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Abstract

A weighted generalization of a p-Sidon set, called an (a, p)-Sidon set, is introduced and studied for
infinite, non-abelian, connected, compact groups G. The entire dual object G is shown never to be central
(p — 1, p)-Sidon for 1 < p < 2, nor central (1 + e, 2)-Sidon for e > 0. Local (p, p)-Sidon sets are
shown to be identical to local Sidon sets. Examples are constructed of infinite non-Sidon sets which are
central (2p - 1, p)-Sidon, or (p — 1, p)-Sidon, for 1 < p < 2. Full m-fold FTR sets are proved not to
be central (a, 2/n/(m + 1))-Sidon for any a > 1.
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0. Introduction

Suppose G is a compact group; we take its dual object G to be a maximal set of pairwise
inequivalent, continuous, irreducible, unitary representations of G. We define below
a new class of lacunary subsets of G which we call (a, p)-Sidon sets, where a e E.
and 1 < p < oc. These sets arise by considering classical Sidonicity under a Fourier
transform weighted by ath powers of representation degrees. The usual Fourier
transform corresponds to the case a = 1 and has been extensively studied for both
abelian and non-abelian G: (1, 1)-Sidon sets are usually called Sidon sets, and (1, p)-
Sidon sets are known simply as p-Sidon sets. One motivation for studying such sets is
the disparity in the classical setting between the abelian and non-abelian theory which
is caused by the existence of irreducible representations of unbounded degree. For
example, whereas every infinite set in the dual of an abelian group contains an infinite
Sidon subset, the same is not true in the non-abelian case even for those groups which
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74 K. E. Hare and D. C. Wilson [2]

admit infinite Sidon sets. Moderating the effect of unbounded degrees by weighting
should make these sets more plentiful.

The primary purpose of this paper is to initiate an investigation of those values of
a and p for which non-trivial examples of (central) {a, p)-Sidon sets exist. We begin
by listing the easy relationships between (a, /?)-Sidon and (b, <?)-Sidon sets, as well
as those values of a and p for which either abundant or only trivial examples can
be found. Generalizing [6], we show that if G is an infinite, non-abelian, connected,
compact group then G is never central (p — 1, /?)-Sidon for any 1 < p < 2, nor
central (1 + e, 2)-Sidon for any e > 0, and these results are sharp. Such groups are
seen to admit an infinite Sidon set if, and only if, they admit an infinite (p, p)-Sidon
set: indeed, a set is local (p, p)-Sidon if, and only if, it is local Sidon.

Our main positive results are for infinite products of almost simple, simply-
connected, compact Lie groups and are largely inspired by Blei's work (particularly
[1,2]) on p-Sidon sets for abelian groups. For each 1 < p < 2 we construct examples
of infinite sets which are central (2p — 1, p)-Sidon but no better, and we produce
examples of infinite, non-Sidon (p — 1, p)-Sidon sets for each p = 2n/(n + 1),
n — 2, 3, These examples are particular subsets of n-fold products of FTR sets;
FTR sets were introduced in [3] to characterize non-abelian Sidon sets. In contrast,
we show that other subsets of an «-fold product of FTR sets can fail to be central
(a, 2n/(n + 1))-Sidon, for any a > 1. This requires the existence on SU(i) of a
central trigonometric polynomial, with coefficients ±1 and sup-norm equal to the
rank of the group, to be explicitly demonstrated.

Weighted lacunary sets have also been studied in [5,7 and 17].

1. Preliminaries

NOTATION 1.1. For£ c Glet<?(£) = f l ^ Md(CT)(C),and<r(£) = Y\aeE C Id(a),
where we write d{a) for the degree of a e G, and Md(C) denotes the vector space of
d x d complex matrices. For a e R and A = (Aa)aeE e to(E), let

p

1 < p < oo,

creE

where Il-Xl^ denotes the largest eigenvalue of \X\. (See [11, Appendix D] for
properties of the von Neumann norms (Tr ( |Z | p ) ) 1 / p , there denoted

Write

ea,p(E) = {A e £(E) : \\A\\a,p < oo)

and llp(E) = {Ae S\E) : ||A||fl,, < 00}.
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[3] Weighted p-Sidon sets 75

We denote by 3?E(G) the space of trigonometric polynomials / = £CT(Eg d(o) Tr Aaa
on G having Fourier transform / supported on E, where

I
JG

We write ^(G) for the corresponding space of central trigonometric polynomials.

:= I f{x)a{x-x)dx = Ao.
JG

DEFINITIONS 1.2. Let a e K and 1 < p < oo. We call £ c G a n ( a , p)-Sidon set
if its (a, p)-Sidon constant

Ka,p(E) := sup{||/||a,p : / e £TE(G), U/IL < 1}

is finite, and a central (a, p)-Sidon set if

is finite. If Aca° (£) := sup {^^({CT}) : a e E\ is finite we call £ a local (a, p)-Sidon
set, and if x° (E) := sup{xap({a}) : a e £} is finite we call E a /oca/ central
(a, p)-Sidon set. Clearly if E consists of representations of bounded degree then the
parameter a in these definitions becomes superfluous.

