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In recent years, the importance of the gut microbiota in human health has been revealed and
many publications have highlighted its role as a key component of human physiology. Owing
to the use of modern sequencing approaches, the characterisation of the microbiome in
healthy individuals and in disease has demonstrated a disturbance of the microbiota, or dys-
biosis, associated with pathological conditions. The microbiota establishes a symbiotic cross-
talk with their host: commensal microbes benefit from the nutrient-rich environment provided
by the gut and the microbiota produces hundreds of proteins and metabolites that modulate
key functions of the host, including nutrient processing, maintenance of energy homoeostasis
and immune system development. Many bacteria-derived metabolites originate from dietary
sources. Among them, an important role has been attributed to the metabolites derived from
the bacterial fermentation of dietary fibres, namely SCFA linking host nutrition to intestinal
homoeostasis maintenance. SCFA are important fuels for intestinal epithelial cells (IEC) and
regulate IEC functions through different mechanisms to modulate their proliferation, differen-
tiation as well as functions of subpopulations such as enteroendocrine cells, to impact gut
motility and to strengthen the gut barrier functions as well as host metabolism. Recent
findings show that SCFA, and in particular butyrate, also have important intestinal and
immuno-modulatory functions. In this review, we discuss the mechanisms and the impact
of SCFA on gut functions and host immunity and consequently on human health.

SCFA: Microbiota: Gut

Human subjects are colonised, at birth, by bacteria,
archaea, fungi and viruses, which are collectively called
microbiota. Distinct microbiota inhabit all epithelial sur-
faces of the body: skin, oral cavity, respiratory, gastro-
intestinal and reproductive tracts(1); with the largest
and most diverse microbiota residing in the colon. The
intestinal microbiota is composed of 100 trillions of bac-
teria which represent about 25 times as many genes as

our own Homo sapiens genome. The diversity and com-
plexity of the microbiota is influenced by the host genetic
background, the diet and the environment. Reciprocally,
this microbiota encodes thousands of genes absent in
human genome that exert diverse functions often asso-
ciated with beneficial physiological effects for its host(2–4).
From this close symbiotic relationship emerged the
notion that human subjects and their microbiota form

{These authors contributed equally to this work.
*Corresponding author: Nicolas Lapaque, email nicolas.lapaque@inrae.fr

Abbreviations: cAMP, cyclic adenosine monophosphate; DC, dendritic cell; EEC, enteroendocrine cell; GLP, glucagon-like peptide; GPCR, G pro-
tein-coupled receptor; HDAC, histone deacetylase; IEC, intestinal epithelial cell; MCT, monocarboxylate transporter; PYY, peptide YY; SMCT,
sodium-coupled MCT; Treg, regulatory T cell.

Proceedings of the Nutrition Society (2021), 80, 37–49 doi:10.1017/S0029665120006916
© The Authors 2020 First published online 2 April 2020

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665120006916 Published online by Cambridge University Press

https://orcid.org/0000-0002-6193-4304
https://orcid.org/0000-0002-2995-5105
https://orcid.org/0000-0002-8390-0607
https://orcid.org/0000-0001-7718-6200
https://orcid.org/0000-0003-0824-0108
mailto:nicolas.lapaque@inrae.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0029665120006916&domain=pdf
https://doi.org/10.1017/S0029665120006916


a composite organism, namely a holobiont(5). Advances
in next-generation sequencing and bioinformatics tools
have shown that this relationship is far more complex
than anticipated. Indeed, over the past decade, studies
highlighted that perturbation of the microbiota, referred
to as dysbiosis, and loss of bacterial diversity affect dif-
ferent host systems, particularly metabolic and immuneo
processes, that participate in host physiology and patho-
physiologic conditions(2). Moreover, growing lines of
evidence suggest that the dialogue between microbiota
and the host systems has a homoeostatic role beyond
the gut, and contributes directly to the global wellbeing
of the host. In agreement with this, animal studies have
demonstrated that microbiota is implicated in liver
diseases, allergy, diabetes, airway hypersensitivity, auto-
immune arthritis and even neurological disorders(6–8).

The human body has evolved to functionally interact
with thousands of naturally occurring or microbiota-
derived metabolites. Thus, the intestinal microbiome
provides an extended repertoire of molecules and meta-
bolites that influence the host health. Amongst those
molecules, SCFA, derived from bacteria-dependent
hydrolysis of fibres, have attracted considerable attention
because of their role in host health (Fig. 1a). Indeed,
decreased abundance of SCFA-producing bacteria or
decreased genomic potential for SCFA-production have
been identified in many studies such as type-1 diabetes,
type-2 diabetes, liver cirrhosis, inflammatory bowel
diseases and atherosclerosis(9–14). Here, we aim to pro-
vide an overview of bacterial SCFA production in the
gut, their impact on intestinal cells and host functions,
and their different mechanisms of action.

