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RESIDUE FIELDS OF VALUED FUNCTION FIELDS OF
CONICS

by SUDESH K. KHANDUJA* and USHA GARG

(Received 11th December 1991)

Suppose that K is a function field of a conic over a subfield Ko. Let v0 be a valuation of Ko with residue field
fc0 of characteristic ^ 2 . Let v be an extension of v0 to K having residue field k. It has been proved that either
k is an algebraic extension of k0 or k is a regular function field of a conic over a finite extension of k0. This
result can also be deduced from the genus inequality of Matignon (cf. [On valued function fields I,
Manuscripta Math. 65 (1989), 357-376]) which has been proved using results about vector space defect and
methods of rigid analytic geometry. The proof given here is more or less self-contained requiring only
elementary valuation theory.

: 1991 Mathematics subject classification: 12F20, 13A18.

i

' 0. Introduction

t Let v0 be a non-trivial valuation of a field Ko with residue field k0 and value group
Go. Let w be an extension of v0 to a simple transcendental extension K0(x). In 1983,
Ohm [8] proved a conjecture made by Nagata which asserts that the residue field k of
w is either an algebraic extension of k0 or k is a simple transcendental extension of a
finite extension of k0. His method of proof leads to an explicit determination of k in the
case that k/k0 is non-algebraic. Matignon and Ohm have also solved the converse
problem stated below.

If G is a totally ordered abelian group containing Go as an ordered subgroup with
[G: Go] < oo and if A is a finite extension of k0, then there exists a valuation v of K0(x)
extending v0 such that the residue field of v is a simple transcendental extension of A
and the value group of v is G (cf. [7, Cor. 3.2]). In this paper, we consider analogous
problems for an extension (K, v)/(K0, v0) of valued fields where K is a function field of a
conic over Ko. Our method of determining the residue field of v incidentally yields that
the analogous converse does not hold for function fields of conies.

1. Statements of results

Recall that for a finitely generated field extension K/Ko, K is said to be a function
field of a conic over Ko if the transcendence degree (henceforth abbreviated as tr. deg.)
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of K/Ko is 1 and if K = K0(x,y) where x and y satisfy an irreducible polynomial relation
of total degree 2 over Ko. Further, it is said to be a regular function field of a conic
over Ko if (i) K/Ko is a separable extension, i.e., either x is separably algebraic over
K0(y) or y is separably algebraic over K0(x) and (ii) Ko is algebraically closed in K.

We shall prove:

Theorem 1.1. Let K be a function field of a conic over a field Ko. Let v0 be a
valuation of Ko and v be an extension of v0 to K. Assume that the characteristic of the
residue field k0 ofvo is ^1. Then the residue field k of v is either an algebraic extension of
k0 or k is a regular function field of a conic over a finite extension of k0.

At the end of the third section we give an example to show that the above result does
not always hold in case char fe0 = 2 even if K/Ko is assumed to be regular.

It is well known that, for a finitely generated extension K/Ko of tr. deg 1 with Ko

algebraically closed in K, the genus of K/Ko is 0 if and only if K is a function field of a
conic over Ko (see [1, p. 302, Thm. 6]). Keeping this in view, we see that Theorem 1.1.
can also be easily deduced from the genus inequality of Matignon (cf. [6, Thm. 4], [4]);
the latter has been proved using methods of rigid analytic geometry and some deep
results of valuation theory. The proof given here is based on elementary valuation
theory and happens also quickly to yield the following theorems.

Theorem 1.2. Let the hypothesis be as in Theorem 1.1. Assuming that the extension
k/k0 is not algebraic. Let A be the algebraic closure of k0 in k and G0^G be the value
groups of v0 and v respectively. If k is not a purely transcendental extension of A, then
G = G0 and A = k0.

Theorem 1.1 leads to the following problem:
Let v0 be a non-trivial valuation of a field Ko with value group Go and residue field

fc0 of char. # 2 . Given a totally ordered abelian group G containing Go as an ordered
subgroup with [G: Go] < oo and an extension k of k0 which is a regular function field of
a conic over a finite extension of k0, does there exist an extension v of v0 to an over
field K which is a function field of a conic over Ko such that the value group of v is G
and its residue field is kl

It is immediate from Theorem 1.2 that the answer to the above question is "no" in
general.

