Eventually positive matrices with rational eigenvectors[†]

DAVID HANDELMAN[‡]

Department of Mathematics, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada

(Received 20 January 1986 and revised 16 June 1986)

Abstract. Let A be an $n \times n$ real matrix; sufficient conditions were previously worked out, assuming non-commensurability of eigenvectors, for A to be $SL(n, \mathbb{Z})$ -conjugate to a matrix all sufficiently large powers of which have strictly positive entries. We show that when the 'large' eigenvectors are commensurable and satisfy the obvious necessary conditions, then A is also going to be so conjugate. In particular, we deduce, if A is a rational matrix with large eigenvalue exceeding 1 and of multiplicity one, then A is algebraically shift equivalent to an eventually positive matrix, using only integer rectangular matrices.

Let B be an $n \times n$ matrix with real entries. We will consider the following question, much of which was solved in [H, theorem 2.2]: Decide when there exists P in $SL(n, \mathbb{Z})$ so that all sufficiently large powers of PBP^{-1} have all of their entries strictly positive. By the Perron theorem (applied to powers of PBP^{-1}), there must be a real eigenvalue $\lambda_B > 0$ of multiplicity one such that $\lambda_B > |\lambda|$ for all other eigenvalues λ of B. If this is the case, λ_B is called the weak Perron eigenvalue of B. Let v_B , w_B be non-zero choices for the left, right eigenvectors, respectively, of B corresponding to λ_B . In [H, 2.2], it was shown that if either w_B or v_B contains an irrational ratio among its entries, then the desired P exists. This leaves the case that all the entries of w_B and v_B be commensurable. Then another condition intervenes, as was mentioned briefly in [H, p. 61].

Assume B has a weak Perron eigenvalue, and v_B , w_B have no irrational ratios. Then by multiplying each one by a suitable non-zero real number, we may assume v_B , w_B have only integer entries; by dividing by the appropriate integers we may assume each is unimodular (i.e. the greatest common divisor of the entries is 1). Noticing that the scalar product $v_B \cdot w_B$ is invariant with respect to $v_B \rightarrow v_B P^{-1}$, $w_B \rightarrow Pw_B$ (the corresponding eigenvectors for PBP^{-1} , hence for its powers), a necessary additional condition is $|v_B \cdot w_B| \ge n$.

We prove as conjectured in [H] that this is sufficient for the desired P to exist. Moreover, if $|v_Bw_B| < n$ and $\lambda_B > 1$, we show how to enlarge B to an $(n+k) \times (n+k)$

[†] This, with minor modifications, was originally part of a manuscript 'Strongly indecomposable abelian groups and totally ordered topological Markov chains', written in 1981.

[‡] The author was supported in part by an operating grant from NSERC (Canada).

matrix B' algebraically shift equivalent to B so that B' is conjugate (via $SL(n+k, \mathbb{Z})$) to an ultimately positive matrix. Here k is the smallest integer such that $|vw|\lambda_B^k \ge n+k$.

In particular, if B is in $M_n\mathbb{Z}$ (integer entries), then the only case not covered by [H, 2.2] occurs when λ_B is an integer (as a rational algebraic integer is an integer).

Returning to our first result, let v_B , w_B be a unimodular row and column respectively, with integer entries, such that $|v_B \cdot w_B| \ge n$. By replacing v_B by $-v_B$ if necessary, we may assume $v_B \cdot w_B \ge n$. By [H, 2.1] it is sufficient to find P in SL (n, \mathbb{Z}) such that $v_B P^{-1}$, Pw_B are strictly positive.

(1.1) LEMMA. Let $v \in \mathbb{Z}^{1 \times n}$, $w \in \mathbb{Z}^{n \times 1}$ be unimodular with $vw \ge n$. Then there exists P in SL (n, \mathbb{Z}) with

$$vP^{-1} = (1, 1, \dots, 1) Pw = (m', 1, \dots, 1)^T$$
 if $n \ge 3$

and

$$\left. \begin{array}{c} vP^{-1} = (1, 1) \\ Pw > (0, 0)^T \end{array} \right\} \qquad if \ n = 2,$$

where m' + n - 1 = vw.