SCFA production and transport

Production of SCFA

Complex dietary carbohydrates are metabolised by intes-
tinal microbiota through an extensive set of enzymes,
mostly absent in mammals and belonging to the large
family of carbohydrate-active enzymes (reviewed in(15)).
The degradation of dietary fibres by gut microbiota pro-
duces organic acids, gases and a large amount of SCFA.
Acetate (C2), propionate (C3) and butyrate (C4) are the
main SCFA produced (60:20:20 mM/kg in human
colon). SCFA can reach a combined concentration of
50–150 mM mainly in the colon where the microbial bio-
mass is the highest(16–19). Substrates for bacterial fermen-
tation include non-digestible carbohydrates derived from
dietary fibres such as polysaccharide plant cell walls,
resistant starch, soluble oligosaccharide and endogenous
products, such as mucin(20). Besides bacterial fermenta-
tion, SCFA can also be found in plant oil and animal
fats. Butter contains 3–4% of butyrate in the form of
tributyrin(21). However, when fermentable fibre supply
decreases, some bacterial species can switch to amino
acids and protein fermentation as an alternative energy
source, also contributing to SCFA and branched chain
fatty acid production(22,23). The branched chain fatty
acids, i.e. isovalerate, 2-methylbutyrate and isobutyrate,
are present at lower concentrations compared to SCFA

and originate only from protein breakdown. Acetate is a
net fermentation product for most gut bacteria while butyr-
ate and propionate are produced by more specific bacterial
species. Butyrate is produced from acetate, lactate, amino
acids and various carbohydrates via glycolysis from two dif-
ferent pathways, the butyryl-CoA:acetate CoA-transferase
or the phosphotransbutyrylase and butyrate kinase path-
way. Using Fluorescence In Situ Hybridization probes and
PCR, Flint and colleagues have shown that specific families
belonging to the Clostridiales order (Firmicutes) have
the capabilities to produce butyrate: Lachnospiraceae
(Coprococcus, Eubacterium, Anaerostipes and Roseburia),
Ruminococcaceae (Faecalibacterium and Subdoligranu-
lum) and Erysipelotrichaceae (Holdemanella)(24–26). The
butyrate-producing capability of Clostridiales has been
confirmed using in vitro culture in other genera such as
Clostridium, Butyrivibrio, Lachnoclostridium, Marvin-
bryantia, Oscillibacter, Flavonifractor, Erysipelatoclo-
stridium, Anaerotruncus, Dorea, Blautia and
Ruminiclostridium(27,28). Propionate is produced in the
gut from various substrates, including amino acids,
carbohydrates, lactate and 1,2-propanediol. Hence,
most hexoses and pentoses enter the succinate pathway
and result in succinate production, a precursor of propi-
onate. The succinate pathway is present in Bacteroidetes
and some Firmicutes, such as the Negativicutes
(Veillonella and Phascolarctobacterium). Some other
Firmicutes, belonging to Negativicutes (Megasphaera),
Lachnospiraceae (Coprococcus) and Ruminococcaceae,
use the acrylate pathway, in which lactate is the substrate
to produce propionate. The propanediol pathway is pre-
sent in Proteobacteria and Lachnospiraceae species and
use deoxyhexose sugars (e.g. fucose) as substrates. The
commensal bacterium Akkermansia muciniphila, member
of the Verrucomicrobia phylum also produces propion-
ate from this latter pathway(29). Some bacteria, notably
in the Lachnospiraceae family, can produce both propi-
onate and butyrate but from different substrates, e.g.
Roseburia inulivorans(30).

In vitro experiments have shown that Bacteroides growth
is reduced relative to Firmicutes and Actinobacteria
because SCFA negatively impact Bacteroides at mild
acid pH(31). Thus, SCFA production by Firmicutes and
Bacteroides may to be regulated by pH variations, with
more Firmicutes fermentation in the proximal colon (pH
about 5⋅6) and conditions favouring Bacteroides fermenta-
tion in the distal colon with a more neutral pH (pH about
6⋅3)(32). This selective gradient is limiting the propionate
production and promoting butyrate formation in the
more proximal part of the colon(24). Intestinal pH is not
the only factor that impact microbiota composition and
consequently SCFA production. Indeed, intestinal gas pro-
duction (e.g. oxygen and hydrogen) and diet composition
and intake (e.g. types of fibres and iron) have been reported
to influence the microbiota composition and the gut SCFA
concentration(33,34).

