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Abstract

We provide an elementary method for exploring pricing problems of one spread options
within a fractional Wick–Itô–Skorohod integral framework. Its underlying assets come
from two different interactive markets that are modelled by two mixed fractional Black–
Scholes models with Hurst parameters, H1 , H2, where 1/2 ≤ Hi < 1 for i = 1, 2.
Pricing formulae of these options with respect to strike price K = 0 or K , 0 are given,
and their application to the real market is examined.

2010 Mathematics subject classification: primary 60H30; secondary 42B20, 91G20,
91G80.
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market, fractional Itô formula.

1. Introduction

A spread option is an option whose pay-off depends on the price spread between
two correlated underlying assets with values at time t denoted by S 1(t) and S 2(t).
Considering the European-type options, the pay-off for a spread option of strike K
is [S 1(T ) − S 2(T ) − K)]+ for a call. For a detailed review of different spread option
types, we refer to the work of Carmona and Durrelman [4].

Spread options are popular derivative contracts which are widely traded both on
organized exchanges and over the counter in equity, fixed income, foreign exchanges,
energy and commodity markets, in order to speculate and manage basic risk. Early
work on spread option pricing by Ravindran [16] and Shimko [18] assumed that
prices evolve according to a bivariate geometric Brownian motion with constant
volatility. This framework is tractable, but it cannot capture the implied volatility
smiles. Dempster and Hong [6] advocated models that capture volatility skews on the
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two assets by introducing stochastic volatility to the price processes. In a Black–
Scholes (B–S) framework (bivariate geometric Brownian motion framework or its
extended form), a large number of methods have been developed to solve the problem
of spread option pricing by numerical approaches and analytical approximations (see,
for example, [3, 5, 7, 11, 12, 16]).

As mentioned above, spread options write on various assets. With increasing risk
derived from different markets that needs to be hedged, the spread options that write
on assets coming from different markets become ubiquitous. For instance, an investor
may keep a long position in one market and a short position in another market. One of
the important ways of managing the risk is by writing a spread option on the difference
between the long and the short position of their portfolio. On the other hand, the
evolution of prices may vary with different markets. Therefore, we focus on the spread
options which write on the assets coming from different markets.

It seems unreasonable to use a uniform B–S framework to describe price dynamics
of various underlying assets, and a more flexible framework needs to be created.
More and more evidence shows that the B–S framework is incompatible with real
market data. As summarised by Rostek [17], concerning the stochastic process of
Brownian motion, the main criticism drawn from empiricism is at least two-fold. On
one hand, real market distributions have been shown to be non-Gaussian (see, for
example, Fama [9]), and the debate of recent years has put a great deal of effort into
correcting this problem. On the other hand, the processes of observable market values
seem to exhibit serial correlation [13]. There has been much less effort to get a grip
on this problem by factoring in aspects of persistence. Fractional Brownian motion
(fBm) has often been considered to map this kind of behaviour. This is a Gaussian
stochastic process that is able to easily capture long-range dependencies as well as
self-similarity, and it is an extension of classical Brownian motion and parsimony. It
is natural to replace Brownian motion with fBm in the usual financial models which
have been around for some time [10, 14, 15, 19]. Additionally, note that within the
fractional B–S framework, the Hurst index may vary with different markets. For
example, as Bianchi et al. [2] recently estimated, the Hurst index exhibits differences
among the DJIA (Dow Jones Industrial Average), the FTSE 100 and the N225 (Nikkei
225). Therefore, we discuss the pricing problem in an fBm context, and use Hurst
parameters to characterize different markets of underlying assets.

In our model, the prices of underlying assets follow a mixed geometric fBm, whose
Hurst parameters are H1 and H2, respectively. Clearly, it is parsimonious that we
characterize the fractional market by Hurst parameters. It is well known that the
Hurst parameter stands for the intensity of long-range dependence of a fractional B–S
market; the larger the Hurst parameter, the more intense is the long-range dependence
of the fractional B–S market. So one advantage of our model is that it allows the
implementer to calibrate the Hurst parameter to render the model as a good match
with real markets. Since fBm is an extension of classical Brownian motion, our model
includes the classical model. Moreover, a pricing formula is derived in the paper for
spread options within a fractional Wick–Itô–Skorohod (FWIS) integral framework.
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Since the model is better aligned with a real market, the pricing formula that we have
derived is more practicable. Finally, some figures depicting the price of spread options
versus the lifetime of the options are drawn with diverse values of parameters. These
figures may give some intuition and insight into the pricing formula.