2. Some preliminary results

We first introduce some notation and a few definitions. Let P(X) = P(Xt,...,Xn) be
an irreducible polynomial of d e g ^ l over a field Lo in n ^ 2 variables Xlt...,XB. The
ideal (P) generated by P(X) in L0[X~\ is a prime ideal and the quotient field L (say) of
the integral domain L0[X]/(P) may be regarded as an extension of Lo by identifying Lo

with its canonical image in L. If x; is the image of Xt in L, then P(xi,...,xn) = 0 and
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L = L0(x1,...,xn). Moreover the degree of transcendence of L/Lo is n — 1 and x1,...,xn

satisfy no non- trivial L0-polynomial relation of degree < deg P; in particular if P(X) is
of total degree ^ 2 , then xl,...,xn are non-zero.

An extension Lj of Lo will be said to be the function field of P(X) over Lo if LY is
L0-isomorphic to the quotient field of L0[X]/(P); the irreducible polynomial P(X) will
then be called a defining polynomial for L1/Lo.

The following proposition is well known (cf. [11, Proposition 1.1]) and can be easily
proved using ([13, p. 101, Theorem 29)]. We omit its proof.

Proposition A. Let P(X) = P(Xl,...,Xn) be an irreducible polynomial over afield Lo

in n^.2 variables. An extension L of Lo is the function field of P(X) over Lo if
tr. deg(L/L0) = n—l and if there exist xu...,xn in L satisfying P(xl,...,xn)=0 such that
L = L0(xu...,xn).

To any polynomial P(X) of deg ̂  1 over a field Lo, one can associate a homogeneous
polynomial Ph(X0,X) in L0[^f0,X] (where (X0,X) = (X0,X1,...,Xn)) having the same
degree as P(X) which is uniquely determined by the additional property that P(X) =
Ph(l,X). Since the factors of a homogeneous polynomial are again homogeneous, P(X)
is irreducible over Lo if and only if Ph(X0,X) is so. Moreover for Ph(X0,X)
L0-irreducible of degree ^ 2 , the polynomials P\\,X) and Ph(X0,...,l,,...,Xn) all define
the same (to be precise L0-isomorphic) function field over Lo; this is a consequence of
Proposition A and the observation that we can write the function field L of Ph(l,X) as
L = L0(x1,...,xn), x , /0 , where

So L/Lo is independent of the variable used to dehomogenize Ph(X0, X).
It may be remarked that the function field of an L0-irreducible polynomial P(X) of

deg ̂ 2 is invariant under a homogeneous change of variables, i.e., if

X'l = al0X0 + — +almXm, O^i^n (1)

where (a;j) is an invertible matrix with entries in Lo and if the forms Ph and Qh are
related by Qh(X'0,X') = Ph(X0,X), then the function field of Q(X') = Q"(l,X') is the same
as the function field of P(X) over Lo. For if Lo(xo,x) = Lo(xo,x') (here x abbreviates
(x!, . . . ,xj) is the function field of Ph(X0,X), it follows from Proposition A that
L0(x,/x0,...,x,/x0) is the function field of P(X) and Lo(x'1/x'o,...,x^/xo) is the function
field of Q(X'), where the xj are defined in terms of x,- by means of (1), and then the
invertible relations between the x\ and the xf given by (1) show that these two fields are
equal.

It is clear from the above discussion that if P(Xl,...,Xn) and Q(X\,...,X'n) are two
L0-irreducible polynomials of degree 2 such that their associated quadratic forms are
related by
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P\X0,X) = qQ\X'0,X')

where q is a non-zero element of Lo and where Xt and X\ are related by (1), then the
function fields of P(X) and Q(X') over Lo are the same.

The following lemma (which is already known [11, Proposition 2.2., Theorem 2.3]) is
an immediate consequence of what we have said above and of the fact that every
quadratic form over a field of char #2 can be diagonalised by a linear change of
variables.

Lemma 2.1. Let Ko be afield of char ^2 and let K be a function field of a conic over
Ko. Then there exist explicitly constructible elements c, dsK0 such that the
K0-irreducible polynomial X2 — cy2—d is a defining polynominal for K/Ko.

Notation. Let v' be a valuation of a simple transcendental extension K0(y) of a field
Ko which extends a valuation i;0 of Ko. Let fcos k' be the residue fields of v0 and v'
respectively. For any £ in the valuation ring of v', we denote by £,* its y'-residue, i.e., the
image of £, in the residue field of v'. Suppose that k' is not an algebraic extension of fc0.
For such an extension v'/v0, we define a number E (more precisely written as E(v'/v0))
by

E = mm{tK0{y):K0(m \£eK0(y),v'(Q^O, £* is tr.over *„}.

Lemma 2.2. Let v' be an extension of a valuation v0 of Ko to a simple transcendental
extension K0(y). Suppose that the residue field k' of v' is not an algebraic extension of the
residue field k0 of v0. Then to any k in the value group of v', there corresponds a
polynomial R(y)eK0[y] of degree less than E = E(v'/v0) such that X = v'(R(y)).