Transport of SCFA

In the host, SCFA have distinct roles depending of their
absorption and local physiologic concentrations(35,36).
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Acetate, propionate and butyrate are weak acids with pKa
4⋅8 for butyrate. Under physiological conditions the
colonic pH range from 5⋅5 to 6⋅7, thus most SCFA are
in the ionised form and require transporters for absorp-
tion(37,38). SCFA transporters are expressed at different
levels: in the small intestine: monocarboxylate transporter

(MCT)1 (SLC16A1), sodium-coupled MCT(SMCT)2
(SLC5A12) and SLC16A7 and in the colon: MCT1
(SLC16A1), SMCT2 (SLC5A12), SMCT1 (SL5CA8)
and SLC26A3(20,39). The transporters MCT1, SMCT1
and SLC26A3 show affinities for all three major SCFA
while the other ones are more selective, e.g. SMCT2

Fig. 1. (a) Functional impact of SCFA on the host. (b) Mechanisms: (1) G protein-coupled receptor
(GPCR)-dependent signalling, (2) histone and transcription factor acetylation by SCFA and (3) role of butyrate
as a ligand of transcription factors. AhR, aryl hydrocarbon receptor; ARNT, aryl hydrocarbon receptor nuclear
translocator; HAT, histone acetyltransferase; K/HDAC, lysine/histone deacetylase; MAPK, mitogen-activated
protein kinase; PLC, phospholipase C; TF, transcription factor; XRE, xenobiotic response element.
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only transports butyrate. Butyrate is mainly absorbed via
MCT1 that is expressed both at apical and basolateral
membrane of colonic epithelial cells(39,40). From approxi-
mately 20mM in gut lumen, butyrate concentration on
portal vein reaches a range of 5–10 μM. The liver signifi-
cantly uptakes butyrate as there is almost no splanchnic
release(41,42). Butyrate venous concentration ranges from
0⋅5 to 3⋅3 μM(32). Similarly, a larger amount of propionate
is found in portal vein, about 32 μM, but there is only a
very small release from the liver. Venous concentration
of propionate ranges from 3⋅8 to 5⋅4 μM. In contrast, acet-
ate is weakly absorbed by epithelial cells and the liver. The
portal vein concentration of acetate is 98–143 μM. Hence,
the liver efficiently metabolises the butyrate and propion-
ate released by the gut epithelium and avoids any acute
increase even in the case of artificial enema(32,41).

Cellular uptake of SCFA in their anionic form is
through H+- or Na+-coupled transporters. Thus, butyr-
ate transport directly participates in electrolyte absorp-
tion with increases of Na+ and Cl− absorption and
release of bicarbonate (HCO3

−) in the lumen(39,43,44).
Interestingly, electrolyte absorption is region specific
due to different transporter expression levels in each
gut region(45). Transport of butyrate is electroneutral
through SMCT2 (Na+), resulting in the transport of
one Na+ for each butyrate anion absorbed(46). On the
contrary, SMCT1 transport is electrogenic as two Na+

are transported with one butyrate anion. This results in
electrolytes and water absorption(47,48). MCT1 is a
proton-coupled transporter and has no direct role in
ion transport. However, MCT1 indirectly regulates
bicarbonate secretion through Na+/H+ and Cl−/HCO3

−

exchangers. Interestingly, butyrate modulates the expres-
sion of many transporters including MCT1 and SMCT1,
therefore potentially increasing electrolyte exchanges as
well as its own transport. Butyrate blocks Cl− secretion
by inhibiting Na-K-2Cl cotransporter expression and
increases expression of the Na+/H+ transporter NHE3
through histone deacetylase (HDAC) inhibition and a
specificity protein dependent pathway(49–52).

Mechanisms

SCFA receptors

The human genome encodes for six potential G protein-
coupled receptors (GPCR) sensitive to SCFA: GPR41
(FFAR3), GPR42, GPR43 (FFAR2), GPR109a
(HCAR2), GPR164 (OR51E1) and OR51E2. GPR41
and GPR109a are exclusively Gαi/o-coupled receptors
whereas GPR43 can be coupled to either Gαβγq and
Gαi/o and OR51E2 is αs coupled(53). GPR42 has recently
been identified as a functional GPCR-modulating Ca2+

channel flux, but only the Gβγ pathway downstream
this receptor was explored(54). GPR41, GPR43 and
GPR109a are expressed in numerous organs including
the small and large intestine by various cell types:
immune cells, adipose tissues, heart, skeletal muscle or
neurons(20). GPR43 (FFAR2) and GPR41 (FFAR3) rec-
ognise acetate, butyrate and propionate with affinities
that differ between species, whereas only butyrate

activates GPR109a (Fig. 1b)(55–58). Schematically,
GPR41 activation by propionate and butyrate and
GPR109a activation by butyrate lead to the inhibition
of cyclic adenosine monophosphate (cAMP) accumula-
tion and protein kinase A and mitogen-activated protein
kinases (ERK and p38) activation. Conversely, GPR43 is
activated by the three main SCFA with approximately
the same affinities. GPR43 engagement stimulates the
phospholipase-Cβ, which releases intracellular Ca2+

and activates protein kinase C in addition to cAMP accu-
mulation inhibition and protein kinase A and ERK acti-
vation(59). The highly polymorphic GPR42 is activated
by propionate and modulates Ca2+ by a yet unknown
mechanism that could be similar to GPR43 due to the
very high homology between these two receptors. In
human subjects, GPR42 is expressed in the colon and
in sympathetic ganglia(54). Butyrate is the ligand of
GPR164 (OR51E1) expressed all along the gastrointes-
tinal tract and specifically by enteroendocrine cells
(EEC)(60,61). The olfactory receptor OR51E2 (Olfr78 in
mouse) is activated by propionate and acetate and result
in cAMP and Ca2+ increase. Olfr78 is expressed at the
gut mucosal level by peptide YY (PYY)-positive colonic
EEC(62). It is also detected in various tissues, including
kidney, blood vessels, lung and specific nerves in the
heart and gut(63).