In the next section, we give some notation and definitions and present the underlying
asset price model. In Section 3, the pricing formulae of the spread option towards
strike price K = 0 and K , 0 are presented. In Section 4, the behaviour of the pricing
formulae of the spread option is displayed in various situations. Conclusions are drawn
in Section 5.

2. Fractional Wick–Itô–Skorohod integral framework

It is well known that using the pathwise integral concept, the B–S model based
on fBm is not free of arbitrage. To avoid this, we discuss the spread option pricing
problem within a fWIS integral framework developed by Biagini et al. [1]. We show
that the fractional B–S model is free of arbitrage within this framework.

Let S(R) denote the Schwartz space of rapidly decreasing smooth functions on R,
equipped with the inner product

〈 f , g〉H = H(2H − 1)
∫
R2

f (s) g(t)|t − s|2H−2 ds dt, f , g ∈ S(R),

and let the completion of S(R) be denoted by L2
H(R). If f , g ∈ L2

H(R), then we define
the Wick-product by(∫

R

f dB(H)
)
�

(∫
R

g dB(H)
)

=

(∫
R

f dB(H)
)
·

(∫
R

g dB(H)
)
− 〈 f , g〉H .

Moreover, we define the Wick-exponential for f ∈ L2
H(R) by

exp�(< ω, f >) = exp
(
< ω, f > − 1

2‖ f ‖
2
H
)
.

Definition 2.1. Let (Ft, t ∈ [0,T ]) be a stochastic process such that F ∈ Lφ(0,T ). Then
its fWIS integral,

∫ T
0 Fs dB(H)

s , is defined as∫ T

0
Fs dB(H) = lim

|πn |→0

n∑
i=0

Fti � (B(H)
ti+1
− B(H)

ti ),

where πn = {t(n)
i | 0 = t(n)

0 < t(n)
1 < · · · < t(n)

n−1 < t(n)
n = T } is the division of the time interval

[0,T ], |πn| = max1≤i≤n{|t
(n)
i − t(n)

i−1|} and H > 1/2.

In this paper, our study is confined to two interactive financial markets, and each
market consists of a risky asset (for example, a stock) and a risk-free asset (for
example, a bank account). The risk-free asset is denoted by S 0(t) and we assume
that it satisfies

dS 0(t) = rS 0(t) dt, S 0(0) = 1, 0 ≤ t ≤ T (2.1)
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with constant risk-free interest rate r > 0. The risky assets from each market are
denoted by S i(t). It is assumed that S i(t) follows a mixed geometric fBm, that is,
S 1(t) and S 2(t), respectively, obey the fractional stochastic differential equations

dS 1(t) = S 1(t) �
(
µ1 + σ1W (H1)

1 (t) + ρ1W (H2)
2 (t)

)
dt, (2.2)

dS 2(t) = S 2(t) �
(
µ2 + σ2W (H2)

2 (t) + ρ2W (H1)
1 (t)

)
dt, (2.3)

where W (Hi)
i = (dB(Hi)

i )/(dt) is the white noise with respect to B(Hi)
i and µi, σi, ρi ≥ 0 are

constants for i = 1, 2.
We now recall the notion of a Wick-self-financing portfolio from Elliott and Van

der Hoek [8].

Definition 2.2. A portfolio θ = (θ0,t, θ1,t, θ2,t) is said to be Wick-self-financing if θi,t is
fWIS integrable with respect to S i for i = 1,2, and if Xt(θ) =

∑2
i=0 θi,tS i(t) for 0 ≤ t ≤ T ,

then

Xt(θ) = X0(θ) +

∫ t

0
θ1,s d�S 1(s) +

∫ t

0
θ2,s d�S 2(s),

where the fWIS integral with respect to S i is defined by∫ t

0
θi,s d�S i(s) = µi

∫ t

0
θi,sS i(s) dt + σi

∫ t

0
θi,sS i(s) dB(H1) + ρi

∫ t

0
θi,sS i(s) dB(H2).

Remark 2.3. (i) It has been proved that the above model framework is free of
arbitrage with the class of Wick-self-financing portfolios [1, Ch. 3].

(ii) In view of the risk preference, in the case of a fractional Brownian market,
there is an additional correction to account for the evolution of the past.
More precisely, we have historically induced shifts −σ2

1t2H1/2 − ρ2
1t2H2/2 and

−σ2
2t2H2/2 − ρ2

2t2H1/2 of the distribution, respectively. This means that a positive
prediction for the random process of fBm results in a downward correction of
the adjusted drift rate. The relationship below these is that the more promising
the prediction of S T due to the observation of the past, the more evident the
mispricing of the stock, and, for equilibrium reasons, the stronger the downward
adjustment of the deterministic drift rate.

