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Only infrequently is it possible to subject the manifold phenomena of life to
simple and strict forms of mathematical treatment without forcing the data
and encountering contradiction, probably never without a certain abandonment
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of the immense multiplicity of details to which those phenomena owe their
aesthetic attractiveness. Nevertheless, however, it has often proved to be possible
and useful to establish, for wide fields of biological processes and organic
arrangements, comparatively simple mathematical formulas which, though they
are probably not applicable with absolute accuracy, nevertheless simulate to
a certain approximation a large number of phenomena. Such representations
not only offer preliminary orientation in a field that at first seems completely
incomprehensible, but they also often direct research into a correct course, in as
much as first an insight into those fundamental formulations is sought, and then
the deviations from their strict validity, which become apparent here and there, are
made the subject of special investigations. Among the fields of physiology which
have permitted the establishment of such guiding formulas the theory of visual
sensations and of color mixture assumes a particularly distinguished position.
(von Kries, 1902)

1.1 Introduction

Vision research has many purposes. Medical investigators aim to diagnose
and repair visual disorders ranging from optical focus to retinal dysfunction to
cortical lesions. Psychologists aim to identify and quantify the systematic rules
of perception, including models of visual sensitivity, image quality, and the laws
that predict percepts such as brightness, color, motion, size, and depth. Systems
neuroscientists seek to relate visual experience and performance to the neural
signals in the visual pathways, and computational investigators seek principles and
models of perceptual and neural processes. Image systems engineers ask how to
design sensors and processing to provide effective artificial vision systems.

Vision science draws upon findings from many fields, including biology,
computer science, electrical engineering, neuroscience, psychology, and physics.
Clear communication among people trained in different disciplines is not always
straightforward. One of the ways that vision science has flourished is by using the
language of mathematics to communicate core ideas. Vision science uses many
types of mathematics; here we describe methods that have been used for many
decades. These are certain linear methods, descriptions of noise distributions,
and Bayesian inference. Many other linear methods (e.g., principal components,
Fourier and Gabor bases, and independent components analysis) and nonlinear
methods (e.g., linear–nonlinear cascades, normalization, information theory, and
neural networks) can be found throughout the vision science literature. For this
chapter, we focus on a few core mathematical methods and the complementary
role of computation.

Physics – the field that quantifies the input to the visual system – provides
mathematical representations of the light signal and definitions of physical units.
The field of physiological optics quantifies the optical and biological properties
of the lens. These properties are summarized as a mathematical transformation
that maps the physical stimulus to the image focused on the retina, generally
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referred to as the retinal image. At each retinal location the image is characterized
as the spectral irradiance (power per unit area as a function of wavelength).
Retinal anatomy and electrophysiology identify the properties of the rod and cone
photoreceptors, enabling us to calculate the photopigment excitations from the
retinal image using linear algebraic methods.

Perhaps the most famous use of mathematics in vision science is at the
intersection of physics and psychology: the laws of color matching formalize the
relationship between the physics of light and certain aspects of color appearance.
The mathematical principles of color matching are also deeply connected to
Thomas Young’s biological insight that there are only three types of cone
photopigment (Young, 1802). This insight implies a low-dimensional biological
encoding of the high-dimensional spectral light. The linear algebraic techniques
used to describe the laws of color matching were developed by the mathematician
Hermann Grassmann. Indeed, he developed vector spaces in part for this purpose
(Grassmann, 1853). The mathematics he introduced remains central to color
imaging technologies and throughout science and engineering.

While acknowledging the importance of mathematical foundations, it is also
important to recognize that there is much to be gained by building compu-
tational methods that account for specific system properties. The added value
of computations is clear in many different fields, not just vision science. The
laws of gravity are simple, but predicting the tides at a particular location on
earth is not done via analytic application of Newton’s formulas. Similarly, that
color vision is three-dimensional is a profound principle, yet precise stimulus
control requires accounting for many factors, such as variations of the inert
pigments across the retinal surface (CIE, 2007; Whitehead, Mares, & Danis,
2006) and the wavelength-dependent blur of chromatic aberration (Marimont &
Wandell, 1994). The mathematical principles guide, but we need detailed com-
putations to predict precisely how color matches vary from central to peripheral
vision.

We hope this chapter helps the reader value principles expressed by equations
and computations embodied in software. Establishing the principles first provides
a foundation for implementing accurate computations. Historically, our knowledge
about vision has been built up by developing principles, testing them against
experiments, and combining them with computation; this remains a useful and
important approach. Indeed, we believe the goal of vision science includes not only
producing models that account for performance and enable engineering advances,
but also leveraging those models to extract new principles that help us think about
how visual circuits work.

There are competing views: some would argue that large data sets combined
with analyses using machine learning provide the best way forward to under-
standing, and recent years have seen impressive engineering advances achieved
with this approach (D. D. Cox & Dean, 2014). We are certainly interested in
the performance of such models as a point of departure, but here we emphasize
principles and data-guided computational implementations of these principles.
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This chapter begins by describing the representation of the visual stimulus,
and how light rays in the scene pass through the optics of the eye and
arrive at the retina. Next, we explain how the retinal photoreceptors (a)
transform the retinal spectral irradiance into photoreceptor excitations, and (b)
spatially sample the retinal image. Each of these steps can be expressed by a
crisp mathematical formulation. To describe the real system with quantitative
precision, we implemented software that models specific features of the
scene, optics, and retina (ISETBio; Cottaris et al., 2019, 2020; https://github
.com/isetbio/isetbio/wiki), and we illustrate the use of these models in several
examples.

The frontiers of vision science use mathematics to understand visual percepts,
which provide a useful basis for thought and action. The information provided
by light-driven photopigment excitations is used to create these percepts, but
knowledge of the excitations alone falls far short of describing visual perception.
The brain makes inferences about the external world from the retinal encoding
of light, and throughout the history of vision science many investigators have
suggested that the role of neural computation is to implement the principles that
underlie these inferences. This point was emphasized as early as Helmholtz, who
wrote:

The general rule determining the ideas of vision that are formed whenever an
impression is made on the eye, is that such objects are always imagined as being
present in the field of vision as would have to be there in order to produce the same
impression on the nervous mechanism. (Helmholtz, 1866; English translation
Helmholtz, 1896)

Within psychology this idea is called unconscious inference, a phrase that
emphasizes that we are not aware of the neural processes that produce our
conscious experience, an idea that was important to Helmholtz. Perhaps more
important in this context is the principle that the percepts represent critical
properties of external objects in the field of view, such as depth, reflectance, shape,
and motion.

The mathematics of perceptual inference can take many forms, and in common
scientific practice the mathematics of inference depend on what is known about
the input signal. If the scene properties are not uniquely determined by the sensory
measurements, such as when only three spectral classes of cones sample the
spectral irradiance of the retinal image, probabilistic reasoning about the likely
state of the world is inevitable. In vision science, linear methods combined
with the mathematical tools of probabilistic inference are commonly used to
understand how the brain interprets the mosaic of photoreceptor excitations to
see objects, depth, and color. In the final part of this chapter we close the
loop between sensory measurements and perceptual inference by introducing the
mathematics of such inferences, focusing on two specific examples relevant to the
study of the initial visual encoding. The principles we introduce, however, apply
generally.
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1.2 Scene to Retinal Image

1.2.1 Light Field

Light is the most important visual stimulus.1 The word light means the electromag-
netic radiation that is visible to the human eye.2 The mathematical representation
of light has been developed over many centuries through a series of famous
experiments, and these experiments provide several different ways to think about
light. Many properties of how light is encoded by the eye can be understood by
treating light as comprising rays of many different wavelengths.

In a passage in his 1509 notebook (Da Vinci, 1970), Leonardo da Vinci noted
that an illuminated scene is filled with rays that travel in all directions.3 As
evidence, he described a pinhole camera (camera obscura) made by placing a small
hole in a wall of a windowless room (Figure 1.1). The wall is adjacent to a brightly
illuminated piazza; an image of the piazza (inverted) appears on a wall within the
room. Leonardo noted that an image is formed wherever the pinhole is placed, and
he concluded that the rays needed to form an image must be present at all of these

Figure 1.1 Light field geometry. The complete set of rays in the environment
is the light field. The rays that arrive at the imaging system, in this figure a
large pinhole camera, are the incident light field. If the imaging system includes
a lens, rather than just a pinhole, the incident light field is described by the
positions and angles of the rays at the lens aperture. Figure reproduced from
Ayscough (1755).

1 Mechanical force on the retina (pressure phosphenes) and injecting current into the retina or brain
(electrical phosphenes) can also cause a visual sensation.

2 www.merriam-webster.com/dictionary/light
3 From the section prove how all objects, placed in one position, are all everywhere.
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positions. Leonardo compared the space-filling light rays to the traveling waves
that arise after dropping a rock in a pond.

The Russian physicist, Andrey Gershun, provided a mathematical representation
of the geometry of these rays, which he called the light field (Gershun, 1939). The
mathematical representation of the light field quantifies the properties of the light
rays at each position in space [Equation (1.1)]. Each ray travels from a location
(x,y,z) in a direction (α,β) and has a wavelength and polarization (λ,ρ). To know
these parameters and the intensity of every ray is to know the light field at a given
moment in time:

LF(x,y,z,α,β,λ,ρ). (1.1)

The light field representation does not capture some phenomena of electro-
magnetic radiation such as interference (waves) or the Poisson character of light
(photon) absorption by the photoreceptors. Even so, the light field representation
provides an excellent model to describe the ways in which light interacts with
surfaces, and the geometric description of the light field is important in the
mathematics of computer graphics, a technology that is important for illumination
engineering, photography, and cinema (Pharr, Jakob, & Humphreys, 2016; Wald
et al., 2003, 2006).