Transcriptional regulations and post-translational
modifications

SCFA have a broad impact on the host: metabolism, dif-
ferentiation, proliferation mainly due to their impact on
gene regulation. Indeed, several studies revealed that
butyrate regulates the expression of 5–20% of human
genes(64–66). Within the cells, butyrate and propionate
exhibit strong inhibition capacity of lysine and histone
deacetylase (K/HDAC) activity, with butyrate being
more potent than propionate(67,68). Moreover, butyrate
is metabolised into acetyl-CoA which stimulates histone
acetyltransferase by further enhancing histone acetyl-
ation (Fig. 1b)(66,69). By their HDAC inhibitor and his-
tone acetyltransferase stimulatory properties, SCFA
promote post-translational modification of histones
through increasing their acetylation. Histone hyperacety-
lation leads to an increased accessibility of transcription
factors to the promoter regions of targeted genes owing
to the modulation of their transcription. HDAC inhib-
ition by butyrate does not only up-regulate gene tran-
scription, repression of several genes such as LHR,
XIAP or IDO-1 has been reported(27,70). In a colonic
cell line, 75 % of the upregulated genes are dependent
of the ATP citrate lyase activity and 25 % are independ-
ent at 0⋅5mM concentration but the proportion is
reversed at high concentration (5 mM). This suggests
that the gene regulation mechanisms are different,
depending on the butyrate concentration. It has been
shown that butyrate does not only tune the histone
acetylation level but also acetylation of other proteins,
including transcription factors such as SP1 and
Foxp3(71,72). SCFA derived from the gut microbiota
also promote crotonylation through their histone
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acetylase properties(73). Histone crotonylation is abun-
dant in the small and large bowel epithelium as well as
in the brain. Crotonyl-CoA modification of histones is
linked to the cell cycle regulation. Moreover, several
studies have shown that butyrate also modifies DNA
and protein methylation and phosphorylation levels(74–
76).

Novel role of butyrate as a ligand of transcription
factors

Besides the extensive described effects of SCFA on host
physiology through GPR and post-translational modifi-
cations, a novel role emerged for butyrate as a ligand
of two transcription factors, expanding our knowledge
on microbial–host crosstalk. By exploring the mechan-
isms involved in the microbial modulation of angiopoie-
tin-like protein 4, Alex and co-workers demonstrated
that SCFA induce angiopoietin-like protein 4 transcrip-
tion and secretion through a novel role as the selective
modulator of PPARγ in colonic cell lines(77). In this
study, Alex and co-workers showed that butyrate pro-
motes, similarly to PPARγ ligands, the interactions
between PPARγ and multiple coactivators and binds
into PPARγ binding pocket with a conformation similar
to the known PPARγ agonist, decanoic acid(77). The evi-
dence suggests, for the first time, an original function of
butyrate as a ligand for a transcription factor. This ori-
ginal mechanism was also reported for another nuclear
transcription factor, the aryl hydrocarbon receptor in
human colonic cell lines(78). This latter study described
a ligand-dependent activation of human aryl hydrocar-
bon receptor by butyrate in synergy with its role as a
HDAC inhibitor. By using selective ligand antagonists
and structural modelling, it emerges that butyrate acti-
vates human aryl hydrocarbon receptor by binding into
its ligand binding pocket similarly to the aryl hydrocar-
bon receptor ligand FICZ(78). Together, these reports
provide an expanded view of the possible mechanisms
for butyrate to modulate human transcription factor
activity that might apply to other transcription factors
(Fig. 1b).

Functional impact of SCFA on the host

SCFA, regulators of the gut metabolism, proliferation
and differentiation

SCFA are efficiently taken up from the gut lumen by the
intestinal epithelial cells (IEC) with different fates
(Fig. 1b). Butyrate is the primary energy source of
IEC, being oxidised via β-oxidation in the mitochondria.
This catabolic process represents from 73 to 75% of oxy-
gen consumption by human colonocytes, by which part
of butyrate is converted into ketone bodies(79–81). The
main substrates of colonocytes are by order of prefer-
ence, butyrate > ketone bodies > amino acid > glucose.
By using a high level of oxygen, the colonocyte metabol-
ism maintains epithelial hypoxia with an oxygen partial
pressure <1% oxygen (7⋅6mmHg), thus favouring anaer-
obic commensals(82). The capacity to produce ketone