We suppress E in the case E = G, and we suppress a in the case a = 1. So for
example we write £p for ^ P(G) and KP for /t^p. A subscript £ on a space of functions
will denote the subspace of functions having Fourier transform supported on E, and
a superscript z will always denote the subset of central elements.

Not surprisingly, there are many equivalent characterizations of {a, p)-Sidon sets;
we list some below.

PROPOSITION 1.3. Let G be a compact group and E c G. Let a € R, I < p < oo
and \/p + 1/p' = 1. Write x = p'(l — a/p)for p > 1 andx = a if p = 1. Then the
following are equivalent:

(i) E is (central) (a, p)-Sidon;
(ii) there is C € R such that | | /L , P < CWfW^for all f e L~(z)(G);

(iii) whenever (f> e £^p,(E) there is a (central) measure /xonG (with /x € L1 in the
case p > 1) such that^L(a) = <p(a) for all a e E and ||/X||M(O < C||0IL,P'
w/zere C /s a constant depending only on a, p and E.

PROOF. This is similar to those found in [11, 37.2] or [9, 1.2].

Pisier's work has made prominent the equivalence of Sidon and central A sets;
(a, p)-Sidon sets also satisfy a A-like property:
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PROPOSITION 1.4. Let G be a compact group, a e R and 1 < p < oo. Write
r = 2p/(3p - 2) and t = (3p - 2a)/Op -2).IfEQG is (a, p)-Sidon then there
is an absolute constant C so that

\\2s<CKa,p(E)Vs~\\f\\,,r

for all 1 < s < oo and all f e ^ ( G ) .

PROOF. This is similar to the known proof for a = 1 [4, 5.1].

We now set down some basic estimates for Sidon constants. The following in-
equality is used frequently, so for the reader's convenience we give it here:

THEOREM 1.5 ([11, D.51]). Let A e Md(Q and 1 < p < q < oo. Then

(Tr(|A|?))1/? < (Trd^lO)1^ < dxlp'xlq (Tr(|A|"))1/l?.

PROPOSITION 1.6. Let Gbea compact group and a e E c G. Then

(i) xa,P{o) = d(a)(a+1-2p) / ' ;
(ii) Ka,p(a) > d(oYa-")lp;

(iii) Ka,P(E) <
supC T € £^(CT)< 2 a p)/2p, 2<p<oo.

PROOF. For (i) consider / = Tr a, and for (ii) consider f — au (the trigonometric
polynomial obtained by fixing a basis for the representation space of o and thinking
of a as a matrix-valued function on G).

For part (iii), consider / = £f f e £d(o0Tr Aaa e S?E(G). When 1 < p < 2 we
have

oeE
1 " 2 ( 2 ) ' > / 2 (by 1.5)

< l > {d(oY^'-pY'- "'1 \\f\\r (by Holder).
*cre£

Since ||/ | |2 = | |/ | |2 < II/IU, the desired estimate for KatP(E) obtains.
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When 2 < p < oo write D = supCTe£ d(a)(la-p)'2p. Then d(a)alp < D • d(a)1/2

for each o e E, so we have

Il/Lp
p < V (D .d(oy>2(Yr\Aa\

2y<2)P (using 1.5)

< D"\\T\\2
P

and the stated estimate for Kap(E) follows.

Obviously it is easier to be an (a, p)-Sidon set as a decreases or as p increases.
More generally,

PROPOSITION 1.7. Let G be a compact group, E c G, and let 1 < p < q < oo.
Then

(i) Kbq{E) < KatP(E) whenever b < aq/p; hence {local) (a, p)-Sidon implies
(local) (b, q)-Sidon;

(ii) >cb,q(E) < xa,p(E) whenever (b + l)/q < (a + l)/p; hence central (a, p)-
Sidon implies central (b, q)-Sidon;

(iii) xgq (E) < xlp(E) if, and only if, (b + \)/q < (a + \)/p; hence local central
(a, p)-Sidon implies local central (b, q)-Sidon.

In the opposite direction we have

(iv) Kb°q(
E) 5: Ka°p(E) whenever (b + l)/q > (a + \)/p; hence local(b, q)-Sidon

implies local (a, p)-Sidon.

PROOF. These follow easily using 1.5 and 1.6(i).

For certain values of (a, p) it is easy to produce abundant examples of (local)
(central) (a, p)-Sidon sets, or else to show that there are only trivial ones.