1.2.2 The Incident Light Field

An eye – or a camera – records a small subset of the light field, those rays arriving
at the pupil or entrance aperture. We call these the incident light field. In Figure 1.1
the dashed and solid lines are the light field and the solid lines are the incident light
field. The natural parameterization of the incident light differs from the general
light field. We can represent the incident light field using only the position (u,v)
and angle (α,β) of the rays at the entrance aperture of the imaging system:

ILF(u,v,α,β,λ,ρ,t). (1.2)

Equation (1.2) also represents time (t) explicitly, which allows it to describe effects
of motion both in the scene and by the eye.

1.2.3 Spectral Irradiance and the Plenoptic Function

The eye and most cameras do not measure the full incident light field. Rather,
the rays are focused to an image at the retina or sensor, and the photodetectors
respond to the sum across all directions of the image rays. To be explicit about this,
Adelson and Bergen (1991) introduced the term plenoptic function, a simplified
version of the incident light field, that was chosen to guide thinking about the
computations carried out in the human visual pathways [their Equation (2)]. First,
they approximated the eye as a pinhole camera; with this approximation all rays
have the same entrance position p. Additionally, the retina/sensor surface defines
the direction (d) of the rays that pass through the pinhole. For the pinhole case,
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specifying two angles of a ray at the pinhole is equivalent to specifying the location
where a ray will intersect the retina/sensor surface, (rx,ry). Finally, Adelson and
Bergen ignored polarization as unimportant for human perception. With these
restrictions, the plenoptic function for human vision is simply the retinal spectral
irradiance, over time (t):

E(rx,ry,λ,t;p,d). (1.3)

In Equation (1.3) we have explicitly reintroduced position and direction, but these
are often implicit [as in the formulation of Equation (1.2) above]. Understanding
the progression from light field to incident light field to retinal spectral irradiance
is useful for understanding how the information available for visual processing
relates to the complete set of potential information that could be sensed by a visual
system.

Adelson and Bergen note that by placing the pinhole at many different positions
and viewing directions, we can estimate the full light field from the set of spectral
irradiances. It is possible to be more efficient and estimate the incident light
field by using a lens, rather than a pinhole, inserting a microlens array over
the photodetector array and placing multiple detectors behind each microlens.
Both cameras and microscopes have employed this technology to support depth
estimation (Adelson & Wang, 1992) and control focus and depth of field in post-
processing (Ng et al., 2005). Cameras that estimate the full incident light field
are not currently in wide use (Wikipedia contributors, 2021); but, the widely used
dual pixel autofocus technology obtains a coarse measure of the incident light
field (Canon U.S.A., Inc., 2017; Mlinar, 2016). This is accomplished by inserting
a microlens array over pairs of photodetectors. With this design rays from, say,
the left and right sides of the lens are captured by adjacent detectors. This coarse
estimate of the light field is useful for setting the lens focus and estimating depth.

1.2.4 The Initial Visual Encoding

Computational models of the early visual pathways define a series of transfor-
mations that characterize how the incident light field becomes a neural response.
In this chapter, we introduce the mathematics used to characterize the initial
visual encoding in the context of the first few of these transformations (Figure 1.2;
see also Brainard & Stockman, 2010; Packer & Williams, 2003; Rodieck, 1998;
Wandell, 1995). We focus on the encoding of the spectral radiance by the
photoreceptors – subsequent neural processing operates on this visual encoding.

A visual scene’s light field is generated by the properties and locations of the
light sources and objects, and how the rays from the light sources are absorbed
and reflected by the objects. Here we consider the special case of scenes presented
on a flat display, so that in the idealized case where the display is the only object
and there are no other light sources, the full light field is determined just by the
spectral radiance emitted at each location of the display. Elsewhere, we consider
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Figure 1.2 The initial encoding of light by the visual system. Scene: An image
on a display surface is characterized by the spectral radiance at each display
location. Images of the display spectral radiance are shown at a few sample
wavelengths, along with a rendering of the image. Optics: The incident light
field enters the pupil of the eye and a spectral irradiance image is formed on
the retina. The retinal image is blurred relative to the displayed image, and
the spectral irradiance is affected by lens and macular pigment absorptions.
Cone mosaic: The retinal image is spatially sampled by the L-, M-, and
S-cone mosaics. Cone excitations: The retinal image irradiance, spectrally
weighted by each cone photopigment absorptance function, is integrated within
the cone’s aperture and temporally integrated over the exposure duration to
produce a pattern of cone excitations. This figure should be viewed in color.
The color version is available at https:/ /color.psych.upenn.edu/supplements/
earlyencoding/computationsColorFig.pdf . We thank Nicolas Cottaris for the
figure.

the more general case of modeling the formation of the retinal spectral irradiance,
given a description of the light sources and objects in a three-dimensional scene
(Lian et al., 2019).

The optics of the eye collect the incident light field and focus the rays to
produce the spectral irradiance arriving at the retina. Factors such as diffraction
and aberrations in the eyes optics mean that this image is blurred relative to the
displayed image. In addition, wavelength-selective absorption of short-wavelength
light by the lens and inert macular pigment also affect the spectral irradiance. Of
note (but not illustrated in Figure 1.2), the density of the macular pigment is high
in the central area of the retina and falls off rapidly with increasing eccentricity.

Photoreceptors spatially sample the retinal image. Excitations of photopigment
molecules in these photoreceptors provide the information available to the visual
system for making perceptual inferences about the scene. Here we consider the
cone photoreceptors, which operate at light levels typical of daylight. There are
three spectral classes of cones, each characterized by its own spectral sensitivity.
That there are three classes leads to the trichromatic nature of human color
vision. Figure 1.2 illustrates a patch of cone mosaic from the central region of
the human retina. The properties of the mosaic are quite interesting. For example,
there are no S-cones in the very center of the retina, and many properties of the
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mosaic (e.g., cone density, cone size, cone photopigment optical density) vary
systematically with eccentricity (Brainard, 2015; Hofer & Williams, 2014).

Not considered here is a separate mosaic of highly sensitive rod photoreceptors
that is interleaved with the cone mosaic. The rods mediate human vision at
low light levels (Rodieck, 1998). We also ignore the melanopsin containing
intrinsically sensitive retinal ganglion cells (Gamlin et al., 2007; Hattar et al.,
2002; Van Gelder & Buhr, 2016). The principles we develop, however, also apply
to modeling the excitations of these receptors.

Modeling of the initial visual encoding is well understood, and we explain the
key linear systems principles next, using a simplified representation of the light
stimulus. Advanced modeling of the subsequent neural processes includes non-
linearities; the mathematical principles and computational methods we introduce
are a fundamental part of the full description. After explaining the mathematical
principles, we illustrate how to extend them through computational modeling that
harnesses the power of computers to characterize biological reality in more detail
than is possible with analytic calculations alone.

1.3 Mathematical Principles

1.3.1 Linear Systems

Linear systems and the tools of linear algebra are the most important mathematical
methods used in vision science. Indeed, when trying to characterize a system,
the scientist’s and engineer’s first hope is that the system can be approximated
as linear. A system, L, is linear if it follows the superposition rule:

L(x+ y) = L(x)+ L(y). (1.4)

Here x and y are two possible inputs to the system and x + y represents
their superposition. The homogeneity rule of linear systems follows from the
superposition rule. Consider that

L(x+ x) = L(2x)

= L(x)+ L(x)

= 2L(x).

This is easily generalized for any integer m to show that:4

L(mx) = mL(x). (1.5)

4 It is an exercise for the reader to show that a system that follows the superposition rule also obeys the
homogeneity rule, not just for integers, but for any real scalar. If x is a real-valued scalar, homogeneity
also implies superposition. When x is a real-valued vector with entries xn, however, a system can
obey homogeneity but not superposition. For example, f (x) = 3

√∑
x3

n satisfies homogeneity but not
superposition. The reader may find it of interest to consider why we used an exponent of three rather
than two for this example.
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No physical system can be linear over an infinite range – if you put enough
energy into a system it will blow up! But many systems are linear over a
meaningful range of input values.

1.3.2 Linearity Example: Cone Excitations and Color Matching

Vision is initiated when a photopigment molecule absorbs a photon of light.
The absorption can cause the photopigment, a protein, to change conformation,
an event we refer to as a photopigment excitation. The excitation initiates a
molecular cascade inside the photoreceptor that changes the ionic currents at
the photoreceptor membrane. The change in current modulates the voltage at the
photoreceptor synapse and causes a release of neurotransmitter (Rodieck, 1998).

The transformation from the spectral energy of light, E(λ), incident upon a
cone to the number of photopigment excitations, n, produced by that light is an
important, early vision, linear system. Consider two different spectra, denoted by
E1(λ) and E2(λ). Let L represent the system that describes the transformation
between spectra and excitations. This system obeys the superposition rule:

L(E1 + E2) = L(E1)+ L(E2). (1.6)

This linearity holds well over a wide range of light levels typical of daylight natural
environments (Burns et al., 1987).