bodies and oxidise butyrate is a crucial difference
between the small and large bowel. Epithelial cell butyr-
ate oxidative capacity has been determined in vitro to be
between 1 and 5 mM butyrate, therefore when a greater
concentration is available, SCFA can affect cell functions
such as K/HDAC inhibition(69,83). Moreover, butyrate
absorption increases the pyruvate dehydrogenase kinases
which negatively regulates the pyruvate dehydrogenase
complex. The pyruvate dehydrogenase decarboxylates
pyruvate to produce acetyl-CoA and NADH, both
necessary to tricarboxylic acid(84). This dual action
pushes the colonocyte metabolism from glycolysis to
β-oxidation. After transport into the cells, butyrate
enhances oxidative phosphorylation, which consumes
oxygen(83). Similarly, it has been demonstrated that
fatty acid oxidation is reduced in germ-free mice com-
pared to conventional mice(85). Butyrate is not the only
fatty acid metabolised. Acetate is a substrate for choles-
terol and fatty acid synthesis and is metabolised in mus-
cles. Propionate is a precursor for the synthesis of glucose
in the liver(20,25,85). Acetate and butyrate are also major
substrates for lipogenesis in rat colonocytes(86).

Through the production of SCFA, gut microbiota
actively communicates with host cells and strongly mod-
ulates a variety of cellular mechanisms. Two of the main
functions influenced by SCFA and thus gut microbiota
are cell proliferation and differentiation. Indeed, the pro-
liferative activity of crypt epithelial cells as well as the
migration of mature epithelial cells along the crypt–villus
axis are greatly attenuated in antibiotic-treated and
germ-free mice(87). In the physiological state, butyrate
favours cell differentiation and inhibits proliferation.
First, evidences on IEC were demonstrated on cell
lines(88,89). In these studies, long-term incubation of intes-
tinal cancerous cell lines with SCFA resulted in differen-
tiated phenotypes coupled to decreased cell proliferation.
High concentration of butyrate is associated with inhib-
ition of stem cells and proliferative cells in the crypts,
through a HDAC inhibition-dependent binding of
Foxo3 to promoters of key genes in the cell cycle(90).
Butyrate concentration near the crypt base is estimated
to be 50–800 μM dose equivalent(85,91,92). These studies
indicate that butyrate concentration is low in the deep
crypts and increasing in a gradient along the lumen-to-
crypt axis. Butyrate metabolisation by differentiated
cells on the epithelium plateau may result in a protective
depletion in the crypts that is protective for stem cell
proliferation. Hence, the crypt structure is suggested to
be an adaptive mechanism protecting the gut epithelial
stem cells of butyrate high concentration found in the
lumen(90).

Interestingly, butyrate has a dual role in epithelial cel-
lular metabolisms: it supports healthy cells as primary
energy source for IEC and represses cancerous cell
expansion. This is known as the butyrate paradox or
Warburg effect(66). This is explained by a metabolic
shift occurring in cancerous cells using preferentially glu-
cose as the energy source. The inhibition of cell prolifer-
ation is generally characterised by an increase in reactive
oxygen species production, DNA damages and cell cycle
arrest, suggesting that SCFA initiate apoptosis signalling
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in cancer cells(93–96). Indeed, through the activation of the
pro-apoptotic protein BAX, the upregulation of
apoptosis-inducing factor-mitochondria associated 1 iso-
form 6 and the reduction of mitochondrial membrane
potential, SCFA stimulate the cytochrome c release
which drives caspase 3 activation(93). Coherently, the
induction of the cyclin-dependent kinase inhibitors p21
and p27 and the downregulation of heat-shock cognate
71 kDa protein isoform is observed, leading to growth
arrest(97,98).

Another mechanism for propionate to inhibit cell pro-
liferation is suggested to involve its role as GPCR agon-
ist. In human monocyte and lymphoblast cancer cell
lines, Bindels and colleagues observe that the effect on
cell proliferation is dependent on GPR43 activation(99).
GPR43 displays a dual coupling through Gi and Gq pro-
tein families. While phospholipase C blockage does not
influence cell proliferation, increase in cAMP, mediated
by the inhibition of Gi subunit, slightly reduces the pro-
pionate anti-proliferative effect, suggesting a mechanism
dependent on cAMP levels(99).

Considering the important metabolic shift occurring in
cancer cells, the production and availability of a large
variety of metabolites are modified among which
acetyl-CoA. Acetyl-CoA is crucial in several metabolic
pathways and a fundamental cofactor for histone acetyl-
transferases. Consequently, different cell metabolites are
produced, such as a large amount of lactate, which in
turn could stimulate the growth of commensal bacteria
and partially explain the anti-tumorigenic effect of
some probiotics(100).

