtain αconv ≈ 28 W m−2 K, and hence Bi∞ ≈ 0.09.

Following the same reasoning as above, but now in an approximate way for the
case when the plate is exposed to a relatively small (R . Hs) Leidenfrost drop, αconv
in (4.2) must be replaced by kv/h, T∞ by Tsat, Timp by TsΣ0 (‘background’ substrate
temperature (for a small droplet) due to cooling by the ambient, determined by (4.2))
and Hs by R. Then the counterpart of (4.2) is found to be

TsΣ ∼
TsΣ0 + BidTsat

1+ Bid
with Bid =

kvR
2ksh

(for R . Hs). (4.3)

Here also note a geometrical factor 2 (area ratio of the hemisphere and the
corresponding circle) introduced into the expression for the droplet-associated Biot
number Bid due to the mentioned local sphericity of the temperature field in the
considered case R . Hs (cf. table 1, left-hand column). The value of Bid once again
indicates whether a significant substrate cooling is incurred, now associated with our
Leidenfrost drop: the cooling is negligible for Bid� 1 and appreciable for Bid ∼ 1.

For larger drops (R & Hs), however, the temperature field is more one-dimensional
(cf. table 1, right-hand column), and the result (4.2) should now be adapted by merely
replacing αconv by kv/h and T∞ by Tsat. Then we obtain an estimation

TsΣ ∼
Timp + BidTsat

1+ Bid
with Bid =

kvHs

ksh
(for R & Hs). (4.4)

To illustrate the behaviour of the substrate temperature field in terms of the
introduced Biot numbers, a parametric study has been carried out by varying the
substrate thermal conductivity for a number of droplet sizes. The computation results
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(I) (II)

(III) (IV)

TABLE 1. Schematic illustrating the four different regimes for the temperature field in
the substrate underneath a Leidenfrost drop, which depend on the ratio between the drop
radius R and the substrate height Hs as well as on the Biot number Bid (incorporating
the substrate thermal conductivity). Regimes (II) and (IV) are characterised by a more
one-dimensional profile, while in the other limit, regimes (I) and (III) resemble locally a
spherical profile from a point source. Since for regimes (III) and (IV) the Biot number is
not small, a significant cooling by the evaporating drop is expected, while for regimes (I)
and (II) the substrate remains largely isothermal.

R/`c ks/kq Bi∞ TsΣ0 (
◦C) h̄ (µm) T̄sΣ (◦C) kv (W m−1 K−1) Bi(I)d T (I)sΣ (

◦C) Bi(II)d T (II)sΣ (
◦C)

0.87 0.2 0.45 234 29 142 0.019 1.54 140 10.27 100
0.87 1 0.09 305 42 259 0.022 0.25 260 1.67 172
0.87 5 0.018 325 48 316 0.023 0.047 314 0.31 270
2.28 0.2 0.45 234 102 153 0.019 1.17 150 2.96 141
2.28 1 0.09 305 125 259 0.022 0.22 264 0.55 240
2.28 5 0.018 325 135 314 0.023 0.044 314 0.11 305
3.75 0.2 0.45 234 320 180 0.020 0.64 174 0.98 206
3.75 1 0.09 305 361 271 0.022 0.13 279 0.20 289
3.75 5 0.018 325 376 317 0.023 0.026 318 0.040 320

TABLE 2. Biot number values for the cases of figure 6 and the estimates of TsΣ ,
cf. equations (4.2)–(4.4), which can be compared to T̄sΣ . Here the bar denotes the area
averages underneath the droplet obtained by numerical resolution of the full model and
kv is evaluated at the temperature (T̄sΣ + Tsat)/2. The superscripts ‘(I)’ and ‘(II)’ refer,
exclusively within this table, to the results for R . Hs and R & Hs given by (4.3) and
(4.4), respectively. Results presented in italic represent values obtained using the improper
equation given its radius.