(iii) If we let ρ1 = ρ2 = 0, then the equations (2.2) and (2.3) become the classical
fractional B–S models that account for the main features of Market 1 and Market
2, respectively. The last term ρ1W (H2)

2 in (2.2) reflects the effects of Market 2 on
the Market 1; and the last term ρ2W (H1)

1 in (2.3) reflects the effects of Market 1
on the Market 2. Generally, the effect from another market is limited, and thus
we assume that σi > ρi.

In this paper, we formulate the following spread options.

Definition 2.4. A spread option with strike K written on S i(t) is an option that at
maturity time T, has pay-off function {S 2(T ) − S 1(T ) − K}+, denoted by V(t, S 1, S 2).
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3. Main results

This section is devoted to the pricing of spread options within the fWIS integral
framework. We need the following lemma and we omit the proof for brevity.

Lemma 3.1. Let f ∈ C1,2,2(R+,R,R), and let the risk assets S 1(t) and S 2(t) satisfy the
fractional stochastic differential equations (2.2) and (2.3), respectively. Then, for
0 < t < T,

f (t, S 1(t), S 2(t)) = f (0, S 1(0), S 2(0)) +

∫ t

0

∂ f
∂s

ds +

∫ t

0

∂ f
∂S 1

d�S 1(s) +

∫ t

0

∂ f
∂S 2

d�S 2(s)

+

∫ t

0

{
AS 2

1
∂2 f
∂S 2

1

+ 2BS 1S 2
∂2 f

∂S 2∂S 1
+ CS 2

2
∂2 f
∂S 2

2

}
ds (3.1)

almost surely, where

A = H1σ
2
1t2H1−1 + H2ρ

2
1t2H2−1,

B = H1σ1ρ2t2H1−1 + H2σ2ρ1t2H2−1,

C = H1ρ
2
2t2H1−1 + H2σ

2
2t2H2−1.

Theorem 3.2. Suppose that the risk-free asset S 0(t) satisfies (2.1) and that the
underlying S 1(t) and S 2(t) follow equations (2.2) and (2.3), respectively. Then the
price of the spread option V(t, S 1, S 2) with exercise price K = 0 and expiry date T at
time t ∈ [0,T ] can be expressed as

V(t, S 1, S 2) = S 2Φ

( ln S 2 − ln S 1 + D/2
√

D

)
− S 1Φ

( ln S 2 − ln S 1 − D/2
√

D

)
, (3.2)

where D = (σ1 − ρ2)2T1 + (σ2 − ρ1)2T2.

Proof. Using ∆-hedge strategy, we create a portfolio

Π =

([
V(t, S 1, S 2) − S 1(t)

∂V
∂S 1
− S 2(t)

∂V
∂S 2

] /
S 0(t),

∂V
∂S 1

,
∂V
∂S 2

)
to replicate the spread option V(t, S 1, S 2). By Lemma 3.1 and equation (2.1),

V(t, S 1(t), S 2(t)) − V(0, S 1(0), S 2(0))

=

∫ t

0

[(
V(s, S 1, S 2) − S 1(s)

∂V
∂S 1
− S 2(s)

∂V
∂S 2

) /
S 0(s)

]
dS 0(s)

+

∫ t

0

∂V
∂S 1

d�S 1(s) +

∫ t

0

∂V
∂S 2

d�S 2(s)

+

∫ t

0

{
∂V
∂s

+ AS 2
1
∂2V
∂S 2

1

+ 2BS 1S 2
∂2V

∂S 2∂S 1
+ CS 2

2
∂2 f
∂S 2

2

−

(
V(s, S 1, S 2) − S 1(s)

∂V
∂S 1
− S 2(s)

∂V
∂S 2

)
r
}

ds.
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Comparing equation (3.1) with Definition 2.2, it is easy to see that the portfolio Π will
be Wick-self-financing if the last integral vanishes for all t ∈ [0, T ]. Thus, letting the
integrand of the last term vanish to guarantee the portfolio Π to be Wick-self-financing,
and coupling with the boundary condition V(T,S 1(T ),S 2(T )) = (S 2(T ) − S 1(T ) − K)+,
we safely obtain

∂V
∂t

+ AS 2
1
∂2V
∂S 2

1

+ 2BS 1S 2
∂2V

∂S 2∂S 1
+ CS 2

2
∂2V
∂S 2

2

+ rS 1
∂V
∂S 1

+ rS 2
∂V
∂S 2

= rV

V(T, S 1, S 2) = (S 2(T ) − S 1(T ) − K)+.