An important feature of photopigment excitations is that their effect on the
membrane current and transmitter release does not differ with the wavelength
of the exciting photon. Such differences might have existed because different
wavelengths are preferentially absorbed at different locations within the cone outer
segment, or because photons of different wavelengths carry different amounts of
energy. The observation that all excitations have the same impact is called the
Principle of Univariance. As Rushton wrote:

The output of a receptor depends upon its quantum catch, but not upon what
quanta are caught. (Rushton, 1972)

The color-typical human retina contains three distinct classes of cones, which
are referred to as the L (long-wavelength sensitive), M (middle-wavelength
sensitive), and S (short-wavelength sensitive) cones. While the effects of pho-
topigment excitations are univariant, the probability of a photopigment excitation
is wavelength-dependent. The wavelength-dependent probability that an incident
photon leads to an excitation is characterized by the pigment’s spectral absorp-
tance.5 The absorptance depends on the density of the photopigment within the

5 The absorptance spectrum is the probability that a photon is absorbed. Not all absorbed photons lead
to an excitation, so an additional factor specifying the quantal efficiency (probability of excitation
given absorption) needs to be included in the calculation. Current estimates put the quantal efficiency
of human cone photopigment near 67%. In addition, the calculation of cone excitations from spectral
irradiance requires taking into account the size of the cone’s light-collecting aperture.
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cone’s outer segment, as well as on the outer segment length; details are elaborated
elsewhere (Rodieck, 1998; see also Packer & Williams, 2003; Pugh, 1988).

It is difficult to measure the light at the retinal surface in the living eye, but it
is straightforward to measure the light incident at the cornea. Hence, it is typical
to specify the absorptance with respect to the spectrum of the light incident at
the cornea. This convention effectively combines the effects of the lens, the inert
retinal macular pigment, the photopigment absorptance, and quantal efficiency.
For simplicity, vision scientists call the cornea-referred spectral excitation curve
the cone fundamental.

The three (L-, M-, and S-) cone fundamentals define for each cone type
the probability of excitation given the spectrum of light entering the eye.
The human cone fundamentals have been carefully measured and tabulated
(Figure 1.3; Stockman & Sharpe, 2000; Stockman, Sharpe, & Fach, 1999; www
.cvrl.org) and are the subject of an international standard (CIE, 2007).
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Figure 1.3 Human cone fundamentals. The left panel shows estimates of the
L-, M-, and S-cone fundamentals for foveal viewing. The fundamentals are
the probability of excitation per photon entering the cone’s entrance aperture,
but with pre-retinal absorption taken into account. Note the large difference
between the L- and M-cone fundamentals compared to the S-cone fundamental.
This difference is due partly to the selective absorption of short-wavelength
light by the lens and macular pigment. The right panel shows estimates for
cones at 10◦ eccentricity. The S-cone fundamental is relatively higher at 10◦,
because there is little or no macular pigment at that eccentricity; and for the
same reason there is a slight change in the relative values of the L- and M-
cone fundamentals. In addition, the cone outer segment lengths decrease with
eccentricity, leading to the lower peak probability of excitation in the periphery.
This reduction, however, is more than compensated for by an increase in the size
of the cone apertures with eccentricity. The impact of the aperture is not shown
in these plots, but see Figure 1.4.
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To compute the number of cone excitations we use linear formulas. Suppose
that a cone’s fundamental is given by C(λ). Using linearity and continuous
mathematics, we compute the number of excitations at a single location as

N(rx,ry) =
∫

C(λ)E(rx,ry,λ)dλ. (1.7)

The discrete form of this integral, commonly used in computational methods,
is the inner product of the cone fundamental with the cornea-referred spectral
irradiance incident upon a retinal location:6

N(rx,ry) =
∑
λi

C(λi)E(rx,ry,λi)	λ. (1.8)

Here the λi are a set of w discretely sampled wavelengths, and 	λ is the
wavelength sample spacing.

1.3.3 Matrix Formulation of Linearity

We can calculate cone excitations by a matrix multiplication. The matrix C
combines the three discretized cone fundamentals CL(λi), CM(λi), and CS(λi) into
its rows, so that its dimension is 3×w. Similarly, we write the spectral irradiance at
a position, E(rx,ry,λ), as a w×1 vector e(rx,ry). The L-, M-, and S-cone excitations
available at a retinal location are described by a three-dimensional column vector:

n(rx,ry) = Ce(rx,ry). (1.9)

The vector field n(rx,ry) describes the potential information available to the visual
system from the cones at a moment in time. This representation replaces the
dependence of the spectral irradiance on wavelength with the excitations of the
three classes of cones. As we describe in more detail below, not all of this potential
information is sensed by the visual system, since the cones discretely sample
n(rx,ry).

It is worth reflecting on the implication of the linearity expressed by Equation
(1.9). If we measure the cone fundamentals at each of the sample wavelengths
λi, we can predict the cone excitations to any spectrum E(rx,ry,λi). Thus, linearity
implies that we can compute the system response to any input after making enough
measurements to determine the system matrix C. The ability to delineate the set
of measurements required for complete system characterization is an important
consequence of linearity, and this observation applies to linear systems in general,
not just to computation of cone excitations.

A second implication of Equation (1.9) concerns which spectral radiances
appear to be the same; these pairs are called metamers. Young (1802) had proposed
that metamers arise if two lights produce the same set of cone excitations. This

6 In this formulation, we do not make the spatial extent of the cone acceptance aperture explicit. This
aperture introduces additional blur into the retinal image. Computational models (see Figure 1.7)
account for this factor; it is significant.
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implies that the difference between a metameric pair is in the null space of the
matrix, C.7 That is, e1 and e2 must satisfy

Ce1 = Ce2

0 = C(e2 − e1). (1.10)

Wyszecki (1958; see also Wyszecki & Stiles, 1982) referred to vectors in the null
space of C as metameric black spectra. Adding a nonzero metameric black to any
spectrum produces a metamer.

Displays and printers do not reproduce the original physical stimulus; rather,
they create lights designed to be metamers to the original. Thus, calculating
metamers is central to color reproduction technologies. Practical aspects of the
computation of metamers for color reproduction applications, including limitations
based on the spectra a device can produce, are discussed in detail elsewhere
(Brainard & Stockman, 2010; Hunt, 2004).

1.3.4 Color-Matching Functions

James Clerk Maxwell (1860) was the first to measure pairs of spectral irradiance
functions, e1 and e2, that appear the same to humans despite being physically
different. These data place constraints on estimates of the matrix C, but do not
uniquely determine it. To understand why, note that the null space of C is the same
as the null space of T = MC, for any invertible 3 × 3 matrix M. Thus, any such
matrix T predicts the same set of matches.

The rows of T, when viewed as functions of wavelength, are referred to as
a set of color-matching functions. We say that the color-matching functions are
only unique up to a linear transformation. The technology for creating metamers
relies on color-matching functions which were chosen as an international standard
(CIE, 1986, 2007). How color-matching functions may be obtained directly from
perceptual color-matching experiments, without explicit reference to the cone
fundamentals, is treated in many sources (Brainard & Stockman, 2010; Wandell,
1995; Wyszecki & Stiles, 1982). Indeed, high-quality measurements of behavioral
color matching (e.g., Stiles & Burch, 1959) provide key data that constrain modern
estimates of human cone fundamentals.

There are a number of properties of the eye that must be modeled if we are to
compute a true estimate of cone mosaic excitations. For example, only one type
of cone is present at each position, so we must specify a cone spatial sampling
scheme. That is the reason that we use the term potential information to describe
cone excitations n(rx,ry) as a function of retinal location – not all of that informa-
tion is sampled by the cone mosaic. Also, as noted above, the density of both inert
pigments and photopigments varies with retinal location, as does the size of the

7 The null space of a matrix C is the space of vectors v such that Cv = 0. If a matrix has column
dimension n and rank r, its null space has dimension n− r.
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14 b. wandell and d. brainard

cone apertures. Enough is known about these properties to enable us to compute a
reasonable approximation to the cone mosaic excitations across the retina.

1.3.5 Noise in the Sensory Measurements

Measurement noise is fundamental in the physical sciences and engineering. Two
types of noise are used throughout the sensory sciences: Gaussian (normal) noise
and Poisson noise. Gaussian noise has two parameters (a mean and variance)
but the Poisson distribution has a single parameter (the Poisson mean equals its
variance). The formulas for the Gaussian density function and Poisson probability
mass function, along with example draws from these distributions, are provided in
Figure 1.4.

The Gaussian and Poisson distributions can be compared by setting the Gaussian
mean equal to its variance. For small values, the Gaussian has values below
zero. As the Poisson mean increases, the matched Gaussian is extremely similar
(Figure 1.4).

There is an important conceptual difference between how these noise distribu-
tions are used in applications. There are many theorems about additive Gaussian
noise, and thus it is common to introduce noise in a model with such noise
using a fixed mean (μ) and standard deviation (σ ). The added noise has the same
distribution for all values of the signal (signal-independent noise).

For typical sensor measurements, including the cone excitations, the noise
depends on the signal. Specifically, for the cones and many other measurement
devices, the noise is Poisson distributed, with the Poisson parameter equal
to the mean number of excitations (signal-dependent noise). The difference
between signal-independent and signal-dependent noise can be quite significant
(Figure 1.4).

1.3.6 Image Formation

The linear system principles described for one-dimensional spectral functions can
be extended to two-dimensional functions, such as images. We use linear system
methods to analyze how the cornea and lens form the retinal image. An important,
but simple, case occurs for an image confined to a plane, such as a visual display or
an optometrist’s eye chart. For such images we can estimate the spectral irradiance
at the cone apertures using a two-dimensional linear system computation.

