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Observations of the water-vein systetn in polycrystalline 
• Ice 
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ABSTRACT. The geometry of the vein system in ice has been investigated using 
photographs of enlarged veins in ice samples that were grown in the laboratory. The 
veins, which are non-uniform, act as tiny triangular-shaped, water-filled prisms that 
refract the light passing through them. 

The three vein widths in the cross-section of a vein can be deduced from two 
photographs taken from different directions. The dihedral angle along a given vein 
edge can be observed directly by viewing it at a node, where four veins meet, from a 
particular direction. The dihedral angles range from 25° ± 10 to 105° ± 10. It is 
shown that the vein cross-section can be constructed, given the three widths of a vein 
and one of the dihedral angles, providing that the radius of curvature around the 
vein walls Tv is a constant. This assumption can be checked if the values of at least two 
of the dihedral angles associated with the vein cross-section are known . If Tv is a 
constant, then the solid-liquid interfacial energy Isl must be isotropic for the veins in 
question and any deviations from uniform equilibrium geometry must derive 
primarily from anisotropy in the grain-boundary energy ISS' The cross-sections of 
three veins that meet in a particular node are constructed. The assumption of 
isotropic Isl is found to hold for this node. 

1. THE PURPOSE OF THE PAPER 

The presence, in polycrystalline ice, of an interconnected 
system of water-filled veins that lie along the lines where 
three grains meet was predicted by Nye and Frank (1973) 
and has been observed by numerous workers. The exact 
equilibrium geometry of an idealized system with 
isotropic surface free energies has been derived by Nye 
(1989). The main purpose of this paper is to study the 
equilibrium geometry of the vein system in ice using 
photographs which resolve the features and to compare 
the real system with the idealized system. 

along the lines where three grains meet, the grain edges. 
The water located at the grain edges is of primary 
importance as it is here that the two phases are in thermal 
equilibrium. 

2. INTRODUCTION 

Polycrystalline ice is a two-phase system primarily 
because of the limited solubility of impurities in the solid 
phase. A liquid phase is inevitable above the eutectic 
temperature once the solubility limit has been exceeded 
(Paren and Walker, 1971). Water in polycrystalline ice 
occurs within grains in the form of internal melt-figures 
and inside bubbles, at grain boundaries in lenses and 
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The equilibrium geometry of the water inclusions is 
determined by the surface free energies of the solid- solid 
interface or grain boundary ISS and the solid- liquid 
interface 'sl. The term equilibrium geometry refers to the 
shape of the inclusions when there are no temperature or 
impurity concentration gradients within the vein system. 
If ISS and Isl are isotropic, i.e. they are independen t of the 
crystallographic orientation of the grains, then the 
equilibrium geometry is defined by the dihedral angle 
<p, which is the angle measured in the water where the 
water meets a grain boundary. As rss and Isl are in this 

Grain A 

GrainB 

Fig. 1. The dihedral angle <p where the water meets a 
grain boundary between two grains A and B. 
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case cons tan ts of the system, we can see from Figure 1 that 

2 cosp. = 'YSS 
2 'YsI' 

(1) 

and 4> is therefore also a constant. Nye and Frank (1973) 
described how the equilibrium geometry depends on the 
exact value of 4>. They found that for 4> > 60° the liquid 
phase resides in isolated pockets at four-grain intersec­
tions. When 4> < 60°, however, the liquid phase extends 
along the grain edges forming an interconnected system of 
veins . The veins are equilateral in cross-section with 
almost cylindrical faces that are concave as viewed from 
the ice, as shown in Figure 2a. In terms of the radius of 
curvature rv, which, for a straight vein, is constant 
around the vein cross-section, the vein width dv is given 
by 

d., = 2r v sin "I, (2) 

and the cross-sectional area of the vein Av is 

Av = ((3)~sin2,-3'Y+~sin(2,))r; (3) 

where 1= 7r/6 - 4>/2. For 4> = 32° (the value measured 
by Walford and reported in Nye and Mae (1972)) , 
Equation (3) reduces to Av = CtvT; = 0.0725r;. Four 

grain B 

grain 
grain A 

Ca) 

Fig. 2. Vein system geometry for 4> < 60°: (a) vein cross­
sectionfor 4> = 32" and (b) perspective drawing of a node 
for 4> = 33.~ (from Nye, 1989). 
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vems meet in a node at a four-grain intersection. The 
stable nodal shape has been computed by Nye (1989) for 
a constant dihedral angle of 4> = 33.6° (the value 
measured by Walford and others (1987)), and is a 
tetrahedron with concave non-spherical faces and corners 
that open out into the veins (see Fig. 2b). 

The equilibrium geometry for isotropic surface free 
energies is strictly uniform; all the nodes are identical and 
all the veins have identical cross-sections. Anisotropy in 
'YSS or IsI will produce a non-uniform equilibrium 
geometry and the vein system may not be complete. 
However, even in a non-uniform vein system, it is possible 
for the radius of curvature Tv to be a constant of the 
system, if the deviations from uniform geometry are 
primarily due to anisotropy in ISS This is because the 
temperature depression in the veins due to the curvature 
of the vein walls is proportional to 'Yst/rv . 