Regulation of gut endocrine functions, importance on
host physiology

Among IEC, EEC play an important role in host physi-
ology by secreting hormones that regulate food intake,
insulin secretion and gut functions in response to a variety
of stimuli(101). Among these stimuli, fibre-rich diets or
infusion with SCFA have been associated with
increased circulating levels of gut hormones(102,103).
Supporting these results, expression of butyrate receptors
GPR43, GPR41 and GPR109a have been reported in
EEC(104–106). Acute stimulation of EEC by SCFA is
shown to trigger hormone secretion such as glucagon-
like peptide (GLP)-1 and PYY. The mechanism involves
GPR43 activation leading to increased intracellular cal-
cium, corresponding to the activation of a Gq-coupled
receptor(107). Several studies have confirmed the role of
GPR43 in the EEC response to SCFA using additional
knockout models or agonists(108–110). In particular EEC,
the L-cells, GPR41 is also involved in the GLP-1 secre-
tory response as suggested by the results in GPR41
knockout animals or GPR41 agonists(106,107). However,
GPR41 stimulation also inhibits glucose insulinotropic
polypeptide secretion from glucose insulinotropic poly-
peptide -producing EEC(111). This inhibition of glucose
insulinotropic polypeptide-producing cells could corres-
pond to the activation of Gi/o pathways which are mainly
resulting in inhibitory responses. The exact role of
GPR41 in GLP-1 secretion remains to be fully

understood. The possibility of GPR41 hetero-
dimerisation with GPR43 has been recently highlighted
and could explain a role of GPR41 in GLP-1 stimulatory
activity(112). Additionally, species differences are described
in response to the different SCFA. If propionate and acet-
ate are strong stimuli for PYY and GLP-1 secretion in
rodents at low concentrations, much higher concentrations
are required to induce secretion in human subjects(110,113).
These divergences can be explained both by the variation
of SCFA affinities to the receptor families as well as the
different receptor expression levels. Indeed, GPR41 is
expressed in fewer EEC in human subjects compared to
rodents(106,114). The role of other SCFA receptors
GPR109a, GPR42, OR51E1 and OR51E2, is still to be
deciphered but some studies show that they are also
enriched in some EEC subpopulations(62,115).

In addition to the SCFA-dependent acute stimulation
of gut hormone secretion, it emerged that SCFA also
tune EEC identity and consequently long-term hormonal
production. Indeed, animals fed with fibre-rich diets
have, in addition to a higher circulating gut hormone
levels, an elevated number of EEC(102). Supporting this
result, an increase in the differentiation of epithelial
cells into L-cells by SCFA has been reported, with a
higher GLP-1, PYY and serotonin production(103,116–120).
GPR43 and GPR41 play important but different roles in
the differentiation of EEC. GPR43 stimulation increased
the number of the PYY-producing cells and PYY expres-
sion but not the number of GLP-1-positive cells which is
dependent on GPR41(116,117).

Moreover, receptor-independent pathways are also
involved in the expression regulation of gut hormone
genes. Indeed, butyrate HDAC inhibitory activity highly
increased PYY expression in human L-cells with a much
stronger effect compared to GPR43 stimulation(116). The
modulation of PYY gene expression is associated with
increased production and secretion both under basal
and stimulated conditions and could explain the long-
term effects of SCFA on circulating gut hormone levels
seen with fibre-enriched diets. Butyrate also impacts
EEC responses to external stimuli by regulating the
expression of receptors sensing exogenous molecules
deriving from the microbiota. In particular, butyrate
increases Toll-like receptor expressions in L-cells leading
to an amplified stimulation by Toll-like receptor ligands
and a consequent higher NF-κB activation and butyrate-
dependent PYY expression(121).

Due to their important functions on host, gut hor-
mones link SCFA and the modulation of other gut func-
tions such as electrolyte absorption. Indeed, PYY is
strongly associated with the modulation of electrolyte
and water absorption functions due to the expression of
neuropeptide Y receptors on epithelial cells and neuronal
cells(122,123). As SCFA stimulate PYY release, they
impact electrolyte absorption(124). Similarly, serotonin
is also important in water and electrolyte absorption.
SCFA also increase serotonin production, and blockade
of serotonin receptors decreases butyrate-dependent elec-
trolyte absorption(119,125). These results indicate that the
regulation of electrolyte absorption by SCFA is mediated
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by multiple pathways including gut hormone
modulations.

SCFA have also been associated with tuning of intes-
tinal transit(125). Acute effect of SCFA on gut motility is
hormone dependent with an important role of
PYY(126,127). Moreover, germ-free animals have
decreased gut motility which is partially restored by
SCFA infusion in the colonic lumen, with butyrate hav-
ing the highest effect(128). The gut motility dysfunction in
germ-free mouse could be partially explained by the
highly dysregulated gut endocrine functions. However,
no difference could be found in non-producing serotonin
mouse model using TPH1 knockout mice(128). This sug-
gests that serotonin might not play an important role in
the SCFA-dependent regulation of gut motility and
effects previously described could be minor compared
to other pathways(125). Interestingly, SCFA, and mostly
butyrate, have a direct effect on gut motility through
the regulation of enteric neurons(126). Indeed, some
enteric neurons express GPR41 and can therefore
respond to SCFA(106). Additionally, HDAC inhibition
by butyrate increases gut motility in the long term by
increasing the number of acetylcholine and substance P
positive neurons, highlighting the importance of distinct
mechanisms triggering similar effects(129).