(3.3)

In the case K = 0, we let η = S 1/S 2 and S 2U(η, t) = V(t, S 1, S 2); then condition
(3.3) is rewritten as 

∂U
∂t

+ (A − 2B + C)η2 ∂
2U
∂η2 = 0

U(η,T ) = (1 − η)+.
(3.4)

Putting η = es and Ũ(s, t) = U(η, t), (3.4) yields
∂Ũ
∂t

+ (A − 2B + C)
(
∂2Ũ
∂s2 −

∂Ũ
∂s

)
= 0

Ũ(s,T ) = (1 − es)+ = h(s).

Applying the Fourier transform in the space variable s,
d̂̃U
dt

= (A − 2B + C)(4π2θ2 + 2πiθ)̂̃U
̂̃U(θ,T ) = ĥ(θ).

(3.5)

By a standard calculation, we get the solution to the Cauchy problem (3.5) aŝ̃U(θ, t) = ĥ(θ) exp
{
−

D
2

(4π2θ2 + 2πiθ)
}

= ĥ(θ)Ĝt(θ)

in distribution sense for the last equation in (3.5), where using the inverse Fourier
transform to Ĝt(θ) with respect to θ yields

Gt(s) =
1
√

2πD
exp

{
−

(s − D/2)2

2D

}
.

Hence, by the inverse Fourier transform, we get the solution of (3.5) as

Ũ(s, t) = (h ∗Gt)(s) =
1
√

2πD

∫ ∞

−∞

(1 − es−y)+e−(y−D/2)2/2D dy

=
1
√

2πD

∫ ∞

s
e−(y−D/2)2/2D dy −

es

√
2πD

∫ ∞

s
e{−(y−D/2)2/2D}−y dy,

which gives the solution of (3.4)

U(η, t) = Φ

(
− ln η + D/2
√

D

)
− ηΦ

(
− ln η − D/2
√

D

)
,

and thus, after substituting the original variable back in the above, we obtain (3.2).
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In the case K , 0, the dimension of equation (3.3) cannot be reduced by some
proper transforms, so the computation becomes more complicated. But the method is
similar to the situation when K = 0. Now we let x1 = ln S 1 and x2 = ln S 2 and denote
U(t, x1, x2) = V(t, ex1 , ex2 ) = V(t, S 1, S 2). Then a direct computation implies thatUt + AUx1 x1 + 2BUx1 x2 + CUx2 x2 + (r − A)Ux1 + (r −C)Ux2 = rU

U(T, x1, x2) = (ex2 − ex1 − K)+ = h(X),
(3.6)

where X = (x1, x2) is regarded as the two-dimensional space variable. Applying a
Fourier transform to (3.6),

Û(t, ξ) = ĥ(ξ)e
∫ T

t ϕ(s,ξ) ds = ĥ(ξ)Ĝt(ξ),

where ξ = (ξ1, ξ2) and Û(t, ξ) is the Fourier transform of U(t, X) with respect to X, and

ϕ(t, ξ) = −A(ξ2
1 + iξ1) − 2Bπ2ξ1ξ2 −C(ξ2

2 + iξ2) + i(ξ1 + ξ2)r − r.

Moreover, the Green function G can be expressed as

G(t, y1, y2) =
e−r(T−t)

2π
√

Dt
e−g(·),

where

g(·) =
A1{y2 −C1 + r(T − t)}2 + C1{y1 − A1 + r(T − t)}2

D1

−
2B1{y2 −C1 + r(T − t)}{y1 − A1 + r(T − t)}

D1
.

Hence, by the convolution theorem, the solution of (3.6) can be written as

U(t, x1, x2) = (h ∗Gt)(X) =

∫
R2

G(t, y1, y2)(ex2−y2 − ex1−y1 − K)+ dy1 dy2, (3.7)

which leads to the pricing formula for the case K , 0. �

Remark 3.3. (1) To emphasize the fact that equation (3.3) can be solved by a simple
and concise method in the case K = 0, we divide the proof into two cases.

(2) If we let H1 = H2 = 1/2 in Lemma 3.1, it becomes the classical Itô’s lemma. So
the theorem extends the pricing problem of a classical spread option to a more
general situation that can more effectively reflect the real market.