Similar results have been obtained for the melt 
geometries of other polycrystalline materials, notably for 
metals and alloys (Smith, 1948) and for silicate melts 
(Beere, 1975a, b, 1981). The dihedral angles of many of 
these systems have been measured. Beert~ (1975a, b) 
commented that dihedral angles 4> > 60° are typical for 
powder compacts and Smith (1948) quoted many angles 
4> > 60° found in alloys. For such systems, the melt is 
found in pockets at the four-grain intersections. In both 
these systems, the liquid and solid phases generally have 
different compositions. McKenzie (1984) noted that 
observations of the dihedral angle in silicate and other 
ceramic melts are compatible with 4> < 60° (see e.g. ''''aff 
and Bulau (1979) who measured 4> ~ 50° for silicate 
melts). The conclusion is that partially molten mantle 
rocks contain an interconnected network of veins. This is 
directly analogous to the situation in ice. 

Some previous measurements of the dihedral angle in 
ice are listed in Table 1. The values show some scatter but 
in all cases 4> < 60°, which suggests that there is an 
infini te1y connected network of veins and that the 
idealized vein system shown in Figure 2 and described 
by Equations (2) and (3) is sufficient for most purposes. 
Nye and Frank (1973) suggested that the presence of such 
an infinitely connected vein system would cause a glacier 
to be permeable to water and impurities. Other physical 
properties of ice, in particular the high d.c. conductivity 
of polar ice (Wolff and Paren, 1984) and the flow of 
glacier ice (Paren and Walker, 1971; Glen and others, 
1977) have also been explained on the basis of a well­
connected system. 

The values quoted in the table were all measured 

Table 1. Measurements of the dihedral angle 4> in ice 

4> = 20° ± 10° 
4> = 32° ± 3° 

4> = 24° ±8° 
4> = 34° ±8° 
4> = 33.6° ± 0.7° 
4>=25°±1° 

Ketcham and Hobbs (1969) 
Walford, reported in Nye and Mae 

(1972) 
Morris (1972) (samples A) 
Morris (1972) (samples B) 
Walford and others (1987) 
Walford and Nye (1991) 
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either at lenses or where a vein crops out at the surface of 
a sample. There are very few reported observations 
concerning the detailed geometry of the vein system itself. 
Raymond and Harrison (1975) presented observations of 
the veins found in natural ice samples taken from Blue 
Glacier, Mount Olympus, U.S.A. They reported that not 
all grain edges had veins. However, they did not examine 
the details of the vein cross-sectional shape and were 
unable to resolve the vein system in sufficient detail to 
relate the observed width of the veins to the parameters of 
the vein cross-section. It is of interest to know how 
uniform the equilibrium geometry is, as this will fix an 
upper limit to the connectedness of the vein system. Other 
mechanisms associated with deformation processes (Nye 
and Mae, 1972), blocking by bubbles (Lliboutry, 1971) 
and thermal properties of bubbles partially filled with 
water (Raymond, 1976) could cause further reductions. 

3. SAMPLES 

Clear, stress-free polycrystalline ice samples were grown 
in the laboratory using the apparatus shown in Figure 3. 
A plastic bag filled with distilled water was lowered into a 
freezer. The temperature in the freezer was -27°C. The 
plastic bag used was made of 35 mm film cover, which 
could be cut to any length. A bag was created by tying a 
knot in one of the open ends. By freezing the water 
unidirectionally in this way, the volume expansion on 
freezing was accommodated and the ice was left stress­
free. The ice/water interface or freezing front remained in 
roughly the same position relative to the freezer; it swept 
through the sample as the bag was lowered. The air that 
was dissolved in the water came out of solution at the 
freezing front. By stirring the water just above the freezing 
front, the bubbles were dislodged from the ice/water 
interface and so did not become entrapped in the ice. The 
ice was therefore largely bubble-free and hence clear. The 
depth of the stirrer could be altered. This was important 
because the freezing front tended to rise by a few 
centimetres relative to the freezer as the bag was lowered 
into it and the reservoir of warm water above the 
interface was lost. The resulting ice columns were 
typically about 45 cm long and 3.2 cm in diameter. 