COROLLARY 1.8. Let G be a compact group, 1 < p < oo, and e > 0. Then
(i) G is local central (a, p)-Sidonfor a < 2p — 1;
(ii) G is local (a, p)-Sidonfor a < p — 1 and p < 2;
(iii) G is (a, p)-Sidonfor a < p/2 and p > 2;
(iv) every (local) Sidon set is also a (local) (p, p)-Sidon set;
(v) every (local) central Sidon set is also a (local) central (2p — 1, p)-Sidon set;
(vi) every local central (2p — I + e, p)-Sidon set and every local (p + s, p)-Sidon

set consists of representations of bounded degree;
(vii) every infinite subset ofG contains an infinite (a, p)-Sidon subset for a < p — 1

and p < 2;
(viii) if G is a Lie group and 1 < p < 2, every local (p — 1 + e, p)-Sidon set

consists of representations of bounded degree.
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PROOF. These follow mainly from 1.6 and 1.7. For (vii) use [13,2.5] if the degrees
are bounded (in which case we obtain an infinite Sidon set), and otherwise choose a
subset with degrees growing sufficiently fast to make the sum in 1.6(iii) converge. For
(viii) imitate [8], where it is shown that sets of representations of unbounded degree
cannot be local p-Sidon for any 1 < p < 2.

The following fundamental facts often allow results for Lie groups to be carried
over to connected compact groups.

STRUCTURE THEOREM 1.9 ([15, 6.5.6]). Let G be a connected compact group and
write T for the connected component of the identity of the centre ofG. Then there exist
a group <£ = I~[,€/ Gi> where (G,),6/ is a family of almost simple, simply-connected,
compact Lie groups, and a continuous epimorphism n:T y.'S ->• G whose kernel
is a totally disconnected closed subgroup of the centre ofTx& with the property
that (ker7r) n T contains only the identity. Consequently there is also a continuous
epimorphism 0: G —>• Yltei G,/Z(G,).

PROPOSITION 1.10(see [3, 2.2]). Let <p:G ->• H be a continuous epimorphism of
compact groups. Let E c H and put E o(j> = [a otp : a e E] c. G.

Then Ka<p(E o<p)= Ka,p(E) {and similarly for Ka°p, xa,p, x°p).

We now show that G being (1, 2)-Sidon cannot be improved upon for infinite,
connected, compact groups.

PROPOSITION 1.11. Let G be an infinite, connected, compact group. Then G is not
central (p — 1, p)-Sidonfor any 1 < p < 2. Ifs\xp{d(a) : a € G} = oo then G is
not central (a,2)-Sidonfor any a > 1.

REMARK. Previously it was known that G could not be central p-Sidon for any
p < 2 [6, Corollary 7].

We require a lemma, which, as noted by Dooley, can be proved by arguments
similar to [11, 36.15], using [6, Theorem 1].

LEMMA 1.12. If G is a connected compact Lie group, then for 1 < p < 2 the set
M(CZ(G), (,*) of multipliers is isomorphic to t^p/a-p)-

PROOF OF PROPOSITION 1.11. If G is abelian the result follows from [9, The-
orem 3.1]. So we assume G is non-abelian and suppose firstly that G is a con-
nected compact Lie group. If h and / are central trigonometric polynomials then also
h * / e ^Z(G), whence

Pill ll/lloo > ||* * fWoo > — U - l l W I L p -
Xa,p(G)
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Define H e 3TZ{G) by H(a) = d(aYa-l)^ h{a). Then

so that H € M(CZ(G), I*), with operator norm at most xa,P{G)\\h\\\. Combining
this with 1.12 we can assert the existence of a constant K, depending on G and p but
independent of h, so that

By choosing h to be an appropriate bounded approximate identity we can derive the
conclusion that

K

1 >

2xa,2(G) ae5
 P

which if G is central (a, p)-Sidon is clearly impossible unless a < p — 1 in the first
case or a < 1 in the second.

In the case G is a non-abelian, connected, compact, non-Lie group, it follows
from the structure theorem 1.9 that there is an epimorphism 4>:G ^>- G' where G' is a
connected compact Lie group. It then follows from 1.10 that central (a, p)-Sidonicity
of G implies the same for G', and the result is established.

COROLLARY 1.13. Suppose G is a connected compact Lie group, and let 1 < p < 2.
Then G is (a, p)-Sidon if, and only if, G is central (a, p)-Sidon.

PROOF. The calculation in the proof of 1.11 above, together with 1.6(iii), shows
that

K ^ K

EXAMPLE 1.14. It follows from the Weyl dimension formula [ 12,24.3] and formulae
for the positive roots of SU(n + 1) [18, p. 26] that

D - V ^(2a+2-2p)/(2-p) _ K( V ^ FT / T ^ \ (2a+2-2p)/(2-p)

https://doi.org/10.1017/S1446788700000082 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000082


80 K. E. Hare and D. C. Wilson [8]

Write b = (2a + 2 - 2p)/(2 - p) and assume b < 0. Then since J^Li ™i >
ni=,-«€1/0'+1"') we obtain

min(k,n + l—k) n+l-smin(K,/i-t-i — K) n-t-i — s i

i/s*, where Sk = ^ ^ - ;

D is thus certainly finite whenever
2a + 2 - 2/7

< —1.