4. Behaviour of pricing formula

Since the pricing formula (3.7) is complicated, checking its behaviour in a direct
way is difficult; but drawing some figures may give us some insight into its behaviour.
Firstly, we set the expiration date T = 2 and ρ1 = ρ2 = ρ, the measure of interaction
between double markets. Then we calculate the price of the option at given parameter
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Figure 1. The behaviour of price related to time t with different volatility σ, where the other parameters
are ρ = 0.1, r = 0.1,H1 = 0.6,H2 = 0.7,T = 2,K = 0.9, S 1(t) = 2, S 2(t) = 5.

Figure 2. The behaviour of price related to time t with different Hi, where the other parameters are
ρ = 0.15, r = 0.1, σ1 = 1, σ2 = 0.6,T = 2,K = 0.9, S 1(t) = 2, S 2(t) = 5.

values and at every time t ∈ [0, T ]. Finally, we plot the change of price with time and
attain the term structure of the spread options.

In Figure 1, the relationship between the behaviour of price V(t,S 1,S 2) with respect
to t and the volatility σ is examined. It is evident that the volatility affects the option’s
price dramatically, and the larger volatility σ implies a higher price V(t, S 1, S 2) at
any time. This is reasonable, since the larger volatility σ indicates higher risk for the
option’s writer, requiring a higher return. Figure 2 shows that the larger the Hurst
index, the higher the price V(t, S 1, S 2) at any time. Comparing Figures 2(a) and 2(b),
we observe that the increase of Hurst index H1 contributes more to the increase of
the price compared with H2. This is reasonable and compatible with the real market,
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Figure 3. The behaviour of price related to time t with different prices of underlying assets S(t), where
the other parameters are ρ = 0.15, r = 0.1, σ1 = 1, σ2 = 0.6,T = 2,K = 0.9,H1 = 0.6,H2 = 0.7.

since the volatility σ1 of Market 1 is 1.0, which is higher than the volatility σ2 of
Market 2, which has the value 0.6. On the other hand, the Hurst index measures the
memory of the market, that is, a larger Hurst index indicates a more stable market.
Thus, increasing the Hurst index in Market 1 contributes to stabilizing the market as
well as reducing the risk. This makes intrinsic value play a more important role in
option valuation. The graph of V(t, S 1(t), S 2(t)) is displayed in Figure 3 for each of
the values of S 1(t) and S 2(t). As shown in Figure 3(a), by fixing S 2(t) = 4, the price
is high for small S 1(t) and low for large S 1(t). This is not unexpected since, when
S 1(t) + K < S 2(t), the intrinsic value of the spread option is equal to S 2(t) − S 1(t) − K
at any time t, and a large intrinsic value implies a high price. For S 1(t) = 2, the intrinsic
value goes up with increasing S 2(t) with strike being kept constant. The graph of
V(t, S 1(t), S 2(t)) is displayed in Figure 4 for each of the values of ρ. It indicates that
the price is high for large |ρ| and low for small |ρ|. However, it is not affected by the
sign of ρ. Another intriguing outcome is that |ρ| affects the option’s term structure
dramatically when ρ is large. It means that the option premium changes dramatically
at different times t when the double markets are closely correlated.

From all the figures, we observe that the price changes mildly at large (T − t) and
changes sharply at small (T − t). This is coincident with the nature of the extrinsic
value of the spread option, so the behaviour of the pricing formula is compatible with
a real market.

5. Conclusion

Inspired by the widespread use of the spread option, we have considered spread
option pricing on assets that come from different markets, marked by different Hurst
indices. Our market model not only stresses the difference of markets, but also does not
neglect the interaction of them. Within an fWIS integral framework, we have obtained

https://doi.org/10.1017/S1446181117000220 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000220


[10] On multi-asset spread option pricing 395

Figure 4. The behaviour of price related to time t with different ρ, where the other parameters are
r = 0.1, σ1 = 1, σ2 = 0.6,T = 2,K = 0.9,H1 = 0.6,H2 = 0.7, S 1(t) = 2, S 2(t) = 5.

a pricing formula of the spread option. The figures show that the pricing formula is
compatible with the real market.

In summary, we would like to point out that this work is a first attempt at developing
a theory of spread option pricing, based on the underlying assets associated with
two different fractional markets, whose main characteristics are presented by Hurst
parameters H1 and H2. We have assumed that these two parameters are constant for
the evolution of returns across all timescales. One natural theoretical extension of this
work would be to let H1 and H2 switch between different values at different times, or
be a function of the timescale. Another possible extension to the model would be to
include the asymmetric volatility with the underlying asset returns. On the other hand,
further work on estimating the parameters such as σ,H1,H2, can be done by using
econometric methods.
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