for the profiles of TsΣ(r) based on the full model are shown in figure 6, while the
Biot numbers corresponding to each case are estimated in table 2. In these estimations,
T̄sΣ and h̄ are the averages of the corresponding quantities, obtained from the full
model, over the substrate surface area underneath the droplet (taken up until the outer
circle where the vapour film thickness doubles relative to its value at the neck). In
(4.3) and (4.4), h is taken equal to h̄. Figure 6 and table 2 clearly confirm that the
degree of substrate temperature uniformity and the deviations of Ts from Timp are
well characterised by the Biot number values: comparing the average temperature
for r < R from the figure seem to correspond well to the calculated values for TsΣ .
For comparison, both equations are evaluated for all cases, denoting the improper
ones (based on the droplet radius) in italic for comparison. Interestingly enough, the
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FIGURE 6. (Colour online) Numerically determined temperature profile at the top of the
substrate underneath a Leidenfrost drop for different drop sizes and thermal conductivities
of the substrate. Hs is taken at the value of the quartz plate height used in the experiment
(Hs =Hq = 4.5 mm). Timp = 330 ◦C and kq = 1.4 W m−1 K−1, the thermal conductivity of
quartz.

estimate (4.3) for TsΣ , intended for R . Hs, happens to work with a rather good
accuracy for all cases shown in figure 6 and table 2. The estimate (4.4), intended for
R & Hs, however yields good results just for the largest of the droplets considered.

On the other hand, the case R . Hs turns out to be characterised by a high degree
of substrate surface temperature uniformity just underneath the droplet (cf. figure 6
and then also § 4.4), irrespective of how large the Biot number may be. This adds to
the value of the estimate (4.3), which was inherently formulated disregarding such
variations of TsΣ and which can now in principle be used in lieu of solving the
full problem for Ts thus greatly simplifying the mathematical formulation (cf. also
§ 4.4). On the contrary, such variations of TsΣ prove to be increasingly more important
underneath larger droplets, R&Hs, which is not surprising given a highly non-uniform
local evaporation flux (due to a highly non-uniform film thickness) along the vapour
layer and an increased proximity of the substrate bottom with a fixed temperature
Timp. In a further limit, R� Hs, the result (4.4) can rather be understood locally, at
each r, and used as such in conjunction with the film equation (3.2), which is another
case of a great simplification of the overall mathematical formulation (again practically
down to the level of the one in the case of an isothermal substrate). Yet we shall not
further pursue this limit here, as large drops typically develop chimneys, for which
the lubrication-based analysis presented here is not accurate.

4.3. Exploring the influence of the substrate thermal conductivity
We have seen that the strength of substrate cooling due to a Leidenfrost drop is
greatly influenced by the thermal conductivity of the substrate ks. Therefore, to further
explore this effect, we here carry out a parametric study by varying ks beyond the
constraints of a concrete experimental set-up (in this sense modelling various substrate
materials). As earlier in figure 5, we shall be interested in the profiles of both the
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FIGURE 7. (Colour online) Effect of the variation of the substrate thermal conductivity
ks on the numerically predicted profiles of the substrate surface temperature (a) and the
vapour film thickness (b) underneath a Leidenfrost ethanol drop of R= 1.37`c with Timp=

330 ◦C and the plate height (Hs = 4.5 mm ≈ 3`c) as in the experiment. The value of ks
for the quartz used in the experiment is denoted by kq.

substrate surface temperature and the vapour film thickness. It is natural to expect the
cooling of the substrate to be reduced as ks is increased so that the isothermal limit is
recovered for relatively high substrate thermal conductivities. Numerical results to test
this hypothesis are shown in figure 7 for an ethanol drop with radius R= 1.37`c and
a quartz plate with thermal conductivity kq = 1.4 W m−1 K−1. Indeed, increasing the
thermal conductivity of the substrate is seen to rapidly lead to the isothermal regime.
For ks = 10kq, the maximum cooling is reduced from approximately 75 K to only
approximately 10 K, while for ks & 100kq, no discernible cooling with respect to the
imposed bottom temperature of the plate can be found within our numerical precision
(panel a). With the increase in the substrate surface temperature, the evaporation rate
increases as well, resulting in a thicker vapour layer as shown in panel (b).
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FIGURE 8. (Colour online) Numerically predicted profiles of the vapour film thickness
for two drop sizes, R= 0.87`c and R= 2.28`c. The results of the full model (solid lines)
are compared to the corresponding results for an isothermal substrate taken at the mean
substrate surface temperature underneath the drop (dashed line), the latter temperature here
also calculated from the full model. For each drop size, two imposed temperatures are
studied, Timp = 330 ◦C (top pairs) and Timp = 275 ◦C (bottom pairs), while the substrate is
the quartz plate used in the experiments.