Butyrate and other SCFA are therefore important regu-
lators of EEC functions, both by acutely stimulating gut
hormone secretion, and modulating their production.
Indeed, SCFA increase EEC subpopulation cell numbers
and regulate gene expression. Different mechanisms includ-
ing receptor activation and HDAC inhibition are involved
in these functions, highlighting the important and diverse
roles of SCFA as signalling molecules. Modulations of
gut hormones participate in many roles of SCFA on host
physiology including gut homoeostasis.

Barrier function and immune responses

In the past decade, SCFA have attracted considerable
attention for their impact on host immune responses
and barrier functions. SCFA play one of their major
roles by maintaining an environment favourable for
commensal bacteria and controlling pathogens’ growth.
By stabilising the transcription factor HIF, butyrate
increases VO2 by IEC favouring the physiologic hypoxia
in the colon(130). Maintenance of the colonic anaerobic
environment is key to favour the anaerobe commensal
component of the gut microbiota and control the patho-
gens’ level such as Salmonella in a virtuous cycle(131–
133). However, enteric pathogens such as Salmonella
enterica serovar Typhimurium are highly adapted to
the colonic environment and utilise the gut microbiota-
derived butyrate to compete with resident bacteria(134).
Besides effect on the O2 level in the intestinal tract,
butyrate promotes the epithelial barrier functions by
reducing the epithelial permeability via HIF(130).
Moreover, butyrate reduces epithelial permeability by
the regulation of IL-10 receptor, occludin, zonulin and
claudins, reinforcing the tight junctions and the trans-
epithelial resistance in vitro(135,136). Another important
mechanism involved in the epithelial barrier function

is the modulation of the mucus layer thickness protect-
ing the mucosa. In the colon, MUC2 is the predominant
mucin glycoprotein produced by the goblet cells.
Treatment with butyrate increases MUC2 production
both in vitro and in human colonic biopsies(32,137).
SCFA enhance the epithelial barrier functions by
modulating antimicrobial peptide secretion by the gut
epithelium. Butyrate increases the level of colonic
LL-37 in vitro and in vivo(138,139). Activation of
GPR43 by butyrate induce RegIIIγ and β-defensins
expression by the activation of the mTOR pathway
and STAT3 phosphorylation in mouse IEC(140). The
modulations of β-defensins in epithelial cells rely on
the inhibition of HDAC(141). Interestingly, SCFA and
butyrate in particular, promote antimicrobial peptides
targeting both Gram-positive and -negative bacteria.

It is now clear that gut microbiota plays an important
role in intestinal homoeostasis by controlling the human
immune response notably by the production of SCFA.
Indeed, SCFA have a global anti-inflammatory effect
by up-regulating both anti-inflammatory and down-
regulating pro-inflammatory cytokines by different
mechanisms and consequently promoting mucosal hom-
oeostasis(142). This anti-inflammatory effect can be
mediated by IEC as binding of SCFA to GPR43 and
GPR109a induces Ca2+ efflux and membrane hyperpo-
larisation which activate the inflammasome-activating
protein NLRP3 thereby inducing the release of IL-18
with a protective effect on a dextran sulfate sodium col-
itis mouse model(143). In vitro experiments demonstrate
that the increase of protein acetylation by butyrate
decreases IL-8 production in IEC(144). Moreover, butyr-
ate, and to a lesser extent propionate, upregulate the pro-
duction of TGFβ1 in IEC, a cytokine promoting
anti-inflammatory regulatory T cells (Treg)(145,146). Our
group has shown that butyrate acts independently of
the main GPCR, via its HDAC inhibition property and
the SP1 transcription factor present on the human
TGFβ1 promoter(28). Moreover, in mice, fibre supple-
mentation promotes vitamin A metabolism in small
intestine epithelial cells by increasing RALDH-1. The
production of retinoic acid by epithelial cells, the active
metabolite of vitamin A, is crucial for the tolerogenic
imprinting of dendritic cells (DC)(147).

The impact of SCFA goes beyond the epithelial cells,
with similar mechanisms reported in macrophages and
DC. In mice, macrophage stimulation with butyrate
imprints through HDAC3 inhibition, a metabolic repro-
gramming and elevates antimicrobial peptides. Hence,
upon stimulation, antimicrobial peptides belonging to
the S100 family, ficolin and lysozyme are increased(148).
Here again, butyrate has a stronger antimicrobial effect
than propionate and no protective impact is detected
with acetate. Butyrate treatment of DC derived from
human donors, decreases their capacity to present
antigens and increases IL-10 production leading to a
tolerogenic phenotype(149). Upon lipopolysaccharide treat-
ment, butyrate induces the IL-23 production by DC thus
promoting the differentiation of naive T lymphocytes
into pro-inflammatory Th17(150). Another study showed
that DC treated with butyrate induce the differentiation
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of naive T lymphocytes into anti-inflammatory Tr1
producers of IL-10(151). By regulating the transcriptional
activity, butyrate decreases the inflammatory response
of macrophages exposed to inflammatory microbial
molecules such as lipopolysaccharide and induces their
polarisation through a M2 anti-inflammatory pheno-
type(152,153). Similarly, butyrate-dependent activation of
GPR109a increases the tolerogenic response of colonic
macrophages and DC reducing colonic inflammation
and promoting homoeostasis(154). Furthermore, it has
been shown that butyrate pre-treatment down-regulates
nitric oxide, IL-6 and IL-12 in mice independently of
Toll-like receptor and GPCR pathways. Neutrophil
migration is increased upon treatment with SCFA, in a
GPR43-dependent mechanism(155).