Set $A_2 = I_1 \oplus B$

Proof. We repeatedly use the following result and its transpose: if

$$\begin{array}{l} x = (z_1 \ z_2 \cdots z_r) \\ x' = (z_1' \ z_2' \cdots z_r') \in \mathbb{Z}^{1 \times r} \quad \text{and} \quad \gcd \{z_i\} = \gcd \{z_i'\}, \end{array}$$

then there exists Q in $GL(r, \mathbb{Z})$ with xQ = x'.

There thus exists A_1 in $GL(n, \mathbb{Z})$ so that $vA_1 = (1 \ 0 \ \cdots \ 0)$ and then $A_1^{-1}w = (m \ r_1 \ r_2 \ \cdots \ r_{n-1})^T$, with $vw = m \ge n$. Set $k = \gcd\{r_i\}$; then (m, k) = 1, so there exist positive integers a, b with $ak - bm = \pm 1$. Suppose $n \ge 3$. Then there exists $B \in GL(n-1, \mathbb{Z})$ such that

$$B(r_1 \ r_2 \ \cdots \ r_{n-1})^T = (k \ ak \ 0 \ 0 \ \cdots \ 0)^T \in \mathbb{Z}^{(n-1)\times 1}.$$

⁻¹, so that $vA_1A_2 = (1 \ 0 \ \cdots \ 0)$ and

$$(A_1A_2)^{-1}w = (m \quad k \quad ak \quad 0 \quad \cdots \quad 0)^T.$$

The operation of subtracting multiples of the first entry (of the column) from the third is elementary and its inverse leaves vA_1A_2 fixed; hence we obtain

$$v \to (1, 0, 0, \dots, 0),$$

 $w \to (m, k, \pm 1, 0, \dots, 0)^T$

There exists C in $GL(n-1,\mathbb{Z})$ such that $C(k,\pm 1,0,\ldots,0)^T = (1,1,\ldots,1)^T$; this yields a transformation to

$$(1, 0, \ldots, 0, 0)$$

 $(m, 1, 1, \ldots, 1)^{T^{\frac{1}{2}}}$

subtract each column entry after the first, from the first entry; the inverse operations add one to each of the zeros; this final transformation yields

$$v \rightarrow (1, 1, 1, \dots, 1)$$

 $w \rightarrow (m - n + 1, 1, 1, \dots, 1)^{T}$

Transposing a pair of positions having only ones, has the effect of multiplying the determinant of the implementing matrix by -1; so we can find a matrix in $SL(n, \mathbb{Z})$ to implement the transformation.

Now consider the case n = 2; we have

$$v \to (1 \ 0)$$
$$w \to (m \ k)^T$$

If m = k, w being unimodular entails m = 1, a contradiction to $|vw| \ge 2$. If m < k, subtract as many copies of m from k as will leave a positive remainder; this yields $(1 \ 0), (m \ k')^T$ with k' < m (since (m, k) = 1). So we may assume k < m. Now subtract the k term from m; the inverse operation adds the 1 of the row to the second entry. We thus obtain

$$v \to (1 \ 1)$$

$$w \to (m - k, k)^T.$$

(1.2) THEOREM. Let B in $M_n \mathbb{R}$ have a weak Perron eigenvalue $\lambda > 0$. Then there exists P in SL(n, \mathbb{Z}) such that all sufficiently large powers of PBP⁻¹ are strictly positive if and only if either:

(i) one of the ratios of entries in either v_B or w_B is irrational;

(ii) all of the entries in each of v_B , w_B are commensurable and when made into unimodular elements of $\mathbb{Z}^{1\times n}$, $\mathbb{Z}^{n\times 1}$ respectively, satisfy $|v_Bw_B| \ge n$.

Proof. Everything, except the 'if (ii)' result is in [H, 2.2]. Assume (ii); by the previous result, there exists P in SL (n, \mathbb{Z}) so that vP^{-1} and Pw are simultaneously strictly positive. By [H, 2.1] and its proof, all sufficiently high powers of $P^{-1}AP$ are strictly positive.