Now if 1 < p < 2 and s > 0 it follows from 1.6(iii) that SU(n + 1) is (p — 1 — e, /?)-
Sidon whenever 1 + 1/2 H h \/n > (2 - p)/2e\ thus the first statement of 1.11
is sharp.

2. Products of central Sidon sets

For abelian groups, examples of />-Sidon, non-Sidon sets were constructed by
taking m-fold products of dissociate sets, with p > 2m/(m + 1) (see [9, 14, 1]). As
dissociate sets are Sidon it is natural to conjecture that if £} c Gj are (central) Sidon,
then Ei x • • • x Em should be a (central) p-Sidon subset of (Gi x • • • x Gm) provided
p > 2mI{m + 1). In the case where the £} are central Sidon, we show that such
products are central (2p — 1, /?)-Sidon for p > 2m/(m + 1) and for no smaller p (so
in particular these sets are not central Sidon if m > 1), while in the case where the
Ej are Sidon, we show in Section 3 below that £1 x • • • x Em is (p — 1, p)-Sidon for
P > 2m/(m + 1).

We require ideas of Blei [1] regarding 'fractional cartesian products'.

NOTATION. Let / > K be positive integers and let N — ( j . Let G = n ,1i Gt

be a product of compact groups, and suppose Et c G, is infinite for each 1 < i < N.
Let {Pi,... , PN} be the collection of natural projections from N7 to N* (see [1,
p. 80]), endow each £, with a /f-fold enumeration £, = {y,<'>}J€N'f, and put

FJ.K _ f (i) x . . . x v w • ; e N / l c G

For example, when K = 1 we have N = J and EJl is simply Ei x • • • x EN.

THEOREM 2.1. / / £ , C G, is central Sidon for each 1 < / < N then EJK is central
( 2 / 7 - 1 , p)-Sidon if, and only if, p > 2J/(J + K).
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PROOF. We first prove sufficiency.
Let / = {n,: : i € N*} be the set of projections on TN, endowed with a ^T-fold

enumeration, and consider the set IJK <z (TN x • • • x TN) . Let

JTr 0 4

and denote by dj{k) the degree of yP%r It is useful to introduce the V*-polynomial

g(coi, ... , (oN) = ^2 djm • • • djm aj 7tPlU)(coi) • • • TIPNU){(ON)

where u> = (cou ... , coN) e J^ x • • • x TN. Choose co with \g(co)\ > jllglloo-
Since the sets Et are central Sidon sets there are central measures /z, on G, satisfying

Tr/A-(^o-)) = ^ o ) ( ^ ) 4 o ) with ||/X,||M(G) < x(£,-)- If/x = Mi x • • • x /z* is the
product measure on G, an application of Fubini's Theorem shows that

and IIMIIM(G) < x{E\) x • • • x x{EN) < x (say).

Thus
x jeMJ

> T - ll^lloo-
2x

As I1K is known to be a p-Sidon set if, and only if, p > 2J/(J + K) [1, Theorem 1.6]
the result easily follows.

Suppose now that p < 2J/(J + K). Since IJK is not /?-Sidon, given any positive
number M there is an IJK polynomial g with \\g\\oo — 1 but \\g\\p > M. Choose a
finite subset F c / with suppg" c FN.

Let D denote the closed unit ball in C, and let bj = 'g(7iplU) x • • • x 7z>w0)). For
any j € Ny with bj ^ 0 define 7z>(0) on D| F | in the obvious way: nPtU)(z) = zPkij).
(Here F has the inherited A'-fold enumeration.) Define h: D| F | x •• • x D| F | -+ C by

• nPllU)(zN).

Since /i is a polynomial in several complex variables, the maximum principle implies
that it attains its maximum at a point all of whose coordinates are of modulus one.
Thus H/ilU = Halloo = 1.

Finally, define a central EJiK-polynomial / by

j Tr ( / ' ^ C )
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Notice that f(xu ... ,xN) = h(zu ... ,zN) where the Pk(j) component of zk is
dM T rKno)fe)' so that H/lloo < 1. But

and since M was arbitrary, EJK cannot be central (2p — 1, p)-Sidon.

REMARKS. This theorem is sharp in the sense that for a > 2p — 1 the only central
(a, p)-Sidon sets consist entirely of representations of bounded degree 1.8(vi). We do
not know if, for all such sets £,, EJK is central (b, p)-Sidon for some p < 2J/(J + K)
and b < 2p — 1. It does follow easily that (using the notation of the proof)

I—J I — J J '

djm • • •dj(N)

thus EJ'K can be seen to be central (b, 1 )-Sidon for certain b < 1, provided the degrees
of the representations in EJK tend sufficiently fast to infinity.

Similar arguments to those in the theorem can be used to prove that if £, c G, are
central (a, 1)-Sidon, then EJK is central ((1 + a)p - 1, p)-Sidon for p > 2J/(J +
K). Dooley [7] has shown that the dual of every semisimple, connected, compact Lie
group contains an infinite set which is central p-Sidon for all p > 1. (In contrast, such
groups admit no infinite central Sidon sets [16].) By making the obvious modifications
to Dooley's proof, the set he constructs can also be shown to be central (a, /?)-Sidon
for all a < 2p — 1 and p > 1.

