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Abstract

A polynomial f over a finite field Fq can be classified as a permutation polynomial by the Hermite–
Dickson criterion, which consists of conditions on the powers f e for each e from 1 to q − 2, as well as the
existence of a unique solution to f (x) = 0 in Fq. Carlitz and Lutz gave a variant of the criterion. In this
paper, we provide an alternate proof to the theorem of Carlitz and Lutz.
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1. Introduction

Let Fq be the finite field of q elements. A polynomial f (x) ∈ Fq[x] is said to be a
permutation polynomial if the induced map from Fq to Fq is bijective. Permutation
polynomials form an active area of research with many open problems and conjectures
(see [4]).

Denote the image of f (x) modulo xq − x by f (x). The best-known criterion for
classifying permutation polynomials is given by the Hermite–Dickson theorem [3].

Theorem 1.1. Let f (x) ∈ Fq[x]. Then f (x) is a permutation polynomial if and only if:

(i) deg f (x)` ≤ q − 2 for 1 ≤ ` ≤ q − 2;
(ii) f (x) has a unique root in Fq.

Ayad et al. [1] improved this criterion for binomials. Carlitz and Lutz [2] gave
a variant of the Hermite–Dickson theorem, providing sufficient conditions for a
polynomial to be a permutation polynomial.

Theorem 1.2. Let f (x) ∈ Fq[x]. Suppose that:

(i) deg f (x)` ≤ q − 2 for 1 ≤ ` ≤ q − 2;
(ii) deg f (x)q−1 = q − 1.
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Then f (x) is a permutation polynomial.

In this paper, we refine Theorem 1.2 by proving the following result.

Theorem 1.3. Let f (x) ∈ Fq[x]. Then the following conditions are equivalent.

(i) deg f (x)` ≤ q − 2 for 1 ≤ ` ≤ q − 2, and deg f (x)q−1 = q − 1.
(ii) deg f (x)` ≤ q − 2 for each ` with 1 ≤ ` ≤ q − 2 and relatively prime to char(Fq),

and deg f (x)q−1 = q − 1.
(iii) f (x) is a permutation polynomial.

2. Preliminary results

Let x1, . . . , xn be n variables. For each k ∈ {1, . . . , n}, let

sk(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1 · · · xik

be the elementary symmetric polynomial of degree k in n variables, and let

σk(x1, . . . , xn) =

n∑
i=1

xk
i

be the power sum symmetric polynomial of degree k in n variables, with the
conventional definition σ0(x1, . . . , xn) = n. The polynomials sk and σk satisfy the
relation

σk − s1σk−1 + · · · + (−1)kksk = 0 for 1 ≤ k ≤ n, (2.1)

the validity of which is demonstrated in [6].
A polynomial f (x) ∈ Fq[x] is a permutation polynomial if and only if f (Fq) = Fq,

which is equivalent to ∏
c∈Fq

(x − f (c)) =
∏
c∈Fq

(x − c) = xq − x. (2.2)

Let c1, . . . , cq be the distinct elements of Fq. By expanding the left-hand side of
equation (2.2) and identifying its coefficients with those of xq − x, we deduce that
f (x) is a permutation polynomial if and only if

sk( f (c1), . . . , f (cq)) = 0

for each k ∈ {1, . . . , q − 2} and

sq−1( f (c1), . . . , f (cq)) = −1.

Consider any map τ : Fq → Fq. There exists a unique polynomial g(x) ∈ Fq[x] of
degree less than q such that g(c) = τ(c) for all c ∈ Fq. The well-known formula

g(x) =
∑
c∈Fq

(1 − (x − c)q−1)τ(c)
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provides an expression for g(x) [5]. This expression implies that deg g ≤ q − 2 if and
only if ∑

c∈Fq

τ(c) =
∑
c∈Fq

g(c) = 0.

3. Proof of the theorem

Proof of Theorem 1.3. The implication (i)⇒ (ii) is clear.
Next consider the implication (ii) ⇒ (iii). Let p = char(Fq) and suppose that

deg f (x)` ≤ q − 2 for each ` ∈ {1, . . . , q − 2} such that gcd(p, `) = 1 and in addition
that deg f (x)q−1 = q − 1. Set a := σq−1( f (c1), . . . , f (cq)). Then a , 0 and

σ`( f (c1), . . . , f (cq)) = 0 (3.1)

for each ` ∈ {1, . . . , q − 2} not divisible by p. We show that

s`( f (c1), . . . , f (cq)) = σ`( f (c1), . . . , f (cq)) (3.2)

for all ` ∈ {1, . . . , q − 1} not divisible by p.
The statement is clear for ` = 1, so let e ∈ {2, . . . , q − 1} be such that p does not

divide e and assume that equation (3.2) holds for all ` ∈ {1, . . . , e − 1} such that p does
not divide `. We write (2.1) in the form