Some ice columns were grown very slowly at about 
4 cm d- I. This usualiy produced a single crystal with c-axis 
normal to the direction of growth. Ketcham and Hobbs 
(1967) specified a maximum speed of about 7 cmd-I for 
growing a single crystal. As veins only exist in polycrystal­
line ice, the majority of ice columns were grown at about 
15 cm d- I. The grains in these columns tend to be long 
and thin with the majority of veins running roughly 
parallel to the cylinder axis. At the end of the columns, 
the ice was often a single crystal with the c-axis normal to 
the direction of growth. The grain-size in the direction of 
growth varied from less than I mm to about 400 mm. The 
grain-size perpendicular to the direction of growth was 
seen to increase with height in the column, typically from 
about I mm up to lO mm. The grain structure in the ice 
columns therefore shows strong signs of competitive grain 
growth. The preferred orientation of crystals has the basal 
plane parallel and the c-axis normal to the direction of 
growth, in agreement with observations by other workers 

Mader: Water-vein system in polycrystalline ice 
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~v 
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::::10cm 

Fig. 3. Sample-growing technique. 

(Ramseier, 1966, 1968; Ketcham and Hobbs, 1967). 
The distribution of the ionic impurities in the columns 

was investigated by measuring the electrical conductivity 
of meltwater samples taken from different regions in the 
columns (Mader, 1990). Most of the impurities were 
found at the ice/bag interface, within about I mm of the 
curved surface, and at the very top of the columns. 
Impurity-concentration analyses were carried out by 
British Antarctic Survey chemists on a melted sample of 
polycrystalline ice taken from the central part of an ice 
sample, the dirty surface layer having been melted away. 
They measured a bulk impurity content of about 
lO-6 moll-I. 

The ice columns were split into samples, 5-7 cm long, 
by making an incision around the circumference of the 
column with a fine-bladed saw. The sample was then 
cleaved off the column by placing the tip of a heavy-duty, 
flat-bladed screwdriver in the incision and giving it a 
sharp tap with a hammer. The surfaces were generally flat 
and clean. 

The veins in the samples immediately after growth 
were very small because of the low temperature in the 
freezer (-27°C). The veins were best studied when they 
were much larger, that is, at temperatures closer to O°C. 
Therefore, in preparation for an experiment, the 
temperature of the samples was raised by placing them 
in a vacuum flask that contained a freezing mixture of 
singly-distilled water and distilled-water ice chips. The 
samples were each in individual, sealed plastic bags and 
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so were only in thermal contact with the ice/water 
mixture. This preparation process we called rotting, and 
has been discussed in more detail by Nye (1991 b) and 
Mader (1992). 

The temperature of the freezing mixture was very 
close to O°C. It was probably marginally below O°C 
because of residual impurities in the flask. As the 
temperature of the sample rose, the veins grew. 
Eventually, the veins were very large. Apparent vein 
widths of several 100 J.lm have been measured in samples 
that had been rotted for periods of weeks. Initially, the 
veins grew fast but, by the time they reached widths of 
100 J.lm or more, the process was much slower. The 
samples could be kept for many days at this stage with 
very little change in the vein size. The longest a sample 
was held like this before use was 70 d. 

4. EXPERIMENTAL APPARATUS 

The experiments were performed in a commercial walk-in 
freezer that was controlled to 0° ± 2°C. Figure 4 gives an 
overview of the experimental apparatus used inside the 
freezer. A cylindrical, polycrystalline ice sample S 
(length::::: 7 cm, diameter::::: 3 cm) was suspended in a 
saline water bath A (capacity::::: 1.5 I). The ice was 
clamped in the jaws of a sample holder H that was 
specially designed to hold and position ice. The sample 
was viewed in transmission by an optical microscope M 
which has an attachment for a camera (not shown). Light 
was provided by a white-light source L (power::::: 15 W ) 
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'" 10cm 

lamp, 
L 

microscope, 

Fig. 4. Schematic representation of the experimental 
apparatus. 

Fig. 5. The sample holder. 

and directed through the sample into the microscope 
using a surface-silvered mirror R. A water-filled chamber 
F (thickness::::: 3 cm) was placed between the light source 
and the mirror to act as an infra-red filter and prevent 
unwanted heating and melting. The apparatus was 
mounted on an anti-vibration table which consisted of a 
very heavy piece of slate (51 cm x 104 cm x 4 cm) that 
was separated from the basic table by four small partially 
pumped-up bicycle inner tyres. 

The sample holder H had to be capable of holding a 
piece of ice immobilized for the duration of an experiment 
(about 30 min), so that the same vein remained within the 
field of view of the microscope throughout. The problem 
with most holding devices is that they induce pressure 
melting of the ice at the point of contact. A layer of water 
builds up between the ice and the holder causing slip. 
One solution to this problem, suggested by Dr M. 
Walford, is to use porous glass pads in contact with the 
ice. No slip occurs as the meltwater created by the 
pressure melting flows into the porous glass and so the pad 
remains in contact with the sample. 