4.4. Regression to the isothermal model
Figure 8 shows the numerically predicted profiles of the vapour layer thickness for
two drop sizes and two imposed temperatures. The results of the full model (solid
lines), with a numerically obtained TsΣ(r), are compared to the corresponding results
for an isothermal substrate taken just at a mean temperature T sΣ (dashed lines). Here
T sΣ is obtained by averaging TsΣ(r) computed from the full model over the substrate
surface area underneath the drop (up to the patching point). One observes that the
predicted shapes of the vapour layer are almost identical. It means that instead of
solving the full model, it would be possible to solve just the isothermal substrate
model if the mentioned mean temperature could somehow be evaluated (e.g. like with
(4.3) in § 4.2). This is attributed to relatively small (compared to the superheat) radial
variations of TsΣ(r) underneath the drop actually occurring in the present set-up.
Consequently, the results by Sobac et al. (2014), obtained for isothermal substrates
(viz. perfectly conducting plates in the present context), are expected to be valid with
a reasonable precision here even for poorly conducting substrates in terms of the
mean temperature T sΣ .

For instance, some scaling laws have been established by Sobac et al. (2014) as far
as the (minimal and maximal) vapour film thicknesses and the evaporation rates are
concerned, expressed as functions of an evaporation number E . In particular, hneck ∼

E1/3 for the neck thickness, the neck being identified as the narrowest point of the
vapour film, see e.g. figure 7(b). In the present context, such an evaporation number
can just be defined in a modified way, based on T sΣ , as follows:

E =
kvµv(T sΣ − Tsat)

γ ρv`cL
. (4.5)

The vapour properties are here evaluated at (T sΣ + Tsat)/2 (i.e. in a manner similar
to § 3 and to Sobac et al. (2014)) to yield in particular kv, µv and ρv. For example,
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FIGURE 9. (Colour online) The 1/3 power law in terms of the evaporation number defined
in (4.5) for the numerically determined neck thickness. The three circles within each (blue,
black and red) set correspond, in an increasing order of E , to Timp=220 ◦C and R=1.39`c,
to Timp = 275 ◦C and R= 1.314`c and to Timp = 330 ◦C and R= 1.37`c, a slight scattering
in the chosen R values being due to the one in corresponding experimental realisations.
The colours: blue for the overall isothermal substrates at Timp, black for the partial model
(with experimentally measured temperature profiles) and red for the full model. Crosses
and pluses all correspond to the full model at Timp = 330 ◦C and R= 1.37`c. The crosses
are for Hs = Hq and the indicated values of ks, while the pluses are for ks = kq and the
indicated values of Hs. Here Hq = 4.5 mm and kq = 1.4 W m−1 K−1 are the Hs and ks
values of the quartz plate used in the experiments.

as shown in figure 9, the neck thickness, computed from a non-isothermal substrate
model (full or partial) does well observe the mentioned 1/3 power law in terms of the
hereby defined parameter E whatever the substrate conductivity, the substrate thickness
and the imposed temperature. A slight scattering of points about the straight line is
mainly attributed to slightly different values of R used in the computation following
different experimental runs (for which it is difficult to reproduce exactly the same R),
for the proportionality factor is actually R-dependent (Sobac et al. 2014).