The image emitted from a visual display is a function of position (x,y) and
wavelength λ. As a first approximation, the display emits the same density of
rays over a wide angle, which is why the display appears to be approximately
the same when seen from different positions. The image from the display is called
the spectral radiance, I(x,y,λ), and it has units of W/sr/m2/nm.

The spectral irradiance at the retina, E(rx,ry,λ), is formed from the cone of rays
that are captured by the pupil. In this case, rx and ry specify retinal location and
the units of the image are those of spectral irradiance, W/m2/nm, which result from
integration over the solid angle of the pupil.
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Figure 1.4 The number of cone excitations is inescapably noisy, following a
signal-dependent Poisson distribution. (Top) For mean values greater than 10,
the Poisson distribution is reasonably approximated by a Gaussian distribution
with a mean equal to the variance. For smaller values, it is necessary to clip
the negative values for the Gaussian to achieve a good approximation. Low
excitation rates are common under low-light conditions and for nearly all
conditions when assessing the S-cones and rods (Baylor et al., 1979; Hecht,
Schlaer, & Pirenne, 1942). (Bottom) The signal-dependent nature of Poisson
noise is important; simply adding Gaussian noise with a fixed mean is not a
good approximation if there is a substantial range in the mean excitation values.
The images illustrate the excitations in response to a series of bars spanning a
large range of mean excitation using a signal-independent clipped Gaussian
noise (left) and a Poisson noise (right). The Gaussian distribution added to
the signal has zero mean and variance equal to the number of excitations in
the brightest bar (arrows); this approximates Poisson noise for that bar. The
inset trace, which shows excitations across a row of the image, illustrates that
the Gaussian noise is too large for the dark bars. Had the variance been set to
match the noise at the dark bar, the clipped Gaussian would be too small for the
brightest bar. The simulation was created for an array of M-cones in the central
fovea, a 2 ms exposure duration, achromatic bars of increasing intensity, and
a bright bar luminance of 300 cd/m2. This figure should be viewed in color.
The color version is available at https:/ /color.psych.upenn.edu/supplements/
earlyencoding/noiseColorFig.pdf .
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The key linear system idea [Equation (1.6)] holds for retinal image formation
(Wandell, 1995). If two input images, I1(x,y,λ) and I2(x,y,λ), produce two retinal
images, E1(rx,ry,λ) and E2(rx,ry,λ), then the superposition of the input images,
I1(x,y,λ) = I1(x,y,λ)+I2(x,y,λ), produces the superposition of the retinal images:

E(rx,ry,λ) = E1(rx,ry,λ)+ E2(rx,ry,λ). (1.11)

It follows that if the input image is the weighted sum of two input images,
I(x,y,λ) = αI1(x,y,λ)+ βI2(x,y,λ), the output retinal image will be the weighted
sum of the two corresponding retinal images:

E(rx,ry,λ) = αE1(rx,ry,λ)+ βE2(rx,ry,λ). (1.12)

As noted above, an important consequence of linearity is that it tells us how to
generalize. When we know the response to an image Ik, measuring the response
to a second image, Ij, enables us to predict the responses to an entire class of new
images, all images of the form αIk + βIj.

1.3.7 Shift-Invariance and Convolution

To characterize color matching we used the fact that a discrete linear system may
be expressed as a matrix multiplication [Equation (1.9)]. A matrix can also be used
to express retinal image formation, but in this case the number of measurements
required to determine the requisite matrix is very large. For this reason, we consider
an additional special and simplifying property linear systems can have: shift-
invariance. These are linear systems such that shifting the position of the input
correspondingly shifts the position of the output, without changing its form.8 It is
possible to measure whether a system is shift-invariant by a simple experiment.
For an input image, say I(x,y,λ), measure the retinal image E(rx,ry,λ). Then shift
the input, I(x−δx,y−δy,λ), and measure the retinal image again. If for all choices
of (δx,δy) in the image domain, the output is shifted equivalently, E(rx − δrx,ry −
δry,λ) in the retinal image domain, then the system is shift-invariant. Here the
retinal image shifts (δrx,δry) differ from their image counterparts (δx,δy) by the
factor that converts the positional units of the image to those of the retinal image.

We can express linearity and shift-invariance using the convolution formula.
For simplicity, we choose one wavelength and suppress λ. Suppose P(rx,ry) is the
retinal image from an image that is just a single point. The image P(rx,ry) plays
a central role in the characterization of convolutional optical systems: it is called
the point spread function.9 The point spread function is all we need to compute the
retinal image for any input image. The idea is to treat the input image as a set of
points, and to add shifted copies of the point spread function, each weighted by the
input image intensity:

8 When describing optics, a shift-invariant region within the visual field is called an isoplanatic region.
9 The point spread function is the spatial analog of the impulse response function used to characterize

time-invariant linear systems.
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E(rx,ry) =
∫

u

∫
v

I(u,v)P(rx − u,ry − v)dudv. (1.13)

The importance of linear shift-invariance is that we characterize the system
fully by one measurement, P(rx,ry). We use the convolution formula and this
measurement to compute the responses of a linear shift-invariant system to any
input.

While shift-invariance and convolution are important concepts, the eye’s optics
deviate significantly from this ideal. Shift-invariance is a good approximation
of human retinal image formation in local regions, say spanning a few degrees
of visual angle and a change in wavelength of 20–50 nm. Properties of the
photoreceptor sampling mosaic further limit the accuracy of the shift-invariant
approximation of the visual encoding (see Figure 1.6). Thus the convolutional
approximation is helpful for thinking about encoding over small regions, but it
is not an accurate depiction when one considers a larger field of view. A realistic
approximation requires computational modeling.

1.4 Computational Model of the Initial Encoding

The mathematical principles described above tell us how to compute
the retinal image and the noisy cone excitations from a displayed image; the
calculations are straightforward for a single retinal location. But an accurate
model of the visual system must account for variations in the optics, pigments,
and sampling properties of the cone mosaic with visual field location. These are
substantial and impact the information available to the brain for making perceptual
inferences about the visual scene. Parameters with significant spatial variation
across the visual field include the optical point spread function, density and size
of the cones in the mosaic, the distribution of different cone types within the
overall mosaic, and the cone fundamentals. To make a realistic calculation requires
implementing a computational model of the visual transformations.

1.4.1 The Value of Computational Modeling

Carefully validated computer simulation of the initial visual encoding has the
potential to support advances in understanding many aspects of visual function. We
use image-computable models to build upon the mathematical characterizations –
earned through 400 years of experimental and theoretical work in vision science –
and estimate the initial visual signals. Such knowledge is an essential foundation
to use when modeling less well understood visual processes. The models help us
separate effects attributable to known factors of the initial encoding from effects
of factors that arise in later processing. For example, understanding cortical visual
processing requires representing the input to the cortex. Without accurate modeling
of the input, we risk attributing features of the cortical signals to the wrong neural
mechanisms.
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Because of the central role computational modeling plays in understanding
vision, we have invested in developing a set of freely available software tools to
model retinal image formation and cone excitations (Image Systems Engineering
Tools for Biology – ISETBio; https://github.com/isetbio/isetbio.git; Cottaris et al.,
2019, 2020). The tools can be used for images presented on planar displays and
for full three-dimensional descriptions of the objects and light sources in the
scene (Image Systems Engineering Tools 3D; https://github.com/iset/iset3d.git;
Lian et al., 2019). In this section we briefly illustrate some basic calculations
enabled by ISETBio. We are not advocating for our implementation in particular,
but we do believe that the field needs to develop trusted open-science tools for
computational modeling.

1.4.2 Shift-Varying and Wavelength-Dependent Point Spreads

The point spread functions from a single subject, measured at different retinal
locations and wavelengths, differ significantly (Figure 1.5). The variation with
retinal location occurs because the optical aberrations depend on the direction of
the rays incident at the retina. The ISETBio tools can explicitly represent the full

Figure 1.5 The human point spread function. The images in the top row show
the point spread functions at 550 nm from a typical subject measured at three
different visual eccentricities. The point spread increases with eccentricity. The
bottom images show the point spread but for light at 450 nm. The human eye
cannot focus these two wavelengths at the same time because the index of
refraction in the lens and cornea is wavelength-dependent. For many people,
chromatic aberration is the largest aberration. A diagram showing simple ways
to estimate degrees of visual angle is available from Branwyn (2016).
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incident light field and calculate these effects from a model eye (Lian et al., 2019).
Improvement of eye models is an active area of investigation, and in some cases
ISETBio relies on empirical measurements of the eye’s optics to predict responses
over a range of retinal field locations (Jaeken & Artal, 2012; Polans et al., 2015).

The point spread function varies with pupil diameter and wavelength in addition
to visual field position. The dependence on pupil diameter, which varies with the
light level of the scene, occurs for two reasons. As the pupil opens, the aberrations
vary because more of the imperfectly shaped corneal and lens surfaces refract
the light. As the pupil closes, diffraction starts to be a significant factor. The
wavelength dependence is explained by the refractive indices of the cornea and
lens. These chromatic aberrations are the largest of all the aberrations (Thibos
et al., 1990; Wandell, 1995).

1.4.3 Shift-Varying Sampling

Figure 1.6 shows the spatial arrangement of cones at different locations within the
retina. The cone density is highest in the central fovea where the cones are tightly
packed. Moving away from the center, cone density falls off and the cone aper-
tures become larger. As cone density decreases, rod photoreceptors (the smaller
receptors in the peripheral images) appear and fill the gaps between the cones. In
addition, not apparent in the figure, cones become shorter away from the fovea.
The shortening reduces the spectral absorptance.