The sample holder used is shown in Figure 5. It has 
three porous glass pads, each bonded by an epoxy resin 
on to a flat spring. The springs are attached to a stage 
that allows the cylindrical ice sample, up to 5 cm in 
diameter, to be rotated about its axis . There is a second 
rotational facility about an axis which is also in the 
horizontal plane but is perpendicular to the first. The 
angle of each rotation can be independently determined 
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to within ± 1°C. Each rotation stage is a miniature 
crown-wheel and pinion with the pinion connected to a 
rod that extends out of the water bath. By turning the 
rods, the pinion rotates the crown wheel and hence the 
sample. Rotations about the vertical axis and translations 
in the horizontal plane were possible to a limited degree 
by rotating the stand on the table. Translations in the 
vertical direction were effectively achieved by the focusing 
of the microscope. The micro-manipulator therefore 
allowed three rotations and three translations, though 
not all had the same degree of control or the same range. 

The microscope M used was of the most basic kind 
and consisted merely of an objective lens and an eyepiece 
lens or camera lens. It was focused using the eyepiece, 
which was then removed and replaced by the camera so 
that a photograph could be taken. The distance from the 
plane of focus to the lens is roughly the same as the 
diameter of the samples (about 3 cm) so that the 
microscope could scan all the way through. The final 
magnification on the negative was about xI5. Measure­
ments were taken off prints rather than directly off the 
negatives themselves. The maximum degree of enlarge­
ment available was about xI2, giving a total magnific­
ation of the object of up to x180. To determine the 
magnification, a photograph was taken of a calibration 
disc which showed I mm intervals. The negative was then 
placed in the enlarger before and after prints were made. 
The total magnification was determined to within about 
±O.5%. 

Distances between two lines on a print can be 
determined to within about ±O.25 mm, i.e. about 
1.4)J.m at maximum magnification. This is therefore the 
resolution limit and is a consequence mainly of the 
graininess of the negative. Veins with apparent widths of 
less than about 3)J.m therefore could not be resolved, as 
the vein edges start to overlap on the negative at this 
stage. Also, diffraction effects start to become important 
for such small veins. 

5. TEMPERATURE CONTROL OF WELL­
ROTTED SAMPLES 

Observations of the geometry of the vein system are best 
conducted on heavily rotted samples when the veins are 
very large. It is important that the vein size does not 
change during the course of an experiment. As the vein 
size is a function of temperature, the samples must be held 
in a thermally stable environment. 

In a two-phase system, temperature changes involve 
both specific and latent heats. Consequently, polycrystal­
line ice has a markedly different thermal behaviour from 
that of singly crystalline ice. Nye (1991 a) derived a 
diffusion equation for polycrystalline ice in terms of an 
effective specific heat Ueff (Harrison, 1972) which contains 
two terms: a constant term that describes the specific-heat 
contribution and a second term that is due to the latent­
heat contribution and is strongly temperature-dependent. 
As the temperature in a sample approaches O°C, the veins 
melt and the latent-heat contribution starts to dominate 
the heat flows. Ueff becomes very large and therefore so 
does the time constant for a unit change in temperature. 

Heavily rotted samples are in the region where Ueff is 
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several orders of magnitude greater than for cold 
polycrystalline ice or for a single crystal. For these 
samples, this is the case when the temperature in the 
sample is greater than _ IQ-3oC. The time constant for 
changes in temperature within this region is large 
compared with the time necessary to perform an 
experiment. This means that, provided the temperature 
at the surface of the sample can be maintained at some 
value greater than _ ID-3oC but below O°C, the veins will 
be stable for the duration of an experiment. It is not 
necessary for the exact temperature depression in the 
sample to be known. 

The easiest way to create a very small, constant 
temperature depression at the surface of the sample is to 
exploit the effect of the saline environment of the water 
bath. If an ice sample is in contact with a large, well­
stirred reservoir of saline solution, that is at some 
temperature above O°C (measured well away from the 
sample), then the combined effect of the salinity and 
temperature in the bath causes continual melting at the 
sample surface. The temperature at the surface of the 
sample is therefore, by definition, the melting point of the 
two-phase system, which is a function of the impurity 
concentration in the bath and the curvature of the ice 
surface and is below O°C. There is a temperature gradient 
at the sample surface. The heat which flows down this 
gradient from the bath, which is above O°C, to the sample 
surface, which is below Doe, does not raise the 
temperature of the sample but provides the latent heat 
of melting at the sample surface. The gradient is 
maintained, if the bath is well-stirred and the volume of 
water is large compared to the sample size . The 
temperature depression at the sample surface is constant 
until the sample has melted away. 

The samples were observed whilst in contact with a 
solution made up from chilled, distilled water with a very 
small amount of NaCI. No attempt was made to 
determine the exact impurity concentration in the bath. 
It is important that the bath should not be too warm so 
that the sample does not melt away too quickly. 

6. VEIN OPTICS 

The optical observations of veins previously reported do 
not resolve the veins in sufficient detail for the observed 
width to be related to the other quantities associated with 
the cross-sectional area. However, if the veins are large 
enough, it is possible to get very detailed pictures of the 
vein system. 