5. Conclusions
The present study has focused, both experimentally and theoretically, on the

temperature field in the solid substrate underneath a Leidenfrost drop in the case
of relatively low thermal conductivity solids such as quartz. A non-trivial feedback
between substrate cooling and Leidenfrost drop characteristics has been highlighted.
In the experiments, the drop is continuously fed from a needle so as to achieve
an overall stationary situation. The temperature field in a quartz plate substrate is
experimentally visualised by means of a Mach–Zehnder interferometer. Quite a strong
local cooling of the substrate caused by a Leidenfrost (ethanol) drop was detected,
which comes alongside with a non-negligible cooling due to natural convection in the
air already present in the absence of any drop. For instance, a local temperature drop
as large as 80 K was measured in the range of parameters investigated in this study
(viz. a 4.5 mm thick quartz plate with its bottom surface maintained at 330 ◦C). This
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can be compared with a 30 K upper surface cooling measured in the absence of any
drop, and with the intended ‘ideal’ superheat of 251 K (= 330 ◦C–79 ◦C, the ethanol
boiling temperature being equal to 79 ◦C). Quite remarkably, such a maximum local
cooling proved to depend only weakly on the drop size in a capillary-length range.
A theoretical model has been developed in order to rationalise the experimental data
and appeared to fairly well compare with the experiments, despite its simplicity.
Interestingly enough, the simulations revealed the maximum substrate temperature
drop to occur right underneath the neck of the vapour film, roughly coinciding with
the expected maximum of heat (and evaporation) fluxes, although the experimental
resolution did not prove to be sufficient to conclusively capture such a fine effect
in terms of the temperature drop (though it did in terms of the local heat flux). On
the other hand, the modelling somewhat underestimates (by some 15 K) the value
of the temperature drop, which apparently partly goes along with a long-standing
problem of underestimating the overall evaporation rates when not accounting for the
contribution of the upper part of the drop, even if the contribution of the lower part
(i.e. the vapour film) is indeed predominant. The simulations showed the substrate
cooling to be associated with a reduction of about 17 % in the vapour film thickness
and 26 % in the evaporation rate as compared with the case of an isothermal substrate
(at 330 ◦C) under otherwise equal settings. Thus, the Leidenfrost effect is subject to
an appreciable influence of non-isothermal effects in the substrate. A parametric
study was carried out in order to explore what happens for substrates with properties
(thermal conductivity, size) beyond the constrains of the present experimental settings.
Quite expectedly, as the thermal conductivity is increased, the isothermal substrate
case is recovered, for which a Leidenfrost model like the earlier one by Sobac
et al. (2014) becomes fully sufficient. Simple criteria in terms of Biot numbers
were formulated permitting to a priori estimate the expected importance of substrate
cooling for any particular settings. Finally, whatever the value of the Biot number, the
scaling laws for the vapour film thickness as a function of the evaporation number
established elsewhere in the case of an isothermal substrate prove to remain valid
here with a good accuracy if for the isothermal substrate temperature one substitutes
the mean substrate surface temperature underneath the Leidenfrost drop, for which a
well-working analytical estimate is provided.
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Appendix A. Phase extraction
The extraction of the phase from our experimental data involves several steps which

will be explained here. We will highlight the advantages of using the finite-fringe
method in conjunction with Fourier filtering to reduce influences from experimental
noise.

The first processing step is the decomposition of the interferogram in its (wrapped)
phase and magnitude components using a Fourier transform technique (figure 10),
which eliminates low frequency background variations and high frequency noise from
the interference phase (Takeda, Ina & Kobayashi 1982; Kreis 1986). For a uniform
refractive index field, the finite-fringe-width interferogram consists of evenly spaced
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(a) (b) (c) (d ) (e) ( f )

FIGURE 10. (Colour online) Demonstration of the phase extraction process with a
computer generated interferogram.

interference fringes with a Gaussian intensity modulation (figure 10a). Additional
phase variations result in distortion of this fringe pattern (figure 10b). To extract
the phase, the two-dimensional Fourier spectrum is computed (figure 10c) and a
rectangular window is applied (the green shaded area). The window only keeps a part
of one of the half-planes corresponding with the modulation of carrier fringes. The
carrier phase is then removed by recentring the windowed spectrum to the carrier
phase frequency (figure 10d). The same spectrum recentring translation has to be
used for the reference and test interferograms. Therefore, we recentre the spectrum
for the reference interferogram first and use the same translation for subsequent
interferograms. Finally, an inverse Fourier transformation yields the interference
phase modulo 2π (figure 10e) and magnitude (figure 10f ) corresponding with the
interferogram of figure 10(b).

Appendix B. Calibration of dn/dT and refraction correction
Since the conversion from the optical path-length difference into temperature fields

involves careful calibration, here we will describe the steps taken to ensure the
reliability of our experimental results.