Proof. Fix an algebraic closure Ko of Ko and an extension v" of v' to K0{y). We
denote by v0 the restriction of v" to Ko and by k~0^k" the residue fields of v0, v"
respectively. Let Go £ G be the value groups of v0 and v'. The extension k'/k0 is given to
be non-algebraic, therefore so is k"/k0, and since k~0/k0 is algebraic, it follows that k"/k~0

is a transcendental extension. Arguing exactly as in [9, p. 205, 2.5], we can easily prove
that there exist a, aeK0 such that the i/'-residue ((y — a)/a)* of ((y—a)/a) is transcen-
dental over £0. We shall denote v"(y—a) = vo(a) by /x. Clearly n is torsion modG0, i.e.,
there exists a positive integer m such that mfieG0. As in [2, Chapter 6, §10.1,
Proposition 2], it can be easily shown that for any polynomial /(j')=Xici(3'~a)' o v e r

since the assumption v"(f(y))>mini(v0(ci) + iij.) would lead to ((y—a)/a)* being algebraic
over Jc0. This also shows that v"(f(y)) is torsion mod Go for any f(y) in K0(y). Define a
subset D of Ko by

https://doi.org/10.1017/S0013091500018551 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018551


RESIDUE FIELDS OF VALUED FUNCTION FIELDS OF CONICS 473

Choose an element fi of D such that [K0(jS):K0]S[^0()'):/Co] for all y in D. We shall
denote by P(y) the minimal polynomial of /? over Ko of degree n(say), by 9 the element
v'(P(y)) of G' and by Gt the value group of the valuation v0 restricted to K0(fi). As
shown above 8 is torsion modG0; let s be the smallest positive integer such that
By [5, Theorem 1.4, Corollary 1.2] the value group G' of v' can be expressed as

(2)

r = 0

It is clear from the proof of Theorem 1.3 of [5] that

(3)
Observe that a, /? lie in D; also in view of the choice of /? any polynomial over Ko

having degree less than n has no root in D. So by assertion (ii) of Lemma 2.1 of [5] for
such a polynomial g(y), one has

v'(g{y)) = vo(g(«)) = Vo(g(P))- (4)

Let X be any element of G'. In view of (2), there exists a polynomial g{y)e K0[y] of
degree less than n and an integer r, O^ r^s— 1, such that

Keeping (4), in view, we can re-write the above equation as

We set R(y)=g(y)P(yY. Then by (3) and the fact that degg(y)<n, we see that

degR(y)<(r+l)ng,sn = E{v'/v0).

The lemma is now proved.

Lemma 2.3. Let the hypothesis be as in the above lemma. Let >] = f(y)/g(y) with f(y)
and g(y) in K0[y], be an element of the valuation ring of v' having its v'-residue n*
transcendental over k0. 7/deg/(_y)^£ and degg(y)^2E—l, then n* is a generator of the
simple transcendental extension k'/A', where A' is the algebraic closure of k0 in k'.

Proof. Let v", v0, a, /?, P(y), 0 and s be as in the proof of Lemma 2.2. Let
q(y)eK0[y~\ be a polynomial of degree less than n such that vo(q(P))=s9. By [5,
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Theorem 1.3(i)] the u'-residue of P(y)s/q(y) is a generator of the simple transcendental
extension k'/A' and A' equals the residue field of the valuation v0 restricted to K0(f}); we
shall denote this generator of k'/A' by t.

Observe that any polynomial h(y)eK0[y~] can be uniquely written as a finite sum

i=0

where, for O^i^m, the polynomial h£y)eK0[y2 is either zero or is of degree less than
that of P(y). This will be referred to as the canonical representation of h(y) with respect
to P(y).

By hypothesis deg f(y)^E = sn, so the index i in the canonical representation of f{y)
with respect to P(y) cannot vary beyond s.

Arguing similarly for g(y), we can write the canonical representations of f{y) and g{y)
with respect to P(y) as

/(y)= t fi(y)P(y)\g(y)= I ' S .OOW-
i=0 i=0

By [5, Lemma 2.1(ii), (in)], we have

v'(f(y)) = min (»o(/,(/0) + W, v'(g(y)) = min (vo(gi(P)) + iO).