Treg are critical for limiting intestinal inflammation
and have thus been subject of considerable attention to
improve diseases such as inflammatory bowel disease.
Many studies showed that Treg depend on microbiota-
derived signals for proper development and func-
tion(145,146,156,157). Recently, several groups identified
SCFA as key metabolites for promoting differentiation
of naive T lymphocytes into Treg cells in the intes-
tine(71,145,146,152,154,158,159). By interacting directly with
naive T cells, butyrate and propionate increase the acetyl-
ation of the promoter of the transcription factor Foxp3
essential for the differentiation of Treg, leading to an
increase of Foxp3 expression(71,152,158). Another group
suggested that propionate might induce the same changes
via GPR43(71,159). Moreover, butyrate-dependent activa-
tion of GPR109a increases the tolerogenic response of
colonic macrophages and DC, promoting Treg and
IL-10-producing T cells(154). Interestingly, SCFA increase
the TGFβ1 production by IEC via its HDAC inhibition
property thus promoting the Treg differentiation in the
gut(28,145,146). Altogether, these studies highlight that the
molecular mechanisms induced by SCFA to control
Treg-development are complex and involve many cell
types involved in the tolerogenic environment such as
myeloid cells and IEC.

The impact of SCFA on other lymphocyte populations
such as B cells has not been as extensively studied than
their Treg counterparts. Acetate supplementation in
mice increases intestinal IgA in a GPR43 dependent
mechanism(160). Dietary fibres and SCFA enhance
antibody response to bacteria by supporting B cell
differentiation into plasma B cells via the increase of
histone acetylation and of B cell metabolism(161,162).
Mechanistically, it is through the downregulation of B
cell AID and Blimp1, dependent on their HDAC inhibi-
tory activity that SCFA inhibited class-switch DNA
recombination, somatic hypermutation and plasma cell
differentiation. Interestingly, SCFA also modulate the
fate of B-cell-producing autoantibodies and reduce auto-
immunity in lupus-prone mice(162).

Conclusion

The past decade of biological research through a combin-
ation of translation-focused animal models and studies in

human subjects has highlighted the overarching roles that
the gut microbiota plays in human health. It has become
clear that dysbiotic microbiota is associated with a wide
range of pathologies such as obesity, diabetes, CVD,
autoimmune diseases and neuronal disorders. Despite
the lack of evidence in human subjects, causality has
been demonstrated in rodent models. Factors such as
antibiotics use, modern sanitation, quality of diet and
environmental factors linked with the lifestyle changes
that occurred in the past century in developed societies
are suggested to contribute to a decrease in the diversity
of the human microbiome(163).

Diet and nutritional status are important determinants
in human health. Numerous studies have shown that diet
modulates the composition and functions of the micro-
biota in human subjects and animal models(164–166).
These interventional studies showed that microbiota
composition is dynamic, can shift rapidly to dietary
changes and that this shift is individual dependent and
depends on the microbiota diversity of the donor.
Thus, the role of diet in shaping microbiota is changing
our view of the strategies to take to improve the systemic
health. Indeed, it is thought that nutritional interventions
could manipulate the microbial ecology and conse-
quently modulate human physiology with beneficial
health outcomes. However, what constitutes an optimal
health-promoting microbiota and how individuals with
distinct microbiota can achieve such a level of diversity
are still open questions.

As discussed in this review, the gut microbial metabo-
lites SCFA are well known to exert a wide beneficial
impact to the host(167,168). Hence, fibre-induced increase
of SCFA-producing bacteria has been proposed to play
an important role in the prevention and treatment of
many diseases. Supporting this idea, clinical studies
reported that prebiotics and dietary fibres increased the
relative abundance of these beneficial SCFA-producing
bacteria and butyrate fermentation, leading to the
improvement of type-2 diabetes and ulcerative col-
itis(169,170). However, the microbiota produces a vast
number of metabolites that modulate host responses,
sometimes in synergy with SCFA(121). Many studies sup-
port the benefits of increasing both the amount and the
variety of dietary fibres ingested but it is difficult to estab-
lish whether it is a direct role of SCFA or the increased
bacterial diversity that impact host homoeostasis. As
the microbiota is a complex ecosystem, much work
remains to be done to investigate fully the functions of
SCFA alone or with other beneficial metabolites in
physiology and pathophysiology.
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