The temperature at the top and bottom of the substrate were measured with a
surface probe (Anritsu Meter Co., Ltd. N-141K-02-1-TC1-ANP) and a thermocouple
inside the heater, respectively. First, a reference interferogram was recorded at room
temperature T0= 22 ◦C to extract phase and magnitude corresponding to an isothermal
substrate. Next, for every increase of 10 ◦C in heater temperature set point Timp, an
interferogram was recorded and the temperature was measured at the top of the
quartz top obtain 1T = Timp − TsΣ , which is plotted in figure 11(a). With this
increasing temperature gradient the apparent translation due to refraction increases
too (figure 11b), since apart from changing the optical path length, index gradients
also cause refraction of light. This effect manifests itself by an apparent translation
of the interferogram when the substrate is heated to high temperatures due to the
index gradient from high to low values (top to bottom). When phase subtraction is
performed, the two interferograms therefore no longer correspond to the same location
on the camera, causing errors in the extracted phase. The apparent translation relative
to the reference interferogram is found using two-dimensional cross-correlation of
the magnitude extracted from the interferograms and the phase and magnitude are
corrected accordingly. This translation is corrected for before phase subtraction and
magnitude division.

Figure 12 shows phases extraction of interferograms recorded at room temperature
and with the heater at 400 ◦C. The phase map in figure 12(c) shows that the index
gradient in the air above the quartz is negligible compared to the index gradient inside
the quartz. This supports the assumption that the refractive index change due to the
heating of air is negligible compared to the refractive index change inside the quartz.
Next, the phase is unwrapped (figure 12d). Figure 12(e) shows the vertical profiles
corresponding to the region indicated by the rectangle in figure 12(d). An offset φimp
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FIGURE 11. (Colour online) Temperature difference 1T = Timp − TsΣ across the quartz
substrate in the absence of a drop (a) and the apparent translation relative to the reference
interferogram (b).
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FIGURE 12. (Colour online) Calibration phase and magnitude extraction. (a–c) Phase
modulo 2π taken from a reference interferogram at 22 ◦C (a) and at 400 ◦C (b) together
with the difference of these two phases (c) (black and white correspond to −π and π,
respectively). Image (d) shows the image after unwrapping (blue and red corresponds
to a phase difference of 40π), where the rectangle corresponds to the area that is used
to determine the vertical phase profile. Results for φ(z) for different Timp (e) to obtain
1n(1T) and the linear fit for dn/dT ( f ). The lines in (e) correspond to the mean phase
in the horizontal direction of the rectangle in (d), respectively. The phase in the shaded
area is extrapolated towards the heater and the quartz surface.

is added in figure 12(e) such that the phase φimp at the heater surface correspond to
the temperature difference between the heater temperature Timp and room temperature
T0,

φimp =
2πHs(Timp − T0)

λ

dn
dT
, (B 1)

where dn/dT is the later determined value.
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Unwrapping errors are encountered near the top and bottom edge of the quartz
plate. Figure 12(e) shows that the mean value of the measured phase follows a linear
behaviour near the edges, but at the very edge the phase cannot be unwrapped reliably.
This is a result of the quartz near the edges being of lesser optical quality as a result
of the polishing process and the occurrence of diffraction occurring close to the top
and bottom surfaces. To determine the phase at the very edge, the phase profiles are
therefore extrapolated towards the edges of the plate using a linear fit of the phase
profile. For both edges of the plate, the fit was based on the phase field between 0.5
and 1 mm distance from the edge (the blue shaded area of figure 12e). The phase
difference 1φ= φimp− φsΣ is then computed from the extrapolated values, φimp at the
heater surface and φsΣ at the quartz surface. The refractive index difference 1n across
the quartz plate is then

1n=
λ1φ

2πHs
. (B 2)

Now, dn/dT can be determined from a linear fit of 1n as a function of 1T
(figure 12f ), assuming that the temperature field in the absence of a drop essentially
varies only across the quartz plate. The result, dn/dT = (1.20± 0.01)× 10−5 K−1, is
consistent with the values reported in the literature (Malitson 1965; Toyoda & Yabe
1983).

For the Leidenfrost experiments, the heater can now be set to any temperature Timp
to record an interferogram with and without a drop. The phase difference between
these two then gives the amount of cooling due to the drop.