A typical example of a photograph of a rotted node is 
shown in Figure 6. For comparison, Figure 2b shows one 
of Nye's computer-generated perspective drawings of a 
node. The computed shape is drawn as if the node were a 
solid opaque structure made up of four surfaces, the ice 
faces, of which only two are completely visible in the 
drawing. The photograph, by contrast, shows all features 
because the veins are actually transparent to visible light; 
each of the four veins is indicated by three lines, namely 
the vein edges. There are six such vein edges associated 
with every node, as each vein edge is shared by two veins. 
All six vein edges are visible in both the photograph and 
the drawing. 
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vein 4 

vein 2 

Fig. 6. Photograph of a rotted node. 

If the veins are equilateral in cross-section, the 
distances between the three lines on the photograph 
allow one to deduce the true width of the vein dv from the 
equation: 

d.,=_a_ 
cos [2 

where the orientation angle n is given by 

( 
1 2x ) [2 = arctan --I - -}-

(3)2 (3)2a 

and a, x and [2 are defined in Figure 7. 

(4) 

(5) 

There is a need to understand the photograph in more 

b 

... 
x 

Fig. 7. Vein cross-section for an equilateral vein with 
dihedral angle <p = 32" at an angle n to the plane of focus 
and showing the apparent vein width a. 

detail because the vein edges are not always well defined 
and it is necessary to know where the vein width starts 
and finishes. The reason we can see the veins at all is 
because they refract light; viewed side on, the water-filled 
veins act as tiny triangular-shaped prisms with a 

b 

d d t to microscope t d d 

g 
h 
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Fig. 8. Ray diagrams for simplified (flat-sided) vein cross-sections. 
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refractive index slightly greater than that of the 
surrounding ice. The diagrams in Figure 8 show a 
simplified version of the ray optics (not to scale) . The 
vein cross-section is approximated by an equilateral 
triangle with flat sides, i.e. ry = 00 . Two orientations of 
vein are shown. 

The plane of focus of the microscope is perpendicular 
to the direction of the light and can be at any height in 
the drawing. From Figure 8 we can see that if the plane of 
focus is above the vein (i.e. on the microscope side), the 
outer vein edges appear dark and the central vein edge 

a 

100~m 

c 
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bright. Conversely, if the plane of focus is below the vein 
(i.e. on the lamp side), the outer vein edges appear bright 
and the central vein edge dark. The thickness of the lines 
is a measure of how far away from the plane of focus a 
particular edge is located. Also, and most importantly, 
the diagrams show us how to measure the apparent vein 
width a. It must be measured to include dark outer lines 
or exclude bright outer lines. The central vein edge is, for 
both cases, in the middle of the central line. 

The patterns of light and dark rays and the rules 
about how to measure the apparent vein width are similar 

b 

d 

Fig. 9. Examples of observations of non-uniformity in the vein-system geometry. (a) Shows a series oj jour nodes, all oj 
which have pinched-oJ! veins. Node 1 has only one pinched-ojj vein but nodes 2-4 each have two pinched-oJ! veins. Note 
that some spikes extend along the grain edge jurther than others. (b) Shows a vein running into a node at which the other 
three veins are pinched-off The vein system terminates at this node. (c) Shows another example oj a node with two 
pinched-ofj veins. (d) There are two nodes in the picture, one behind the other, and the view is down the interconnecting 
vein. The vein cross-section is clear to see and it is evidently not equilateral. 
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b 

c 
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for., all orientations of veins. They are not affected by 
introducing a finite radius of curvature. Symmetry about 
the central line can only be expected for symmetrical 
orientations, such as the ones shown here. However, for 
non-symmetrical orientations, if the central vein edge is 
not very far from the plane of focus, the line is narrow. 
Under such circumstances, the position of the central vein 
edge with respect to the outer vein edges is well defined. 
Note that it is not necessary for the vein to lie in the plane 
of focus for the vein width to be determined. In fact, 
where a particular vein edge cuts across the plane of 
focus, it is invisible. 

The node in the photograph of Figure 6 can now be 
described in more detail, although the description 
remains qualitative. In the orientation shown, veins 2 
and 3 are more sharply inclined with respect to the plane 
of focus than veins I and 4. Vein I , in fact, lies almost in a 
plane parallel to the plane of focus. The node conforms at 
least qualitatively to the tetrahedral shape expected. 
Veins I and 3 are angled away from the microscope and 
veins 2 and 4 are angled towards it. 

7. OBSERVATIONS OF NON-UNIFORM VEIN­
SYSTEM GEOMETRY 

Deviations from uniform equilibrium geometry have been 
routinely observed during the course of this work. Figures 
9 and 10 show a representative selection of veins and 
nodes. 

The most obvious indicator of a non-uniform 
equilibrium geometry is the occurrence of pinched-off 
veins in an otherwise interconnected system. The absence 
of veins on some grain edges in natural ice was first noted 
by Raymond and Harrison (1975). Figure 9a, band c 
show examples of such phenomena in the laboratory­
grown ice crystals. A less-extreme indicator of a non­
uniform vein system is the observation of non-equilateral 
vein cross-sections, e.g. Fig. 9d. 