DEFINITION 2.2 ([3, 5.1], [19, 3.1]). Let G, be an almost simple, simply-connected,
compact Lie group of rank lt with fundamental weights A.1;... , kti; we identify a
representation of G, with its highest weight. We define

^,A£,}, G< of type A^;

™ D _ . ,Li), G, of type Bti or C€, (€, > 3), or Dti (I, > 5);
r !K(CrJ =

{Xuk3,X4}, G,oftypeD4;
0, otherwise.

Let G be a compact connected group, with covering epimorphism n: T x Sf —• G
as in 1.9. Write 7r,:5f —> G, for the canonical projection. We define the Figa-
Talamanca-Rider set ofG by

FTR(r x &) = 1 x FTR(^);

FTR(G) on = (GO7T)DFTR(T X
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Note that /c(FTR(G)) < /c(FTR(^)) < 32 ([19, 3.4]); that is, FTR sets are Sidon.

COROLLARY 2.3. Let G — Y[^=\ Gi> where each G, is a product of infinitely many
almost simple, simply-connected, compact Lie groups. Let £, = FTR(G,), 1 < i <
N. Then Exx---xENis central ( 2 / 7 - 1 , p)-Sidon if, and only if, p > 2N/(N + 1).

3. Products of Sidon sets

DEFINITION 3.1. Let G be a compact group and 2 < p < oo. A subset E of G
is called a A(p) set if there is a constant r\p such that | | / | | p < f/pll/lh whenever
/ € SE{G). Local and central A(p) sets are defined in the obvious way.

THEOREM 3.2. Let^ = J~[,e/ G, where (G()1€/ is a family of almost simple, simply-
connected, compact Lie groups, and let m e Z+. Let E c \\l€l FTR(G,) consist of
those representations having at most m non-trivial components. Then E is A(2s)for
alls <=Z+.

REMARK. A similar result, for G, of type Ati only, was given in [10, 4.8]; it is
required in the proof below.

PROOF. In view of [10, 4.4] and [16, Theorem 5] we need only prove that E is
local A(2s). Further, without loss of generality we may suppose FTR(G,) ^ 0 for
each i e / . Write dc for the common degree of all elements of FTR(G(), and put
^ = FL/ SU(dt).

Let a e E, and let {t e / : a 1} = { 1 , . . . ,m}. Consider f{x) =
c,

d Tr (ACTI(*I) <g> • • • ® am(xm)) € £?{„)(&), where we write d — dx x • • • x dm. For
each co = (CD,)^/ € ^ define

F(w,x) = rf Tr (A a>i ® • • • <g> G>m a!(jt)(8)---<8)CTm(jc)).

Since {1} U FTR(Gj) is a Sidon set with Sidon constant at most K = K({1] U
< oo, for each co e ^ there are measures /x]M) on G; with ||M;

(a))|| < K,

\\) = 1 and / i f ' (a , ) = a>; for ; = 1 , . . . , m.
Consider the measure iia on <£ defined by

/ g(x) dnm = [ ••• [ g
Jy JGm JG,

(xu...,xj

Clearly H/zJI < Km and as ixa is a product measure it is easy to prove that

JU^(CT! X • • • X Om) = CO* <S) • • • ® CD*m.
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Let fw(x) = F(co,x). Comparing Fourier transforms we see that fa* /xw = f. Thus

lo)»2s

fo r a l l co € <&. H e n c e

15 < II f II ^ IIU II ^ < II f II 2s K2""

= f Wfl^dco^K^ I ( f \F(co,x)\*dco)dx.

If gx(co) = F(o),x) and ni denotes the self-representation of SU(dt), then we can
write

gx{(£>) = d Tr (a(x) A (nx x • • • x 7Tm)(u))).

Since ([10,4.8]) {7r,, x • • • x nLm :{iu... , im} c / } <z%\sa A(2s) set with constant

r) = r)(m), we have

using the fact that o{x) = ax{xx) ® • • • ® om{xm) is a unitary matrix. We conclude
that

WfWis < (K251" J rf(d Tr\A\2)s

which proves the theorem.

THEOREM 3.3. Let $ = f]"=i %> where each % is a product of almost simple,
simply-connected, compact Lie groups, andlet £, =FTR(^) . ThenE = £ , x - - x £ B

is (p — 1, p)-Sidonfor p = 2n/(n + 1). In fact, there isO < K < oo such that

for any f = J2a€Ed(o)TrAao- e

REMARKS. These sets are known to not be Sidon if at least two of the FTR(^) are
infinite [3, 5.4.2]. ,

The proof of the theorem follows a method similar to that used in [2, Chapter 1]
for the abelian case.