(1.3) COROLLARY. Let A belong to $M_n\mathbb{Z}$. Then there exists P in SL (n, \mathbb{Z}) (equivalently in GL (n, \mathbb{Z})) so that for all sufficiently large k, $P^{-1}A^kP$ consists of strictly positive entries if and only if A admits a positive real eigenvalue λ of multiplicity one, exceeding $|\alpha|$ for all other eigenvalues α and either:

(i) $\lambda \notin \mathbb{Z}$;

(ii) $\lambda \in \mathbb{Z}$ and if v, w are left, right eigenvectors of A corresponding to λ , normalized so that both are unimodular, then $|vw| \ge n$.

An algebraic (strong) shift equivalence between A in $M_T \mathbb{R}$ and B in $M_i \mathbb{R}$ is a sequence of rectangular matrices X_i , Y_i of the appropriate dimensions so that

$$A = X_1 Y_1, \quad Y_1 X_1 = X_2 Y_2, \quad Y_2 X_2 = X_3 Y_3, \ldots, Y_s X_s = B.$$

In the case where the X_i 's and Y_i 's admit only integer entries, we say that the algebraic shift equivalence is implementable over the integers.

(1.4) THEOREM. Let A in $M_n \mathbb{R}$ have a weak Perron eigenvalue $\lambda \equiv \lambda_A$ whose corresponding left and right eigenvectors v_A , w_A have no irrational ratios among their entries, and when put in unimodular form, $|v_A w_A| = m$ in \mathbb{N}^+ . Suppose $\lambda > 1$. Then there exists A' in $M_{n+k}\mathbb{R}$ that is eventually strictly positive and algebraically shift equivalent to A over the integers, and with k any integer such that $\lambda^k \ge n+k$. In particular, there exists

a power of A which is algebraically strongly shift equivalent over \mathbb{Z} (with lag 1) to an A'' in $M_{n+1}\mathbb{R}$ that is eventually strictly positive.

Remark. If $\lambda \le 1$, A may be replaced by a scalar multiple of itself.

Proof. First we observe that $vw \neq 0$; the proof of this in [H, 2.2] remains valid here. We may assume vw > 0, by multiplying v or w by -1 if necessary.

Write $w^T = (w_1, w_2, ..., w_n)$; as w is unimodular, we may find integers $r_1, ..., r_n$ so that $\sum r_i w_i = 1$. Define a square matrix, A_1 , of size n + 1 by adjoining at the bottom of A, a new row $k = (r_1, ..., r_n, 0)$ (set $k' = (r_1, ..., r_n)$), and the column $(0, ..., 0)^T$ to the right; this yields a matrix A_1 . Setting

$$X = (I_n \quad 0) \in \mathbb{Z}^{n \times (n+1)}, \qquad Y = \begin{pmatrix} A \\ k' \end{pmatrix} \in \mathbb{Z}^{(n+1) \times n},$$

we have XY = A, $YX = A_1$. In particular, A is algebraically shift equivalent to A_1 , and the latter has λ as its large eigenvalue.

Define the row of size n+1, $v' = (v \ 0)$, and the column $w' = (w \ w_{n+1})^T$, where w_{n+1} is a real number to be determined so that w' is a right eigenvector for A_1 . Clearly $v'A_1 = \lambda v'$; on the other hand, $A_1w' = \lambda w'$ occurs precisely when $\lambda w_{n+1} = 1$. To make w' integral, we must multiply by λ ; then $w'' = \lambda w'$ will be unimodular.

As v'w' = vw, we see that $v'w'' = \lambda vw$. This process, of adding a row and column, may be repeated to a total of k times until $\lambda^k vw \ge n + k$. Then A_k (in $M_{n+k}\mathbb{Z}$) satisfies the conditions of (1.1) and the first result follows.

Replacing A by A' (r chosen so that $\lambda' m \ge n+1$) allows us to require only <u>one</u> application of this process.

REFERENCE

[H] D. Handelman. Positive integral matrices and C* algebras affiliated to topological Markov Chains. J. Operator Theory 6 (1981), 55-74.