The most frequent observation that implies a non­
uniform equilibrium geometry is that of nodes where the 
apparent vein widths of the four veins meeting there are 
very different. Figure 10 shows three examples. The 
radius of curvature calculated for the four different veins 
of each node assuming an equilateral vein cross-section 
are different. 

In the laboratory-grown ice, non-uniform nodes are 
the norm. During the course of this research, photographs 
of a total of 43 nodes that have continuous veins along all 
four grain edges have been taken. These photographs 
were collected over 3 years and not according to any 
criteria and so may be viewed as a random sample. 
Twenty-three have veins with apparent vein widths that 
differ by a factor of 2 or more. Only seven can be 
described as uniform, that is, the idealized, isotropic 
equilibrium geometry, when applied to each vein, gives 

<l Fig. 10. Examples of irregular nodal structures. (Note 
that in (c) one of the veins pinches off leaving a series of 
pods along . the grain edges. A similar observation in 
natural ice has been reported by Raymond and Harrison 
(1975).) 
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the same value for rv, to within the error. The remaining 
13 have veins with distinctly different apparent vein 
widths, but the variation is less than a factor of 2. 

Also, in some samples, a high number of pinched-off 
veins was noted; as many as 10% of the nodes had one or 
more ·pinched-off veins, i.e. at most 5% of veins were 
absent. Nodes with three pinched-off veins are very rare. 
A node where all four veins are pinched-off, that is, a 
pocket of water at a four-grain intersection, has not been 
observed . The interpretation of these observations is given 
in section 10. 

8. EXPERIMENTAL TECHNIQUES 

The method for establishing the vein cross-section of a 
non-uniform vein in terms of the three vein widths 
civI, dv2 and dv3 is straightforward. The vein is photo­
graphed from two different directions. We then have two 
projections of the vein with a known angle e between 
them. In Figure 11 , II and l2 represent the first projection 
and l3 and l4 the second . Looking at the construction 
triangle E2E5E3, we can see directly that the sides are 
given by 

Using the law of cosines, we get for dvI 

d 2 = (l3 + l4) 2 (_l2_) 2 _ 2l (l l) cos e . 
vI . e + . e 2 3 + 4 . 2 e sm sm sm 

(7) 

Similarly, dv2 can be calculated using the construction 
triangle E3E6E1' and civ3 using E1E4E2. The angles cJ>1, cJ>2 
and cJ>3 can then be calculated directly, using the law of 
cosines, in terms of these vein widths. 

The ice must be carefully observed during the 
rotation, so that we know how the vein edges have 

Fig. 11. Sketch showing two projections of the vein edges of 
a non-equilateral vein and the three vein widths. The vein 
cross-section itself is not shown. 

Mader: Water-vein system in polycrystalline ice 

moved relative to each other and hence where they are in 
the construction. Note that the construction shown in 
Figure II only applies for rotations during which the 
central vein edge changes places with an outer vein edge. 
Where this is not the case, the construction must be 
altered to suit, although the method remains essentially 
the same. 

To define the vein cross-section completely, it is 
necessary to measure the dihedral angles. It is possible 

4 

2 

/ 

la) 

2 
/ 

I 3 and 4 

Fig. 12. Three sketches of a node illustrating the motion of 
the vein edges as (a) a typical view is rotated through (b) 
an intermediate stage to (c) the final stage where veins 3 
and 4 are superimposed and the dihedral angle 1J of the vein 
edge common to these veins is visible. The vein edges of vein 
3 are drawn as dashed lines to avoid confusion. 
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to get a direct observation of the dihedral angles at the 
vein edges by orienting the sample so that the line of sight 
is coincident with the axis of the vein, such as in Figure' 
9d, in which case the complete vein cross-section can be 
seen. Generally, however, the veins are long and not 
perfectly straight and so the cross-section viewed in this 
way is often too blurred to allow the dihedral angles to be 
measured. 

This problem can be overcome by exploiting the 
tetrahedral geometry of a node. When the sample is 
rotated so that two veins, which meet at a node, are 
superimposed when viewed through the microscope, the 
dihedral angle of the vein edge common to them both is 
visible. It is important for this vein edge to be brought to 
a cusp to obtain a valid measurement of the real dihedral 
angle. The motion of the vein edges as two veins are 
superimposed is illustrated in Figure l2a-c. The vein 
edges of vein 3 are drawn as dashed lines merely to avoid 
confusion, so that it is clear where all the vein edges are. 
In Figure l2c, the dashed and the unbroken lines should 
be superimposed . The fine line f that runs down veins 1 
and 2 into the dihedral angle is clearly visible on the 
photographs. I t is not a vein edge but occurs because of 
refraction at the curved surfaces of the node. It shows 
where the line of sight is tangential to the curved surfaces 
and has no other physical significance. 