That E is (p — 1, /7)-Sidon follows directly from (*„) together with

LEMMA 3.4. Let A = (Au) bead xd matrix. Then for any 1 < p < 2

d
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[13] Weighted p-Sidon sets 85

PROOF. Obviously this is true for p = 2. The case p — 1 is straightforward if A is
assumed to be normal, and extends easily to arbitrary A using the triangle inequality
and noting that A ± A* are normal. By the Riesz-Thorin interpolation theorem and
the interpolation theorem for the Schatten p-classes [21, p. 31] the inequality holds
for 1 < p < 2.

PROOF OF THEOREM. We prove (*„) by induction on n: consider n = 1 = p. We
know

an easy calculation shows that for any d x d matrix A

It follows that

which is (*i).
Assume the result for (*n_i). We first obtain two preliminary lower bounds for

lloo.
Write

.. ,xn)=

hji

and label the entries of Aa as {Aa)'•. in accordance with the tensor product multi-
plication. We write dk = d(ok), and always assume that 1 < ik, jk < dk, 1 < k < n.
In what follows K will denote a constant which may vary from line to line.

LEMMA 3.5. We have

oo>K

l<*<n-'l

https://doi.org/10.1017/S1446788700000082 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000082


86 K. E. Hare and D. C. Wilson

LEMMA 3.6. We have

[14]

Once the two lemmas are proved, the theorem is obtained as follows:

' " • ' ' l

»; ik,jt

1

(by Holder with (n + !)/(« - 1) and (« + l)/2)

B/(n+l)

E
itjk

1

(by Holder with (n + \)/n and n + 1)

\ ^ d\ • • • dn-\\{Aa)'•.

in, in \<k<n-\

(by 3.5 and Minkowski's inequality). Now apply 3.6 and note that when p
2n/(n + 1) we have p — 1 = (« — l)/(« + 1) so this proves (*„).

It remains to prove the two lemmas.
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PROOF OF LEMMA 3.5. Expanding out the matrix multiplication, we find that

/Oi, ... ,xn) = ]P d
ak€Ek; ik,jk

\<k<n-\

<*„_,( £ dn(Aaf-\ (an(xn)).\

in, h

If we denote by fi = B(CTI . . . , cr,,_i; *„) the matrix whose iju ... , in-Jn-i entry is

then we can write

i xn) =

Applying the induction hypothesis (*n_i) we see that

"-"/" = sup (̂  sup \f(xu... ,xn)\j

k k
\<k<n-\

ik,jk
l<lc<n-\

E )
kjk n »

\<k<n-\ !„,;„

Now writing COn = Cail(au ..., on_u iju . . . , /„_,;„_[) for the matrix whose injn

entry is (A,,)"'-! the innermost sum becomes Y^^eE, dnT^(Cancrn(xn)). Because

fn) is a A"(2s) set for all 5 e Z+ it follows that

2(«-l)/«
oo

k; ik,jk

1

TrCaan{xn)

> K

Since Tr | Q |2 = $].•„;„ I ( Q )'•.;, I 2 . m i s completes the proof of 3.5.

PROOF OF LEMMA 3.6. Let Ban = BOn(xi,... , xn_i) denote the matrix whose injn

entry is

\<k<n-l

y'-1. (a, Cxi)),i;. • • • (o«-i ( ^ - I ) ) , - . _lA _,;
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then f(xu . . . ,xn) = E f f . e ^ d»Tr {Bo*°n(xn)). As En is Sidon, we obtain

ll/lloo>A: sup
' A-

>K sup Y. \(B"Xj.\-

xu...,xn-, arieEn;

Since 3.2 i^ x • • • x £„_! is A(2s), it follows that

ll/llc

1/2

±KT, f •••[ £

which completes the proof.

4. w-fold FTR sets need not be central (a, /?)-Sidon

In [10, §4] it was shown that m-fold FTR sets are central A(p) for all p > 2,
and partial w-fold FTR sets are A(p) for all /7 > 2. We show now that, unlike the
examples of Section 2, these sets need not be central (2/? — 1, p)-Sidon if m > 1,
nor central (a, 2m/(m + 1))-Sidon for any a > 1. In contrast to the previous section,
where products of representations across different factors of a product group were
considered, here we consider products within the separate factors.

Throughout this section, let Ge denote SU(l + 1) and A.i,... , ke the fundamental
weights. We write Xo = ki+l = 0 and identify representations of Gt with their highest
weights. For m < € we write

E"l = {(m - k)ki +kk:l <k <m}.

Observe that £At and Xk both occur in k\ for 1 < k < m: hence (m — k)kt + kk occurs
in k™~k <g> k\ = A™ for 1 <k <m and it follows that

£7 c {k G Ge : k < k™}.

Thus E™ is a subset of the w-fold FTR set of Gt.