Let j be the smallest index, O^j^s, such that v'(f(y)) — vo(fj(f})) + j0. Since s is the
smallest positive integer for which s6evo(Ko(P)), it follows that

j (5)

Also, we have

v'(g(y)) = v'(f(y)) = vo(fj{p)) + JO;

the same property of s shows that

(6)

and

, if i#jmods (7)

Write i\ = Y\\lr\2, where

rii=f(y)/fAy)P(y)J=I fi(y)P(yY/fj(y)P(y)J, r,2 =g(y)/fj(y)P(y)J.
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Keeping (5) in view and the fact that for any non-zero polynomial h(y)eK0[y~\ of
degree less than n, the ^''-residue of (h(y)/h(P)) is l(cf. [5, Lemma 2.1(ii)]), we deduce
immediately that

l if

l+t(fJLfiq{P)/foW)*, »f J = 0.

Similarly using (6) and (7), we derive that

f igj(P)/fj(P))* + t(q(P)gj+s(P)/fj(P))*, if j < s

if j = s.
n*2 =

Thus it has been shown that n* = (A' + tB')/(C' + tD') for some A', B', C, D' in A'. By
hypothesis n*$A', so A'D' — B'C'^O. The element t being a generator of the simple
transcendental extension k'/A', it now follows that so is n*.

The following lemma can be easily deduced from Theorem 17.17 and Corollary 16.6
of [3]. For the sake of completeness, we give a simple proof here.

Lemma 2.4. Let F = F'(N/^) be a quadratic extension of a field F' of char # 2, n e F'.
Let W be a valuation of F' having w'(n) = 0 such that the residue field k' of W has char
# 2. Supppose that w' can be uniquely extended to a valuation w of F, then the w-residue
of \/n is not in k'.

Proof. Let W be the valuation ring of w', and let M' be the maximal ideal of W. If
the w'-residue n* of n lies in k'2, then in the ring W'M there are two maximal ideals
contracting to M' (as W'[( |]/M'W"[i |]=)t '[X]P2-^)£lf 0 k'). In the integral closure
T of W in F there are maximal ideals lying over each of these maximal ideals in W'M,
as T is integral over W'[^]. Each maximal ideal of T determines a valuation of F
extending w'.

3. Proof of Theorems 1.1, 1.2

To prove the first theorem, we may assume that k/k0 is not an algebraic extension. In
view of Lemma 2.1, we may write K = K0(x,y) where (x,y) satisfies an irreducible
polynomial X2 — cY2 — d over Ko. Observe that y is transcendental over Ko a n d that
[K:K0(_y)]^2. We denote by v', the valuation v restricted to K0(y) and by k', G' the
residue field and the value group of v'. Then [/c:/c ']^2 and k'/k0 is not an algebraic
extension.

When k = k', the desired result follows from the Ruled Residue Theorem [8] applied
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to the simple transcendental extension K0(y)/K0 and the observation that a simple
transcendental extension L0(t) of a field Lo is the regular function field of a conic over
Lo, which can be visualized by writing L0(t) as L0(t, l/t) where (t, 1/f) satisfies
XY-l=6.

Assume now that [/c:fc'] = 2. Let A', A denote the algebraic closures of k0 in k! and k
respectively. By the Ruled Residue Theorem k' is a simple transcendental extension of A'
and A' is a finite extension of k0. If A'<pA, then

In view of the assumption that [/c:/c'] = 2, it is now clear that in the present case

[A: A'] = 2 and k = A(t).

The theorem remains to be proved when A'=A and [/c:/c'] = 2. Since

lk:k'-]=2, (8)

it follows from the fundamental inequality (cf. [2, Chapter 6, §8.3, Theorem l(b)])
relating the degree of extension with the ramification indices and residual degrees that
the value group of v is G'\ in particular v(x) e G. By Lemma 2.2, there exists a non-zero
polynomial % ) e K 0 [ y ] of degree less than E = E(v'/v0) such that v(x) = v'(R(y)). Set

Z = x/R(y) and r,=(cy2+d)/R(y)2.

Since x2 — cy2 — d = 0, the n-residue Z* of Z satisfies the polynomial X2 — rj* over k'. In
view of (8) and the fundamental inequality referred to above, v is the only extension to
K = K0(y, Z) of the valuation v' defined on Ko(y). Recall that char k' / 2; it now follows
from Lemma 2.4 applied to the extension K/K0(y) that Z* = y/rj* is not in k. Since k'
contains A' which equals the algebraic closure of A' in k, we conclude that Z* and hence
r\* is transcendental over A'. Therefore k = k'(^/rf*) is proved to be a function field and
hence a regular function field of a conic over A' = A, as soon as we show that there
exists a generator u of the simple transcendental extension k'/A' such that r\* is a
polynomial in u of degree ^ 2 with coefficients from A'. By Lemma 2.3, rj* is itself a
generator, say u, of the simple transcendental extension k'/A', if deg (cy2 + d)^E; in fact
in this situation k = A'iyjrj*) is a simple transcendental extension of A'. The remaining
case is when £ = 1 , i.e., when there exist a,beK0 such that ((y — a)/b)* = u (say) is
transcendental over k0. In this case the polynomial R(y) being of degree less than £ = 1,
must be a constant say R. Therefore on writing rj = (cy2 + d)/R2 as a polynomial in
(y — a)/b, we conclude that r\* is a polynomial of degree ^ 2 in u over k0. The theorem is
now completely proved.