The dihedral angle will only be constant along the 
vein edge common to two veins if the solid-liquid 
interfacial energy IsI is also constant. This, in turn, 
implies that, for a straight vein, the radius of curvature rv 
is constant around the cross-section. It is possible to 
calculate this value of rv . From Figure 13 we have at 
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Fig. 13. Cross-section of a non-equilateral vein. In this 
diagram, rvl "I- rv2 =f. rv3 which implies anisotropy in 
both ISS and 'sI. 

2 

point E3 

(8) 

Now 

~ ~ (d 2)! • ""vI. ""v2 v2 
SIll,I = --, SIll , 2 = -- and COS , 2 = 1- (-2-) . 

2rvl 2rv2 rv2 

Combining Equations (8) and (9) gives (9) 

( 10) 

For isotropic IsI, rvl = rv2 = rv3, and so putting rvl = rv2 
= Tv and solving for Tv we get 

I _ (dv? + dv~ + 2dvldv2 cos (P3 - 4J3))2 
Tv - 4 sin2(p3 - 4J3) . 

(11) 

Now, P3 = f(dvl, dv2 , dv3) and so Tv = f(dv1 , dv2, dv3, 4J3)' 
Similar equations can be developed for rv in terms of 
P2, 4J2 and PI, 4Jl . Therefore, all three sides and at least 
one angle must be known if the radius of curvature is to be 
calculated. Independent measurements of two of the 
dihedral angles allow Tv to be calculated twice and so the 
assumption of isotropic IsI can be checked for the vein in 
question. 

9. RESULTS 

9.1. M easurement s of vein widths 

A typical result is shown in Figure 14. The vein observed 

132~ 

±l~ 

dV1 =185~m±4J.Un 

dV2 =261~5J.Un 

d v3 =334~±7Ilm 

Fig. 14. Construction of the vein widths of a non­
equilateral vein cross-section from two projections of the 
veins. The vein cross-section itself is not shown. 
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a 

4 

b 

4 

'. . 

Fig. 15. Observation of a typical dihedral angle in ice. The 
node shown in (a) is rotated so that veins 2 and 3 are 
superimposed in (b) showing the dihedral angle of the 
shared vein edge cp = 32" ± r. (N.B. The elliptical 
features in (a) are lenses in the grain boundary which is 
bounded by the vein edge that runs from vein 1 to vein 3. 
When the node is rotated as in (b), this grain boundary is 
virtually parallel to the plane of the paper. The lenses are 
now seen in plan view and hence appear circular. For more 
details on the geometry and optics of lenses, see Walford 
and others (1987).) 

ran roughly parallel to the axis of the cylindrical sample. 
The first projection had distances of 132 ± I J1.m and 
168 ± I J1.m between the central and outer vein edges as 
shown in the figure. The sample was then rotated by 
50° ± 1 ° about its axis and another photograph was 
taken. This second projection had distances of 88 ± 1 J1.m 

Mader: Water-vein system in polycrystalline ice 

and 80 ± 1 jJ.m between the central and the outer vein 
edges. The sample was rotated back to the initial position 
and the vein photographed again . No change in the vein 
size had occurred during the experiment. The widths of 
this vein are dY1 = 185 ± 4 jJ.m, dY2 = 261 ± 5 jJ.m and 
dv3 = 334 ± 7 jJ.m, which means that they vary by a 
factor of 1.8. 

9.2. Direct observations of dihedral angles 

An example of a typical observation on a regular node is 
shown in Figure 15. Typical values appear to be in the 
region 30° < cp < 400

• The smallest angle measured was 
cp = 250 ± 10 (Mader, 1990), in agreement with the most 
recent measurement by Walford and Nye (1991 ). 

The dihedral angles of pinched-off veins are of 
particular interest. Figure 16 shows a sketch of part of 
the vein system seen in one of the ice samples. There are 
two pinched-off veins, leaving four spikes. They have one 
grain boundary in common, which is bounded on one side 
by the vein edge E. The dihedral angle at this grain 
boundary was measured at the spike S. Figure 17a is a 
photograph of the spike S. The photograph is taken from 
a slightly different perspective angle compared to the 
sketch in Figure 16. As a result, only two of the four spikes 
are properly visible; the third can just be seen at the very 
top of the photograph but the fourth spike is obscured. 
Figure 17b shows the view with the spike S superimposed 
on the vein V. The spike is quite faint and to see it 
requires close observation. The dihedral angle is very 
large, CPE = 1050 ± 10

, and so this must be a very low­
energy grain boundary. This value also explains why 

edge E 

Fig. 16. Sketch of part of the vein system seen in one of the 
ice samples showing two pinched-off veins leaving four 
spikes. 
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a 

b 

-s 

Fig. 17. The dihedral angle at a pinched-off vein. (a) 
Photograph oj the spike S; (b) View with spike S and vein 
V superimposed. The dihedral angle is cp = lOS' ± r. 

some of the grain edges around this grain boundary have 
veins whilst others do not. I t was noted that, in a system 
with uniform geometry and constant cp, the veins would 
pinch off for cp > 60°. In a system with non-uniform 
geometry, where each vein has three different dihedral 
angles, CPI, <P2 and CP3, thermal equilibrium still requires 
that the three sides are all convex or all concave. The 
condition for a non-uniform vein to pinch off is then 
<PI + <P2 + <P3 > 180°. If <PI = <PE = 105° ± 1°, then the 
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vein pinches off when CP2 + <P3 > 75°. As the most 
common values for <P are in the 30--40° range, <P2 + <P3 
could quite easily be either above or below 75°. 