Figure 1.6 Human cone and rod sampling mosaics. The en face images show
the photoreceptor inner segments, where light enters the cones, at four retinal
eccentricities. In the central region, all of the receptors are cones. At 4◦ and
beyond, the large apertures are the cones and the smaller apertures are the rods.
The cone sampling density and cone aperture sizes differ substantially between
the central fovea and other visual eccentricities. The reduced sampling density
limits the spatial resolving power of the eye. The larger cone apertures increase
the rate of photon excitations per cone. Scale bar is 10 μm. Recomposited from
figures in Curcio et al. (1990).
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The sampling density reduction means that less spatial information about the
retinal image is extracted at retinal locations away from the central fovea. The
relative density of the different cone types also varies with eccentricity. Indeed, as
noted above, there are no S-cones in the very central fovea (Williams, MacLeod,
& Hayhoe, 1981), so that vision in this small retinal region is dichromatic rather
than trichromatic. Perhaps this region is specialized for high-resolution vision and
omitting a few S-cones, which see a blurry retinal image at short wavelengths
because of the chromatic aberrations, maximizes the information transmitted to
the brain about spatial structure (Brainard, 2015; Garrigan et al., 2010; Hofer &
Williams, 2014; Williams et al., 1991; Zhang, Cottaris, & Brainard, 2021).

The impact of the cone size and density, along with variations in the inert
pigments described above, mean that calculating the cone excitations is shift-
varying: the calculation is linear, but the parameters change with eccentricity.
These eccentricity-dependent calculations are included in the ISETBio simula-
tions. There is little value in expressing the full complexity of these calculations in
pure mathematical form.

The impact of the several eccentricity-dependent factors on the cone excitations
is substantial and illustrated in Figure 1.7. The images in the left column illustrate
calculations in the central fovea and the images in the right column illustrate the
same calculations at 10◦ in the periphery. The top image shows the differences in
the size and density of the cone photoreceptor apertures. Also, notice the absence
of S-cones in the small region of the very central fovea. The images inset in the
top show the size of the point spread function for an in-focus wavelength: there are
many more cones within the foveal point spread than within the 10◦ point spread.

The images in the middle row represent the number of cone excitations in
response to a relatively low-frequency grating pattern. There are more excitations
per cone at 10◦ than in the fovea, and there are many more cones representing the
stimulus in the fovea. The third row shows the effect of increasing the stimulus
spatial frequency. The foveal mosaic samples densely enough to preserve the
regular pattern, but at 10◦ the spatial samples look like a wobbly representation
of the stimulus.

Finally, notice that many cones have relatively low excitation levels to this
achromatic stimulus. These cones appear as the quasi-regular array of black dots
that are easy to see at 10◦. They are also present, but harder to see, in the excitations
for the central location. These cones are the S-cones, which absorb many fewer
photons than the L- and M-cones. This lower excitation rate is partly due to the
spectral transmission of the lens (and in the central region the macular pigment),
which absorbs a great deal of short-wavelength light.

In summary, the principles of linearity and shift-invariance are useful guides for
reasoning about cone excitations. These principles were part of our toolkit as we
built a specific model of the human eye, and so they would be for any model.
However, in the human eye deviations from shift-invariance are substantial. In
addition, there are significant differences between people that may be important for
explaining between-subject differences. Thus, an essential ingredient for building
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Figure 1.7 Excitation calculations. The two columns represent two retinal
eccentricities, each about 1◦2. (Top) The interleaved L-, M-, and S-cone
mosaics, shown as red, green, and blue dots, are shown at the top. The inset
shows an expanded view of the point spread function in the same region. The
rods are not represented. (Middle and bottom) The gray level in these images
shows the estimated cone excitations for a 6 c/deg harmonic and a 12 c/deg
harmonic. The scale for the foveal location runs between 0 and 250, while that
for the peripheral location runs from 0 to 1000. Peripheral cones have more
excitations to the same stimulus because the cone apertures are larger. This
figure should be viewed in color. The color version is available at https://color
.psych.upenn.edu/supplements/earlyencoding/excitationsColorFig.pdf. Figure
courtesy of Nicolas Cottaris.
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a computational model are data sets that quantify the critical model parameters
(e.g., how the optical point spread function and cone density vary with visual field
position) and how these parameters vary across individuals. For these reasons,
a computational model is essential for applications that aim to create realistic
estimates of the cone excitations for a population.

The computational implementation has benefited from mathematical principles
and from data collected and shared by many investigators. Conversely, the exercise
of building computational models often highlights the need for data sets that do not
yet exist (e.g., across individuals, are optical quality and cone density independent,
or do they covary in some systematic way?) At this point in the chapter, the reader
might find it useful to re-read the quote at the start of this chapter, which was
written by von Kries, Helmholtz’s greatest disciple (Cahan, 1993), more than a
century ago.

1.4.4 Spatial Derivatives of the Cone Excitations Mosaic

Adelson and Bergen (1991) observed that the partial derivatives of the spectral
irradiance correspond to computations performed by neurons in the early visual
system. Figure 1.8 illustrates these derivatives for several cases: derivatives with

Figure 1.8 Derivatives of the retinal image. A scene (top) is represented as
spectral irradiance hypercubes for the left and right eye. The responses of
neurons that compute the local differences, as indicated by several oval pairs
with ±, approximate local partial derivatives. Differences can be taken across
spatial location, across wavelength, across the spectral radiance measured by
the two eyes, and across time (not shown). This figure should be viewed in color.
The color version is available at https:/ /color.psych.upenn.edu/supplements/
earlyencoding/derivativesColorFig.pdf . The original color image was kindly
provided by David Sparks.
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respect to spatial position, wavelength, and viewpoint (i.e., across the viewpoints
provided by the left and right eyes). Receptive fields that respond to these deriva-
tives include neurons that are pattern-selective (Priebe, 2016; Shapley & Lennie,
1985), cone-opponent (Shevell & Martin, 2017; Solomon & Lennie, 2007), and
stereo disparity-selective (Cumming & DeAngelis, 2001). Partial derivatives with
respect to time describe motion-selective neurons (Pasternak & Tadin, 2020; Wei,
2018).

The emphasis that Adelson and Bergen (1991) place on these derivatives is
consistent with the generally accepted idea that it is the local change (contrast) in
the spectral irradiance, not the absolute level of that irradiance, that provides the
critical information used for perception (Shapley, 1986). Later in the chapter, we
analyze psychophysical measurements of contrast sensitivity, which characterize
quantitatively how small changes in spatial contrast are encoded by human vision.

An additional advantage of representations based on derivatives is that they are a
highly compressible representation of naturally occurring spectral irradiance. The
reason for this is that natural radiances tend to vary slowly, and thus many of the
partial derivatives are near zero. A distribution with many repeated values may
be compressed by coding the repeated values with tokens specified with a small
number of bits, reserving tokens specified with a large number of bits for rarely
occurring values (Cover & Thomas, 1991; Wandell, 1995).

1.5 Perceptual Inference

1.5.1 Ambiguity and Perceptual Processing

An important and consistent take-away from the analysis of sensory encoding is
that the information available to the brain about the state of the external world
is ambiguous: many different physical configurations produce the same sensory
representation. A classic example is metamerism: there are only three classes of
cone photoreceptors and different spectra produce identical triplets of responses in
the L-, M-, and S-cones. Another well-known example is depth reconstruction: the
three spatial dimensions of the light field are projected onto a two-dimensional
retina, and many 3D shapes produce the same retinal image. Such many-to-
one mappings are a reason why Helmholtz (1866, 1896) emphasized perceptual
inference: the brain decodes the sensory representation to produce perceptions
that are a likely guess about the state of the external world. Perception is an
unconscious inference.

1.5.2 Mathematical Principles of Inference

The mathematical formulation of perceptual inference can be developed within
a Bayesian probabilistic framework. Suppose x is a vector that describes some
aspect of a scene. The entries of x might represent the spectral power density
of a light entering the eye at a set of discretely sampled wavelengths, the pixel
values of a displayed stimulus image, the optical flow vectors corresponding to a
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viewed dynamic scene, or a full 3D scene description input to a computer graphics
package. Now, suppose y is the sensory representation at some stage of the visual
system produced when an observer views the scene described by x. The entries
of y might describe the retinal image, the excitations of each cone in the retinal
mosaic, or the action potentials in a class of retinal ganglion cells.

Because sensory measurements are noisy, the relation between y and x is
described by a conditional probability distribution, p(y|x). This distribution is
referred to as the likelihood function. The likelihood can be thought of as a forward
model that relates the scene parameters x to the sensory representation y.

Within the Bayesian framework, the perceptual representation results from a
choice the brain makes about the most likely scene given the observed sensory
representation. Indeed, we can reverse the likelihood function, p(y|x), to obtain
a conditional probability distribution p(x|y), which is called the posterior distri-
bution. The posterior defines which are the more or less likely scenes, given the
sensory measurements. To obtain the posterior, we use Bayes’ rule (Bishop, 2006;
Lee, 1989):

p(x|y) = K(y)p(y|x)p(x), (1.14)

where K(y) is a normalizing factor that depends on y but not x. This factor ensures
that the posterior integrates to 1 for any value of y. For many applications, our inter-
est is in how the posterior depends on x, and it is not necessary to compute K(y).