Proof of Theorem 1.2. We retain the notation v', k', A', G and A of the above proof.
It is clear from this proof that the situation when the transcendental extension k/A is
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not a simple transcendental extension can arise only when [fc:/c'] = 2, A' = A and
E(v'/vo) = l. As remarked in the proof, G = G' in this case. The desired assertion now
follows from the well-known inequality (cf. [10, p. 586, § 1.2])

E(v'/v0) ^ [ C : Go] [A': fc0] = [G: Go] [A: * 0 ] .

Before constructing an example to show that the result of Theorem 1.1 may not hold
even if K/Ko is regular in the case char ko = 2, we prove a small lemma which occurs
essentially in [11].

Lemma B. Let c and d be elements of a field Fo.
(i) / / c d # 0 , then the polynomial X2 — cy2 — d is irreducible over F o provided cha rF 0 ^2 .

(ii) V\Zc£Fo or s/d^Eo, then the polynomial X2 — cY2 —d is irreducible over Fo when
char Fo = 2.

(iii) Suppose that charF0 is 2 and that [F 0 ( v /c , - s /a ) :F 0 ]=4. If F = F0(x,y) is the
function field of a conic over Fo where (x,y) satisfies x2—cy2 — d = 0, then FO is
algebraically closed in F.

Proof. The proof of (i) and (ii) is a routine calculation and is omitted. To prove (iii),
let a be an element of F which is algebraic over Fo . Since F(s/c,s/d) = F0(y/c,s/d,y) is
a simple transcendental extension of F0(^/c,yfd), so a must be in Fo(\/H\/")> saY
a = r + ss/c + ts/d + Uy/cd where r,s,t,ueF0. On the other hand, we can write <x = P + yx
where P,yeF0(y) and hence OL = P + yyy/c + ys/d as x = yy/c + sfd. Since
LF0(y){y/c,s/d):F0(y)'] = 4, we can equate the coefficients of 1, yfc, ^Jd, Jc~d in these
formulae for a and deduce that }> = 0, so a = /? = r e F 0 .

Example 3.1. Let Ko be a field of char 0 and v0 be a valuation of Ko having residue
field fc0 with char/co = 2 and suppose there exist u, tek0 such that [/co(x/u,N/t):/c0]=4
(e.g. one can take K0 = Q(xl,x2), a purely transcendental extension of tr. degree 2 of the
field of rationals; define v0 on Q[xl,x2] by i;0(^a,vXiXJ

2) = min(w2(a1J)) where w2 is the
2-adic valuation of Q, and choose t,u to be the uo-residues of xx and xl+x2). Pick any
c,deK0 having uo-residues u, t respectively. Let K = K0(x,y) where x,y satisfy the
relation X2 — cY2 — d=0; observe that the polynomial on the left hand side is irreducible
over the algebraic closure of KQ by Lemma B(i) and hence defines a regular function
field of a conic over Ko in view of [12, p. 18, Theorem 5]. Let v' denote the valuation of
the field K0(y) which is defined for any polynomial

= mm(vo(fi)).

The residue field k' of v' is a simple transcendental extension ko(y*) of k0 where y*
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denotes the (/-residue of y (cf. [2, Chapter 6, § 10.1, Proposition 2]). Let v be a valuation
of K which extends v' and k denote its residue field. It is easily verified that
k = ko(x*, y*) where the u-residues x*, y* of x and y satisfy the irreducible (by Lemma
B(ii)) polynomial relation X2 — uY2 —t = 0. Since [ko(y/u,yft):ko] = 4, k/k0 is not
separable; further in view of Lemma B(iii), k0 is algebraically closed in k. Hence k
cannot be regular function field of a conic over any subfield of k containing k0.

Remark 3.2. Let K0,K,v0,v,k0,k be as in Theorem 1.1 with k/k0 non-algebraic. It
follows from the genus inequality of Matignon ([4]) that k is a function field of a
conicover a finite extension of k0 even if char. k0 = 2.

Acknowledgement. The authors are highly thankful to the referee for giving several
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especially for his simple proofs of Lemma 2.4 and Lemma B(iii).
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