Appendix C. Abel inversion
Presented here are the details on our novel approach to Abel inversion. As already

outlined in § 2.2, our method is based on fitting the data using the projection on a
basis function expansion. The experimental data are thus fitted in the Abel space while
the thereby obtained coefficients are then used to reconstruct the temperature field.

The interferometric phase φ(y, z) is a two-dimensional projection of the refractive
index field 1n(x, y, z), The underlying field must therefore be determined from the
projection by tomographic reconstruction. If the underlying field is axisymmetric (as
approximately assumed here), a single projection φ(y, z) is sufficient to reconstruct
1n(r, z) (in cylindrical coordinates). The projection is then related to the field by the
Abel transform:

F(y, z) =
∫
∞

−∞

f (r, z) dx, r=
√

x2 + y2, (C 1)

= 2
∫
∞

y

f (r, z)r√
r2 − y2

dr, (C 2)

where in our case

F(y, z)=1φ(y, z), (C 3)

f (r, z)=
2π1n(r, z)

λ
=

2π

λ

dn
dT
1Ts(r, z). (C 4)

The analytic Abel inversion is given by

f (r, z)=−
1
π

∫
∞

r

∂F(y, z)
∂y

1√
y2 − r2

dy. (C 5)
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However, this integral is known to be sensitive to noise, especially near the axis
of symmetry (Ma, Gao & Wu 2008). In order to reliably extract the local heat
flux from the temperature field, we propose an inversion method based on the
basis function expansion method (BASEX) which imposes that the reconstructed
temperature field satisfies the Laplace equation for steady heat conduction. With
BASEX, the unknown distribution f (r, z) is approximated by a complete set of
functions with linear coefficients (Dribinski et al. 2002). The phase projection of this
expansion solution (the forward Abel transform) is computed by numerical integration.
The coefficients are then obtained by matching coefficients of the projection to the
measured projection data F(y, z) using linear regression. Based on physical arguments
given in § 2.1, our domain is restricted to the width W of the quartz plate, thus (C 1)
becomes a definite integral:

F(y, z)=
∫ W/2

−W/2
f (r, z) dx. (C 6)

The axisymmetric solution to the Laplace equation ∇2f = 0 in cylindrical
coordinates is given by the family of functions (Jackson 1998)

fmk(r, θ, z)=
N∑

p=1

(ApJ0(kr)+ BpY0(kr))e±kz, (C 7)

where Ap and Bp are constants, k is a real or imaginary number and J0(r) and Y0(r)
are Bessel functions of first and second kind, respectively. Since Y0(kr) diverges for
r → 0, we must have B = 0. The remaining functions fk(r, z) =

∑N
p=1 ApJ0(kr)e±kz

can be divided in two families of solutions. The first family provides a complete
orthogonal set of functions on a disc of radius a in the form of a Fourier–Bessel series:

f (r, z)=
∞∑

p=1

[Ap sinh(ζpz/a)+ Bp cosh(ζpz/a)]J0(ζpr/a), (C 8)

where k= ζp/a is real, with ζp the pth root of the zeroth-order Bessel function of the
first kind. The constant a represents the largest distance from r = 0 and is given by√
(ly/2)2 + (W/2)2 where ly is the field of view of the camera. The second family

provides a complete orthogonal set of functions on a surface at constant r with 0 6
z 6 c in the form of a Fourier series

f (r, z)=
∞∑

p=1

[Cp sin(pπz/c)+Dp cos(pπz/c)]I0(pπr/c), (C 9)

where k= ipπr/c is imaginary with p= 1, 2, . . . and I0(kr)= J0(ikr) is the zeroth-order
modified Bessel function of the first kind. In our case, we take c = Hs, and add a
translation in the z-direction such that z=0 at the top of the substrate for the measured
data.