Critically, p(x) is a prior distribution that describes the statistical regularities
of the scenes; how likely it is a priori that the world is in the state x. A
prior is essential because many scenes might have produced the same sensory
measurements. Bayes’ rule specifies how to combine the prior with the likelihood.
Sometimes little is known about the prior. In these cases, using the Bayesian
formulation directs our attention to learn more about it. The Bayesian formulation
also forces us to make the forward model explicit in the form of the likelihood.

The posterior is a distribution over possible x. We need a means of selecting a
specific value, say x̂, to generate the percept. One common way to make a choice is
to select a value x̂ that is most likely: the maximum a posteriori (MAP) estimate.
Other possibilities, such as the mean of the posterior, are also commonly used. The
interested reader is referred to the literature on Bayesian decision theory for more
on this topic (e.g., Berger, 1985).

It is helpful to consider a simple example. Above we explained that the mean
cone excitations at a location are a linear function of the radiance of a displayed
image. Suppose we treat the spectral radiance on a display as the state of the
world x, with the entries of x appropriately ordered, and we denote the noisy cone
excitations as y. Then

y = Cx+ ε (1.15)

for an appropriately arranged matrix C, and where the noise in cone excitations
is represented by the random variable ε. If we approximate ε with a signal-
independent zero-mean Gaussian distribution, we have

https://doi.org/10.1017/9781108902724.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902724.002


Principles and Consequences of the Initial Visual Encoding 25

p(y|x) = norm(Cx,σ 2
y Iy), (1.16)

where norm() denotes the multivariate Gaussian distribution, σ 2
y is the variance of

the noise added to each mean cone excitation under the Gaussian approximation
to the Poisson noise. The symbol Iy denotes the identity matrix with the same
dimensionality as the vector y.

We can also use a Gaussian distribution to describe a prior over x:

p(x) = norm(μx,�x), (1.17)

where the vector μx and matrix �x represent the mean and covariance of the prior.
Given the Gaussian likelihood and prior, the posterior is also Gaussian; its

mean and covariance matrix may be computed analytically from the mean and
covariance matrices of the likelihood and prior. This result follows from a standard
identity that the product of two multivariate Gaussian distibutions is also a
multivariate Gaussian (see Rasmussen & Williams, 2006; Brainard, 1995 provides
the derivation in the context of the Bayesian posterior). In the case where the
posterior is a multivariate Gaussian, its mean μx|y provides the estimate of x that
corresponds to both the posterior mean and the MAP estimate.

Figure 1.9 illustrates the idea for a simple example case. Suppose that the display
has only two pixels and emits at only one wavelength. Then x = [x1,x2]T . We will
assume that the radiance at each pixel of the display can range between 0 and 1. For
natural images, there is a strong correlation between the radiance at neighboring
pixels at the same wavelength (Burton & Moorehead, 1987; Tkacik et al., 2011).
A bivariate Gaussian prior distribution with this property is illustrated in the left
panel of Figure 1.9. The mean of the prior is x = [0.5,0.5]T while the covariance
matrix �x corresponds to a common standard deviation of 0.127 and a correlation
across the two pixels of 0.89. The strong correlation in the prior restricts the best
guesses about the values of x relative to the full available range.

Figure 1.9 Bayes’ reconstruction. See description in text. For the prior and
posterior, probability is given as the probability mass for a region of size
0.012 in the pixel radiance plane. Matlab code to produce this figure is
available at https:/ /github.com/DavidBrainard/BrainardFigListings.git (sub-
directory scripts/MathPsychChapter/FigLinBayesExample, script Example.m).
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To compute a likelihood we need to know the nature of the sensory measure-
ments. We suppose that there is just one cone and that it is equally sensitive to
the radiance at the two display pixels. This gives us C = [0.5,0.5]. We assume
that the mean excitation of the cone is perturbed by zero-mean Gaussian noise
with standard deviation σy = 0.01. The middle panel of Figure 1.9 illustrates the
likelihood for the specific cone excitation y = 0.3: the likelihood p(y = 0.3|x) is
plotted as a function of x1 and x2. This likelihood is highest along the ridge where
the weighted sum of the pixel radiances sums to the observed cone excitation of
0.3. The likelihood falls off away from this ridge, with the rate of falloff determined
by the magnitude of the noise. If the noise were smaller, the falloff would be faster
and the likelihood ridge thinner, and conversely if the noise were larger, the falloff
would be slower and the likelihood ridge wider. The likelihood alone tells us that x
is unlikely to lie far from the ridge. At the same time, the likelihood makes explicit
the ambiguity about x remaining after observing y, with many values of x equally
likely.

Bayes’ rule specifies that the prior and likelihood should be combined using
point-by-point multiplication over the pixel radiance plane [Equation (1.14)], and
then normalized to form the posterior. The right panel of Figure 1.9 illustrates
the result of this multiplication. The same result may be obtained directly by
application of the analytic formulas for the posterior.

The posterior makes intuitive sense: it is large where both the prior and
likelihood are large, and the resulting distribution is more concentrated than
either the prior or likelihood alone. Although there is still uncertainty remaining
in the posterior, it captures what we know about the scene when we combine
the statistical regularities of the displayed images with the sensory measurement
provided by the cone excitation.

1.5.3 Thresholds and Ideal Observer Theory

In this and the next sections, we show how ideas of perceptual inference as
implemented through Bayes’ rule help us understand perceptual processing. We
begin with analysis of threshold measurements. A threshold is the minimum
difference required for an observer to correctly discriminate between two stimuli;
threshold measurements are a fundamental psychophysical tool. They are used
to characterize perceptual performance and guide inferences about the neural
mechanisms underlying this performance.

Consider, for example, discrimination between a uniform field and a contrast
grating (see Figure 1.10). In a typical experiment, the observer is shown the
uniform field and the grating in sequence, with the order randomized on each trial.
The observer’s task is to indicate which was presented first. In the experiment the
stimulus contrast is titrated to a level at which the observer is correct, say, 80% of
the time. The estimated contrast is the threshold.

Threshold measurements quantify the information needed by the visual system
to make a basic perceptual decision: namely, that two stimuli differ. They involve
small perturbations of the visual stimulus, and they may be thought of as assessing
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Figure 1.10 Modeling the human contrast sensitivity function. (A) Sensitivity,
defined as the inverse of threshold contrast, is plotted as a function of spatial
frequency. The stimuli were small, equal-sized patches of contrast gratings.
Replotted from De Valois, Morgan, and Snodderly (1974). The smooth curve
replots the smooth curve in the original figure, while the solid points show
the spatial frequencies on the smooth curve at which contrast sensitivity was
measured. See the original figure for the actual sensitivity measurements
through which the smooth curve was drawn. The thumbnails below the plot
illustrate contrast grating patches at different spatial frequencies, but are not
otherwise matched to the spatial frequency of the plot. (B) Triangles and
black line: Human contrast sensitivity function for two observers, data from
Banks, Geisler, and Bennett (1987). Grey circles/line: Contrast sensitivity
of an ideal observer implemented at the level of the Poisson limited cone
excitations, from Banks, Geisler, and Bennett (1987). Red circles/line: Ideal
observer CSF with recent estimates of optics and mosaic properties. Blue
circles/line: Computational observer CSF with decision rule determined using
supervised machine learning. Green circles/line: Computational observer CSF
additionally accounting for fixational drift. Purple circles/line: Computational
observer CSF additionally incorporating a model of the transformation from
excitations to photocurrent. This figure should be viewed in color. The color ver-
sion is available at https:/ /color.psych.upenn.edu/supplements/earlyencoding/
csfColorFig.pdf . If you are nonetheless viewing a grayscale version of the
figure, the order of the colors of the ideal/computational observer CSFs from
top to bottom is: gray, red, blue, green, purple. After Figure 6 of Cottaris et al.
(2020).

sensitivity to derivatives of the retinal image. In this way, thresholds are connected
to the ideas introduced above about the importance of derivatives of the spectral
radiance as a basis for visual processing.
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Figure 1.10 shows the threshold for contrast gratings measured as a function
of grating spatial frequency: this is called the spatial contrast sensitivity function
(CSF). When measured with static or very slowly moving gratings, the human CSF
has an inverted U-shape: the highest contrast sensitivity is between three and six
cycles per degree, with lower sensitivity at higher and lower spatial frequencies.
Because any image may be synthesized by a weighted superposition of sinusoidal
gratings (Bracewell, 1978), the CSF characterizes the sensitivity to basic stimulus
components. Because the visual system as a whole is neither shift-invariant nor
linear, however, the CSF is a useful but incomplete description of sensitivity.

We would like to understand how the human contrast sensitivity function is
limited by the properties of the visual components described in this chapter. Bayes’
rule provides a way to build this understanding by linking the initial encoding
to performance on the psychophysical threshold detection task. Analyses of this
sort are called ideal observer theory (Geisler, 1989). Ideal observer theory allows
us to estimate the extent to which discrimination performance is limited by the
early visual encoding. Relevant factors include blurring by the eye’s optics, which
reduces the retinal contrast of a grating stimulus, spatial sampling by the cone
mosaic, and the Poisson variability in the cone excitations. Of particular interest is
separating aspects of visual performance that are tightly coupled to these factors
from aspects that are limited by processes not incorporated into the ideal observer
calculation.