PROPOSITION 4.1. Letm e Z+. Then for any £ > m there is a central trigonometric
polynomial f on Gt, with m non-zero terms, coefficients ± 1 , and ||/||<» = ^ + 1-
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PROOF. Consider

we must show ||/||oo = (• + 1- Now for k < m we have [20, §79 Example 3]

(m - k)kx <8> kk = ((m - k)kx + A,) © ((« - k - \)kx + kk+l),

so that

Tr((m - Jfc)A.i)Tr(A.t) = Tr((m - k)kx + kk) + Tr((m-k-

or

Tr((m - t)Xi + h) = Tr((m - t)A.,)Tr(Xt) - Tr ((m - * -

Applying this recursively we obtain

m—k

Tr ((/« - t)^! + kk) = £ ] ( - i y Tr ((m - k - j)^) Tr(kk+j)

whence
m

(1) / = ^](
Let x = diag(*i,... , xt+i) € Ge, and note that the diagonal elements of Gt form a
maximal torus. Then [20, §79 Example 5, §75]

e+\ e+i

(2) f[(l+Jo-0

Differentiating (2) with respect to t gives

M-l <+l

(4) (fid +^)) ETTTT =
\ = 1 ; = 1 l+XJ' y=l

using (3) and evaluating (4) at —f we obtain
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Equating coefficients of tm~x and using (1) we find

e+i m

(5) Y,x? = J](-l)*"^Tr ({m - k)Xx)(x)lr{Xk){x) = /(*).

Since / is central and all elements of Ge are conjugate to an element of the torus, /
assumes its maximum on the torus and we have \\f\\oo = l- + l.

REMARK. We thank D. Z. Djokovic for showing us how to prove equation (5)
above.

We require next an estimate for the degrees of representations belonging to the
m-fold FTR set of Ge.

PROPOSITION 4.2. Letk — Y!j=\ msh e Gt. Write

[1/2] I

and suppose that m < 1/2. Then d(k) >

PROOF. The positive roots are given by pki = J2'j=k a y ^ - * - '' - »̂ t^> P-
so by the Weyl dimension formula [12, 24.3] we have d(k) = n*=i /°*» where we
write pk = nL(A. + S, ft,)/(<5, pki)- Write /i = £ j ^ ] nijkj and let v = A - \i. Let
ô denote the largest index j < 1/2 for which nij ^ 0, and ^i denote the smallest

index j > 1/2 for which ms ^ 0. Thus /x = 5Z*Li mj^j an<i v = 5Z;=t, mj^-j-
Suppose first that v = 0, so that m = X^Li Jmj- Now d(/x) = f]f=i /°t>

1 + mj 2 + mk + mk+l 3 + mk + mk+x + mk+2
pk = x x x • • •

1 2 3

i=k x x
ko + l-k ko + 2-k i + l-k

Since k0 + 1 - k + Yl%k mj <l-k + 2 Ylf=k Jmj < ^ + 1 - *, there is cancellation
in the above expression for pk, and the numerator reduces to

(I + 2 - k) x • • • x U + \ - k +
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There are a corresponding Yl'jLk mi factors remaining in the denominator, the largest

of which could be k0 — k + Y^=k mh which is certainly at most

*o k-\ *0

y~\y + 1 — k)nij < m — Y^ T ^ TO;

j=k t=\ j=i

and so the denominator of pk is at most

( A—1 *o \ / k ko \

TO - > > TO, I X • • • X I TO + 1 - > > TO, I .

,=i ;=; / \ ,=i ;=,- /

It follows that the denominator of ["^li Pk is at most TO!. Since the smallest factor
remaining in the numerator of pk is I + 2 — k, and the number of terms in the
numerator of YtkLi Pk is Xl*°=i ZwLi mj = m> *he numerator of n*=i Pk is a t l e a s t

(t + l)!/(£ + 1 — TO)!, and so d(fi) > (€^')-
\f fi = 0, then since d(v) = d(y), we obtain d(v) > ( ^ ' ) by the same argument.
Suppose finally that neither /x nor v is zero, and write /x' for /x considered as a

representation in Gt |_[, and v' for v considered as a representation in Gf_to. Let
TO' = J^Lj _/TO; and TO" = TO — TO'. Then TO" = $2;=*, (^ + 1 — 7)"iy > £ + 1 - A:, so
we have

TO' < £/2 - TO" < ^ - ! - + *' ~ l ~ ^ < ^ Z l
and the first part of the proof yields d(fi') > (^',). Similarly, since TO' > ^0 we obtain

TO" < (€ - Ab)/2 and hence d(v') > (£"*:+1). "
Now observe that for k0 < k < i < ki v/e have (A, pki) = 0, so that

d ( X ) = 1 1 ix ft \ X 1 1 ix ft v X

> d(/i') x d(v') x 1

TO"

to show this exceeds ( l*1 „) it suffices to prove

/t, x (ki - 1) x • • • x (ki + 1 - TO') (£ + 1) x I x (£ - 1) x • • • x (I + 2 - TO')

1 X 2 X • • • X TO' ~ (TO" + 1) x (TO" + 2) x • • • x (TO" + TO')

we show

ki + l-m' + j t + 2 - TO' + j
FT/ - TO" + 1 +
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for j > 0. Since mkl ^ 0 and we have m" > £+1 -ku it follows that kx+2+m" -m' >
£+3-m'; ahoki+l-m' > lsincew' < (>t] —1)/2,givingm"{k] + \-m') > l+\-kx.