σe( f (c1), . . . , f (cq)) +
∑

(−1)usu( f (c1), . . . , f (cq))σv( f (c1), . . . , f (cq))

+ (−1)eese( f (cq), . . . , f (cq)) = 0, (3.3)

where the sum runs over all pairs (u, v) such that u + v = e and u, v ∈ {1, . . . , e − 1}.
Letting (u, v) be any such pair, if p does not divide u, then su( f (c1), . . . , f (cq)) = 0 by
hypothesis. If p does divide u, then p does not divide v and so σv( f (c1), . . . , f (cq)) = 0.
Equation (3.3) is then reduced to

σe( f (c1), . . . , f (cq)) = (−1)e+1ese( f (c1), . . . , f (cq)),

and (3.1) implies that

se( f (c1), . . . , f (cq)) = σe( f (cq), . . . , f (cq)) = 0

for each e ∈ {2, . . . , q − 2} not divisible by p, and

sq−1( f (c1), . . . , f (cq)) = σq−1( f (c1), . . . , f (cq)) = a.

Let
h(x) =

∏
c∈Fq

(x − f (c)).

Expanding h(x) yields an expression of the form

h(x) = xq + ax +
∑
p|i

aixi,
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from which it is apparent that h′(x) = a , 0. Thus, h(x) is separable, implying that f (x)
is a permutation polynomial.

To prove the implication (iii) ⇒ (i), we suppose that f (x) is a permutation
polynomial. Then

s`( f (c1), . . . , f (cq)) = 0

for ` ∈ {1, . . . , q − 2} and sq−1
(
f (c1), . . . , f (cq)

)
= −1. Equation (2.1) immediately

implies that
σ`( f (c1), . . . , f (cq)) = 0

for ` ∈ {1, . . . , q − 2} and σq−1( f (c1), . . . , f (cq)) = −1. It follows that∑
c∈Fq

f (c)` = 0

for ` ∈ {1, . . . , q − 2} and ∑
c∈Fq

f (c)q−1 = −1.

Therefore, deg f (x)` ≤ q − 2 for ` ∈ {1, . . . , q − 2} and deg f (x)q−1 = q − 1. �

We next state and prove an immediate consequence of Theorem 1.3.

Corollary 3.1. Let f (x) ∈ Fq[x]. Then the following statements are equivalent.

(i) f (x) is a permutation polynomial.
(ii) For any polynomial u(x) ∈ Fq[x], deg u(x) = q − 1 if and only if deg u( f (x)) =

q − 1.

Proof. Suppose that f (x) is a permutation polynomial and let u(x) ∈ Fq[x] be such that
deg u(x) = q − 1. By Theorem 1.3, we then have deg u( f (x)) = q − 1.

Conversely, let ui(x) = xi for each i ∈ {1, . . . , q − 1}. Then ui( f (x)) = f (x)i. By
Theorem 1.3, deg ui( f (x)) = q − 1 if and only if i = q − 1. Therefore, f (x) is a
permutation polynomial. �

4. Concluding remarks

The theorems presented can be interpreted as properties of the composition on the
left of f (x) with each of the basis elements {xi | i = 0, . . . , q − 1} of the Fq-vector space
Fq[x]/(xq − x). Changing this basis to another will allow one to prove similar results.

Remark 4.1. Let f (x) be a permutation polynomial over Fq, and consider the map
ϕ : {1, . . . , q − 1} → {1, . . . , q − 1} given by ϕ(e) = deg f (x)e. Theorem 1.3 shows that
ϕ−1(q − 1) = {q − 1}.

In the particular case f (x) = xn, where n is an integer relatively prime to q − 1,
f (x) is a permutation polynomial [5], and it is straightforward to show that the
corresponding map ϕ is injective. However, this is not always the case. For example,
suppose that q = pr for an odd prime p and let f (x) = axq−2 + b with a, b ∈ F∗q. One
can verify that ϕ(1) = ϕ(2) = ϕ(3) = q − 2.
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Remark 4.2. If d > 1 is a divisor of q − 1, then there is no permutation polynomial over
Fq of degree d [5]. This introduces the following problem: for each k ∈ {1, . . . , q − 2},
let ak be an element of {1, . . . , q − 2} such that ak does not divide q − 1 whenever
gcd(k, q − 1) = 1. Does there exist a permutation polynomial f (x) ∈ Fq[x] such that
the corresponding map ϕ satisfies ϕ(k) = ak for each k ∈ {1, . . . , q − 2} and ϕ(q − 1) =

q − 1?
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