So, how do we use Bayes to predict performance in the two-interval forced
choice task described above? We use the terms reference stimulus and comparison
stimulus to describe the two stimuli being discriminated. In this example the
reference stimulus is a spatially uniform field and the comparison stimulus
is a patch of contrast grating with known spatial frequency, orientation, size,
and contrast; but, the ideas we develop here apply to any two stimuli being
discriminated.

Using the computational methods described in this chapter, we compute the
mean cone excitations to the reference and comparison stimuli. Let ur be the vector
of mean cone mosaic excitations in response to the reference stimulus and let uc be
the vector of mean cone excitations in response to the comparison stimulus. In the
two-interval forced choice task, the observer must indicate whether the reference
came first followed by the comparison, or the other way around. We thus form two
concatenated vectors, u1 = [ur,uc] and u2 = [uc,ur].

To apply Bayes’ rule to this problem, we think of the scene as described by a
binary random variable. This variable, x, can take on value 1 or 2. These values
represent the reference first and reference second possibilities that can occur on
each trial. The prior probability p(x) is given by

p(x = 1) = 0.5; p(x = 2) = 0.5. (1.18)

The data available to the observer to make a response of x = 1 or x = 2 are the
pattern of observed cone excitations across the two intervals, which we will denote
by y. We know that for x = 1, each entry of y is an independent Poisson random
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variable with mean given by the corresponding entry of u1, while for x = 2 the
means are given by the corresponding entries of u2. From this, we have for the
posterior:

p(x = 1|y) = Kp(y|x = 1)p(x = 1) = K
∏

i

p(yi|x = 1)p(x = 1), (1.19)

where yi denotes the ith entry of y and we have explicitly expressed the joint
distribution of independent random variables as the product of their individual
distributions. K is a normalizing constant whose value we need not calculate.

We substitute the expression for the probability mass function of a Poisson
random variable and the value of p(x = 1) to obtain

p(x = 1|y) = K
∏

i

u1i
yie−u1i

yi!
0.5, (1.20)

where u1i denotes the ith entry of u1. Similarly, we have

p(x = 2|y) = K
∏

i

u2i
yie−u2i

yi!
0.5. (1.21)

To maximize the percent correct on the task, the observer should compare
p(x = 1|y) with p(x = 2|y) and indicate 1 or 2 according to which is larger. It
is instructive to implement this comparison in terms of the difference of the logs
of p(x = 1|y) and p(x = 2|y), with a response of 1 corresponding to a difference
greater than or equal to 0 and a response of 2 corresponding to a difference less
than 0. Writing the difference of logs explicitly and simplifying, we have decision
variable

δ =
∑

i

yilog

(
u1i

u2i

)
+
∑

i

(u2i − u1i). (1.22)

An observer who responds according to the sign of δ will maximize the percent
correct. The value of the percent correct depends on how δ is distributed when
x = 1 and x = 2. Geisler (1984) provides a Gaussian approximation to these
distributions, which may be used to obtain the corresponding percent correct. As
with the human psychophysical experiment, contrast may be titrated to find the
ideal observer threshold contrast, that which leads to the ideal observer having the
criterion percent correct.

Figure 1.10B shows the ideal observer contrast sensitivity for human foveal
viewing (gray circles/line), along with psychophysical measurements of human
contrast sensitivity at spatial frequencies increasing from 5 cpd, and with the
measurements (triangles/black line) made with stimuli matched to those used in
the ideal observer calculations (Banks, Geisler, & Bennett, 1987). As with the
human data at higher spatial frequencies, the ideal observer contrast sensitivity
function falls off as spatial frequency increases; the slope of this falloff closely
resembles that of the human observer. This correspondence suggests that the
factors that cause the human falloff share basic features with those included in
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the ideal observer calculation. Here the primary factor is blur from the eye’s optics
and cone apertures, both of which reduce the contrast captured by spatial variation
in the cone excitations.

The ideal observer CSF also differs from the human measurements. One differ-
ence is that the overall sensitivity of the ideal observer is markedly higher than that
of the human observer. The Poisson noise in the cone excitations limits the ideal
observer sensitivity. The fact that incorporating only this noise source leads to an
ideal observer more sensitive than the human tells us that additional factors limit
human sensitivity and motivates study of what these additional factors are.

One approach is to define a single “efficiency” parameter representing an
omnibus loss of information by the actual visual system relative to an ideal
observer calculation. This is often sufficient to bring ideal observer predictions
into alignment with measured human performance (Burge, 2020), as is true in the
case of the ideal and human CSF rolloff at high spatial frequencies. The efficiency
parameter can be thought of as capturing the effect of additional noise in the
human visual system, not included in the ideal observer calculation, whose effect
on performance is stimulus-independent.

It is important to note, however, that the difference between ideal and human
performance is not fully explained by a single efficiency parameter. For example,
the ideal observer CSF does not roll off at low spatial frequencies but the human
CSF does. The factors that produce the measured low-spatial-frequency rolloff
are not included in the ideal observer calculations presented here. As with the
difference in overall sensitivity, the difference between ideal and human CSF at
low spatial frequencies motivates investigation of what additional factors in the
human visual system account for the difference.

1.5.4 Computational Observers

The ideal observer calculation used by Banks, Geisler, & Bennett, (1987) employed
a simplified model of the eye’s point spread function and cone mosaic, and this
simplification enabled efficient computation of ideal observer performance. In two
recent papers, Cottaris et al. (2019, 2020) employed computational methods to
examine the effect of more recent estimates of the point spread function (Thibos
et al., 2002) and a more detailed model of the foveal mosaic on performance.
These had only a modest effect on the predictions (Figure 1.10B, red circles/line).

The ideal observer developed above has full knowledge of mean cone excitations
and Poisson structure of the noise, so that the observer’s performance is not
degraded by stimulus uncertainty (Geisler, 2018; Pelli, 1985). Cottaris et al.
(2019) relaxed this assumption by replacing the ideal observer decision rule with
a decision rule based on a trained linear classifier (C. D. Manning, Raghavean,
& Schutze, 2008; Schölkopf et al., 2002). The classifier measured the match of
the data to a template that had the same spatial structure as the stimuli. The
decision boundary was optimized in the presence of noise. The need to partially
learn the decision rule reduced the absolute level of ideal observer performance
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while retaining the same CSF shape (blue circles/line in Figure 1.10B). Cottaris
et al. (2020) then introduced a computational model of fixational eye movements
(Mergenthaler & Engbert, 2007; see also Engbert & Kliegl, 2004) and showed that
an approach to handling the stimulus motion blur introduced by these movements
further reduced performance (green circles/line). Finally, Cottaris et al. (2020)
introduced a computational model of the transformation from excitations to
electrical photocurrent, which included both gain control and additional noise.
Accounting for this transformation brought computational observer performance
into approximate alignment with the human measurements at the higher spatial
frequncies (purple circles/line).

This analysis outlines a set of factors that together provide an account of the
high-spatial-frequency limb of the human spatial CSF, capturing both the shape
and absolute level of this important measure of performance. For the purposes
of the present chapter, we emphasize less the specific elements of the account,
which will surely be refined by future research, but rather the way the mathematical
principles are combined with computational modeling with the goal of accounting
for the full richness of the visual system. The combination of principles and
computations accounts for factors that are beyond what is possible using analytic
calculations alone.

1.5.5 Image Reconstruction

The ideal observer and computational observer development above applies
Bayesian inference to the analysis of threshold measurements. Thresholds
characterize the limits of visual performance, and the analyses illustrate how
threshold performance can be linked to quantitative measurements of physiological
optics, retinal anatomy, and retinal physiology. Not all vision is threshold vision,
however. Sometimes we are interested in predicting what clearly visible stimuli
look like (e.g., “that apple looks red”) or how similar easily distinguishable objects
appear (e.g., “the color of the apple appears more similar to the color of the tomato
than it does to the color of the banana”). There are a number of methods for
studying suprathreshold vision. These include asymmetric matching (Brainard &
Wandell, 1992; Burnham, Evans, & Newhall, 1957; Wandell, 1995) and various
scaling techniques (T. F. Cox & Cox, 2001; Knoblauch & Maloney, 2012; Maloney
& Yang, 2003). We will not treat these methods here. Below, however, we illustrate
how Bayesian methods can be used to understand how the initial visual encoding
shapes the perceptual inferences that can be made about suprathreshold stimuli.

In our introduction to Bayes’ rule, we illustrated the core ideas by considering
reconstruction of a two-pixel image from the excitations of a single cone, using
both a Gaussian and a Gaussian likelihood. As computer power has increased,
these same Bayesian principles have been applied to increasingly large perceptual
problems. As we illustrate here, it is now possible to reconstruct an estimate of
a full displayed color image from a realistic model of cone excitations using the
Poisson likelihood (Zhang, Cottaris, & Brainard, 2021).
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The forward computation starts with the displayed image x and computes the
cone excitations y. The vector x can be thought of as the concatenation of the
linearized and rasterized pixel values for each of the red, green, and blue channels
of the display. Using the Poisson noise model of the cone excitations, we compute
the likelihood of observed cone excitations p(y|x). Here the vector y is simply a list
of the excitations of each cone in the mosaic. Because the mean cone excitations
are a linear function of the display pixel values, we can write for these mean
excitations

ȳ = Rx (1.23)

for some matrix R. Each column of this matrix may be computed as the vector
of cone excitations produced when one pixel is at its maximum value for one
color channel, with the display values for all other pixels and color channels set to
zero, and these computations may be implemented in software such as ISETBio to
determine explicitly the matrix R (Zhang, Cottaris, & Brainard, 2021). This yields
for the likelihood

p(y|x) = Poisson(Rx), (1.24)

where Poisson() denotes the result of Poisson noise applied independently to
its vector argument by taking each entry of the argument as the corresponding
Poisson mean.