Thus (m" + l)(/fc, + 1 - m') > £ + 2 - rri and, for j > 0,

that is,
(m" + 1 + y)(*, + 1 - m' + 7) > {t + 2 - m1 + j){\ + j),

as required.

REMARK. The bound is sharp: consider d(Xj).

COROLLARY 4.3. Fixm el+. Let& = r]£>i Ge,andletE = \Je>2m ET
where nt: <$ —> Gt denotes the canonical projection.

Then xa,p(E) < 00 only if p > (a + \)m/(m + 1).

PROOF. Let I > 2m and let / be the polynomial considered in 4.1. Then 4.2 gives

U\\a
p
p = 5>((m -*)*,+A,)"1"' > m

whence there is a constant C depending only on m and p so that

Since I is unbounded, the result follows.

REMARK. The set £ is a subset of a partial w-fold FTR set of <S with the property
that each representation in E is supported by a single factor of the product group.

5. Characterization of (/?, /?)-Sidon sets

Somewhat surprisingly, for connected compact groups the concept of (p, p)-
Sidonicity essentially coincides with the classical concept of Sidonicity. This comes
about because local (p, p)-Sidon sets on product groups have the same kind of struc-
ture as exhibited for local Sidon sets in [3, 5.5].

PROPOSITION 5.1. Let <£ = Y[tel Gt be a product of compact groups G,.
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(i) Let Et c G, and write JT,:^ -> G, /or f/ze canonical projection. Then
E = U(e/ Eton, is (a, p)-Sidon if, and only if, supI€/ Ka^p(EL) < oo. (Indeed,

(ii) Lef a = (cr()ie/ e Sf. Then Ka,p(a) > n , e / Ka

PROOF. For (i), mimic the proof of [3, 5.2]; (ii) is [3, 5.4.1].

Adapting [19,7.5], and noting in particular that for B as in [19,7.5], | B | has exactly
one non-zero entry, so that (Tr | B |p) p = Tr | B |, we obtain

PROPOSITION 5.2. Let G and H be compact groups, a e E c G and x e E' c H.
Then

Using 1.4 and following the argument of [3, 4.2] yields

PROPOSITION 5.3. Let G be an almost simple, connected, compact Lie group. Let
a € G and write M{q)for the number of positive roots having non-zero inner product
with the highest weight of a. Then there is an absolute constant C > 0 such that for
any 0 < e < 1/2 we have

S d(CT)(2
Ka'p{0) ~ C M(fY

PROPOSITION 5.4. Lef ^ be a product of almost simple, simply-connected, compact
Lie groups. Then E c £f is local (p, p)-Sidon if, and only if, E is local Sidon.

PROOF. By 1.7(i) we have Kp°p(E) < /c°(£), so suppose E is local (p, p)-Sidon.
Observe that the estimate for KPiP(a) afforded by 5.3 is independent of p, and es-
sentially the same as [3, 4.2]. Consequently the conclusions of [3, Proposition 4.3,
4.4] hold for KP_P. The estimates for KPIP provided by 1.6(ii), 5.1(ii) and 5.2 are
identical to those for K used in [3, 5.5], and so the same argument shows that if
<g = I~[(€/ G, then there is a partition / = /, U I2 U /3 of / and a subset E2 c %
(where Ŝ  = \\l£l G,, j — 1, 2, 3) of representations of bounded degree such that
E c {1} x E2 x ({1} U FTR(^3)). Hence [3, 5.5] E is local Sidon.

COROLLARY 5.5. Let G be a connected compact group. Then E c G is local
(p, p)-Sidon if, and only if, E is local Sidon.

PROOF. In view of 1.10, we may suppose that G is its own covering group: G =
T x y where T is compact, connected and abelian, and & is as in 5.4. Moreover, in
view of 1.7(i) we need only consider the case of E c G local (p, p)-Sidon.
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Write E = \Jx€f X x Ex, and observe that Ka>(? (x x a) = Aca,,(o-), so that K°q(E) =
Ka,q(

E') w h e r e £ ' = U*ef £ * ^ ^- Thus £ ' i s l o c a l (/>. P)-Sidon, hence local Sidon
by 5.4, and it follows that E is also local Sidon.

Combining this with [3, 6.2] yields our final result:

THEOREM 5.6. Let G be a connected, compact group. Then the following are
equivalent:

(i) G admits an infinite Sidon set;
(ii) G admits an infinite local Sidon set;

(iii) G admits an infinite (p, p)-Sidon set;
(iv) G admits an infinite local (p, p)-Sidon set.

Structural criteria for a compact group G to admit infinite Sidon sets are described
in [3, §6] and [19, §5].
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