To approximate the three-dimensional field 1n(r, z), we use a linear combination
of both families plus an offset term f0:

f (r, z) = f0 +

N∑
p=1

[Ap sinh(ζpz/a)+ Bp cosh(ζpz/a)]J0(ζpr/a)

+

M∑
p=1

[Cp sin(pπz/c)+Dp cos(pπz/c)]I0(pπr/c). (C 10)
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Next, we compute the phase projection by numerical integration of (C 1), taking into
account that f is zero for x<−W/2 and x>W/2:

F(yk, zk) = f0W +
N∑

p=1

[
Ap

∫ W/2

−W/2
sinh(ζpzk/a)J0(ζprk/a) dx

+Bp

∫ W/2

−W/2
cosh(ζpzk/a)J0(ζprk/a) dx

]
+

M∑
p=1

[
Cp

∫ W/2

−W/2
sin(pπzk/c)I0(pπrk/c) dx

+Dp

∫ W/2

−W/2
cos(pπzk/c)I0(pπrk/c) dx

]
. (C 11)

The integration is carried out numerically for every point (y, z) = (yk, zk), with rk =√
x2 + y2

k , corresponding with the measured Fexp(yk, zk). The parameters Ap, Bp, Cp,
Dp and f0 are determined by a least squares fit to a measured projection Fexp(yk, zk)

by means of linear regression. The reconstructed field then follows by substitution
of the parameter values in (C 10). In our analysis we used M = N = 10 to obtain
high accuracy, without amplifying high-frequency noise. Feature scaling is applied to
improve the numerical stability of the linear regression. Since the integrals for the
forward Abel transform only depend on the geometry of the problem, the method
excels for large data sets with an identical coordinate system: the integrals have to be
computed only once in that case and the inversion from any experimentally observed
projection reduces to a few matrix multiplications to solve the regression problem.

Appendix D. Reynolds and Péclet number estimation in the vapour film

The values of the Reynolds number, comparing the inertial and viscous effects in
the vapour film, and of the Péclet number, comparing heat transfer by convection and
conduction, are evaluated a posteriori. It is reasonable to assess them above all in the
neck region, where the vapour flow velocity attains its maximum (Sobac et al. 2015a).
The Reynolds number is then defined as Re= (ρvUneckh2

neck)/(µv`neck), where Uneck is
the velocity in the middle of the vapour film cross-section at the neck location, hneck is
the neck thickness (cf. § 4.4) and `neck is the length of the neck region as measured at
the height 2hneck of the vapour film profile. The maximum Re value for the parameters
of the present study is thereby found to be of the order of 0.5, justifying the dominant
role of viscous forces in the vapour film assumed here (Stokes flow). Indeed, for an
ethanol drop of R= 3.56 mm with TsΣ = 330 ◦C, one can obtain Uneck = 1.75 m s−1,
hneck = 58 µm and `neck = 906 µm giving rise to the mentioned Re value. The Péclet
number Pe= Pr Re is then estimated to be of the order of 0.4, as well, supporting a
posteriori the hypothesis of a mostly conductive heat transfer in (across) the vapour
film. Here Pr = νv/αv ∼ 0.8 is the Prandtl number, and νv = µv/ρv and αv are the
kinematic viscosity and the thermal diffusivity of the vapour, respectively.

Appendix E. Influence of the needle

While in the experiments the Leidenfrost drop is kept attached to a needle, the
theory assumes a free Leidenfrost drop. In the present appendix, we numerically
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FIGURE 13. (Colour online) Numerically determined shape of an ethanol Leidenfrost drop
with or without a needle (a,b), as well as the related temperature profiles at the quartz
plate surface (c,d) for R = 0.87`c and R = 1.37`c, respectively, and Timp = 330 ◦C. R is
kept constant to compare both cases.

assess the actual influence of the needle on the Leidenfrost drop shape as well as on
the temperature profile in the substrate. Mathematically, incorporating the presence
of a needle just consists in imposing as a boundary condition for the upper shape of
the drop, governed by (3.1), a vertical slope at the external needle radius (assuming
complete wetting) rather than merely no singularity at the symmetry axis. Figure 13
reports the results for an ethanol Leidenfrost drop over the quartz plate used in the
experiments, as described in § 2.1, with an imposed temperature of 330 ◦C. As one
can see, it is just the upper shape that is mostly affected by the presence of a needle.
At the same time, the effect of the needle on the vapour film thickness and on the
substrate temperature field is minor, although it proves to be stronger for smaller
drops as could be expected. However, even for R = 0.87`c, the smallest drop dealt
with in the present set-up, the neck thickness is affected only by 0.5 %, while the
maximum substrate cooling only by 0.5 K. Thus, we conclude that the presence of a
needle is not really essential here.
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