Next, we specify a prior distribution p(x) for natural images. Natural images
have a great deal of structure (Simoncelli, 2005), and a full statistical description of
this structure is not currently available. There are two robust regularities of natural
images, however, that can be described by a multivariate Gaussian. The first is that
within a single wavelength band, the spectral radiances at nearby image locations
are highly correlated (Field, 1987; Pratt, 1978; Ruderman, Cronin, & Chiao, 1998).
The second regularity is that at a single position, values in nearby wavelength
bands are highly correlated (Burton & Moorehead, 1987; Tkacik et al., 2011).
This is a consequence of the relatively smooth spectral functions one observes
in nature (Cohen, 1964; Maloney, 1986; Vrhel, Gershon, & Iwan, 1994). These
two observations may be used to construct a covariance matrix for a multivariate
Gaussian that describes the second-order statistics of natural images. Together with
the average image, these provide a Gaussian image prior.

With the likelihood and prior, we can construct an estimate of the image given a
vector of cone excitations. As with many calculations described in this chapter, the
principles of Bayesian estimation guide the way, but once we introduce the Poisson
likelihood, we turned to numerical computational methods to find the solution.

We used ISETBio to reconstruct images from cone excitations, with the Poisson
likelihood and Gaussian image prior described above. We reconstructed images
for retinal patches at various visual field eccentricities. As visual field eccentricity
increases, the point spread of the retinal image becomes more blurred and the
density with which the cones sample the image decreases (Figures 1.5, 1.6,
and 1.7). Thus, less information becomes available to the visual system in the
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Figure 1.11 Image reconstructions from cone excitations at three retinal
eccentricities. Each row shows reconstructions of seven images using the
Bayesian method and Poisson likelihood and multivariate Gaussian prior.
The reconstructions at 1◦ eccentricity are close to veridical, with increasing
distortions seen at the 10 and 18◦ locations. Each original and reconstructed
image was represented at a pixel resolution of 128 × 128, and the extent
of each image on the retina was 1◦ × 1◦. The mean excitation of the cones
was 105 excitations per cone, so the simulation corresponds to a relatively
high signal-to-noise regime. The parameters of the Gaussian prior were fit to
16 × 16 pixel patches of images from the ImageNet ILSVRC data set (www
.image-net.org), and extended in an overlapping blockwise fashion to the higher
image pixel resolution. This figure should be viewed in color. The color ver-
sion is available at https:/ /color.psych.upenn.edu/supplements/earlyencoding/
GaussianReconColorFig.pdf . Figure courtesy Lingqi Zhang. See Zhang, Cot-
taris, and Brainard (2021) for a more extended discussion of Bayesian image
reconstruction and the general methods used to produce this figure.

peripheral visual field. The effect of this loss for reconstruction depends on the
prior. Although the information loss means that two images whose cone excitations
are different in the fovea can produce the same cone excitations in the periphery,
this ambiguity need not degrade the reconstructions if the probability that one of
the two images will occur is small.

The reconstructions in Figure 1.11 show the effect of information loss at the
level of the cone excitations, in the context of the Gaussian image prior. The
reconstructed image quality in the periphery is worse than in the fovea, but many
objects remain recognizable from the peripheral reconstructions. Moreover, there
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are interesting interactions between the likelihood and prior. For example, the
recovery of color can be better in the fovea and more peripheral locations than
it is in the mid-periphery (see images of strawberries in Figure 1.11, for example).
Zhang, Cottaris, and Brainard (2021) describe the reconstruction approach to
analyzing the initial visual encoding in more detail, extending the ideas to a more
realistic prior than the Gaussian, and showing a number of calculations that use
image reconstruction to examine how prior and likelihood interact to support both
color and spatial vision (see also Brainard, Williams, & Hofer, 2008).

Image reconstruction computations provide useful insights about how statistical
regularities in natural scenes interact with the sensory measurements to guide
perception. But, it is important to bear in mind that reconstruction of displayed
images is not the task for which visual perception evolved. Rather, we view the
task of perception to reconstruct the properties and positions of objects in the three-
dimensional environment. The Bayesian ideas presented here have applicability to
this task as well (Knill & Richards, 1996), but a computational solution that is as
effective as human vision currently remains elusive. This is an area where recent
progress in machine learning and deep neural networks may provide new insights.

1.5.6 Optimizing Sensory Measurements

Earlier in this chapter, we explained that the visual system appears to extract
information about motion, color, and pattern from the pattern of cone excitations
by estimating the local derivatives of various quantities (Adelson & Bergen,
1991). The Bayesian framework provides a quantitative framework for addressing
how to optimize which signals should be transduced by a sensory system when
the goal is reconstruction of the state of the environment, as well as how the
sensory signals should be summarized (e.g., in the form of local derivatives) for
further processing. Indeed, the Bayesian image reconstruction methods developed
here point towards the ingredients required for a full analysis of such questions.
To know what measurements we should make, we first need to know the
prior distribution over the environmental states that an organism will encounter.
We then need a parameterized set of candidate likelihood functions, each of
which describes a feasible arrangement of the sensory apparatus and (if desired)
associated early processing. This information allows us to compute the posterior
over the environmental states for any candidate likelihood function, and we can
ask how well different sensory measurements constrain the posterior, averaging
this information over the environmental states described by the prior. Developing
a parameterized set of candidate likelihood functions requires an understanding
of what biological constraints apply to the sensory system. Also required is an
understanding of the cost of different types of error in the resultant perceptual
representation (the loss function; Berger, 1985), as well as how the cost of error
should be balanced against the energetic cost of making and processing the
sensory measurements (Balasubramanian, Kimber, & Berry, 2001; Koch et al.,
2004; Laughlin, 2001). A number of authors have pursued questions of optimizing
sensory measurements in this manner (Garrigan et al., 2010; Levin, Durand, &
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Freeman, 2008; J. R. Manning & Brainard, 2009; Zhang, Cottaris, & Brainard,
2021).10 It would be interesting to compare the results of an analysis of this sort to
the Adelson/Bergen conjecture that approximations to local derivatives represent
an optimal measurement set.

1.6 Summary and Conclusions

To focus on the mathematics of the initial visual encoding, we introduce
vision science from the point of view of a forward calculation: physics of the stim-
ulus, image formation, and quantitative system modeling. The key mathematical
principles are linear algebra, shift-invariant linear systems, and specification of
sensory noise. The mathematics of vision science shares much in common with
the mathematics of many fields of science and engineering.

After expressing and implementing the forward calculations, we explore the
mathematics of Helmholtz’s hypothesis: people perceive a stimulus that is the most
likely explanation of the cone excitations. We use Bayesian inference methods
to clarify the uncertainty about the encoded signal. This approach requires that
we confront the problem of establishing priors on the signal. There is a close
connection between Helmholtz’s unconscious inference and Bayesian inference;
the latter may be thought of as a quantitative implementation of Helmholtz’s idea.

The approach we describe has a long and accomplished tradition. But, it is not
the only valid way to make progress in vision science; several other approaches are
important. A quantitative study of behavioral rules can be very informative. For
example, color appearance matching was a largely behavioral exploration at first;
an understanding of the physics of the signal and the biological underpinnings
followed later. Also, neurobiological measures can be helpful. Anatomical and
functional measurements that characterize the properties of multiple pathways
within the visual system – including multiple types of retinal ganglion cells and
multiple pathways through the visual cortex – are useful guides to understanding
visual specializations and computations, particularly for stages of vision beyond
the initial encoding. Finally, engineering work to build functional artificial visual
systems continues to be very helpful in understanding vision: a classic principle
states that the best way to demonstrate you understand a system is to build one that
does the same thing. Engineering efforts continue to clarify features that we might
look for in the nervous system, as well as why certain behavioral patterns emerge.

The field of vision science is large and vigorous enough that there is no need to
choose a single approach. We are inspired by the fact that different investigators
adopt different approaches, all seeking to gain understanding. To the student
thinking about how to approach vision science, we offer advice from an American
philosopher who commented about making difficult decisions: “When you come
to a fork in the road, take it” (Yogi Berra).

10 The formalism used in these analyses is interestingly similar to that underlying Bayesian adaptive
psychophysical procedures (Watson, 2017; Watson & Pelli, 1983).
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1.7 Related Literature

This chapter introduces key mathematical and computational approaches
to understanding the initial visual encoding. A number of the mathematical
ideas we present here are developed in more detail by Wandell (1995), and the
classic treatment of visual perception by Cornsweet (1970) remains a valuable
introduction to the field, as does Rodieck (1998). Principles of ray tracing are
introduced in many computer graphics texts (e.g., Pharr, Jakob, & Humphreys,
2016); similarly many texts introduce optics (e.g., Hecht, 2017). In the context of
the retinal image and cone excitations specifically, Packer and Williams (2003),
Pugh (1988), and Yellott, Wandell, and Cornsweet (1984) are useful. Brainard
and Stockman (2010) elaborate in more detail on using linear algebra in support
of colorimetric applications. Although we do not treat the Fourier transform
and frequency domain representations in this chapter, the reader who wishes to
specialize in this field will want to learn about these ideas. Two useful sources
are Bracewell (1978) and Pratt (1978). Useful introductions to statistical inference
include Bishop (2006) and Duda, Hart, and Stork (2001).
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