9.3. A detailed study of a node 

Four of the six dihedral angles of the node shown in 
Figure 18 were measured. In the following, EH, for 
example, denotes the vein edge that is common to veins I 
and 4. The dihedral angle CP14 is that measured at E14 

when veins I and 4 are seen to be superimposed. The 
measured angles were: CP14 = 35° ± 1°, CP34 = 32° ± 1°, 
<P3 = 34° ± 1° and CP13 = 39° ± 1°. <P24 could not be 
measured because the photograph was too blurred. <P12 
was not measured because the sample holder entered the 
line of sight and so obstructed the view at the required 
orientation. Figure 19 shows the construction of the vein 
widths for veins I to 3 from two projections of the veins. 
The values are shown in Taole 2. The error on the vein 
widths is typically ± 3% ~ ± 3 jlm. Despite the general­
ly uniform appearance of the node, both the dihedral 
angles and the vein widths vary significantly. 

We have values for all three widths of veins 1,2 and 3, 
as well as two of the dihedral angles of vein I (<P13, <P14), 
one of vein 2 (<P23) and all three of vein 3 (CP13, <P34, <P23) ' 
We can therefore calculate rv six times. The values are 
shown in Table 3. All six values are the same to within the 
experimental error and so {si may be assumed constant 
for this node. The variations in the vein widths and the 
dihedral angles are therefore thought to arise primarily 
from anisotropy in ISS' The mean radius of curvature is 
r v = 269 ± 14 jlm. This value is used to construct the vein 
cross-sections in Figure 19. CP12 and <P24, which could not 
be measured, can be deduced from the cross-sections. We 
get from the cross-section of vein I, <P12 = 33° ± 1°, and 
from the cross-section of vein 2, <P12 = 32° ± 1 ° and 
<P24 = 38° ± 1 0. The two values of <P12 are within the error 
of each other which adds support to the constructions. 

4 

2 

Fig. 18. Node studied in section 9.3. 
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(a) 

measured values: 
11=31j.1m±1j.1m 12=75j.1m±1j.1m 
13=16j.1m±1j.1m 14=87j.1m±1j.1m 

e=25°±1 ° 4>13=39°±1 ° 4>14=35°±1 ° 
from construction: 

4>12=33°±1 ° 
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, , , 
' I' £23' 

I 
I 
I 
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I 1, 

Vein 2 
measured values: 

11=56j.1m±1j.1m 12=56j.1m±1j.1m 
13=12j.1m±1j.1m 14=87j.1m±1j.1m 

e=30 0 ±1 ° 4>23=39°±1 ° 
from construction: 

4>12=32°±1 ° 4>24=39°±1 ° 

/1 
(c) 

Vein 3 
measured values: 

11=31j.1m±1j.1m 12=75j.1m±1j.1m 

13=19j.1m±1j.1m 14=84j.1m±1j.1m 

e=25°±1 ° 4>13=39°±1 ° 
4>23=39°±1° 4>34=32°±1 ° 

Fig. 19. Constructions oj the cross-sections oj (a) vein 1, ( b) vein 2 and (c) vein 3 oj the node shown in Figure 18. 

Table 2. Vein widths jor veins 1, 2 and 3 jrom the constructions shown in Figure 19 

Vein 1 Vein 2 Vein 3 

EI 2 to EI4 

EI 3 to EI4 

EI2 to EI3 

112J.Lm 
109J.Lm 
108J.Lm 

EI2 to E24 

E 23 to E24 

EI2 to E23 

96J.Lm 
92J.Lm 

113J.Lm 

E 23 to E 34 

EI3 to E 34 

EI3 to E 23 

Tv 

Tv 

Table 3. Values jor the radius of curvature oj the node in 
Figure 18 calculated assuming constant Isl and using 
Equation (11) 

Vein 1 

269J.Lm 
263J.Lm 

Vein 2 

281 J.Lm Tv 

Tv 

Tv 

Vein 3 

256J.Lm 
219J.Lm 
325J.Lm 

All values ± 30%. 

10. DISCUSSION AND CONCLUSIONS 

The observations presented here show conclusively that 
the vein-system geometry in the laboratory-grown 
samples is not uniform. Pinched-off veins, veins with 
non-equilateral cross-sections (the vein presented in 

section 9.1 has widths that vary by a factor of 1.8) and 
dihedral angles in the range from 25° ± 10 to 105° ± 10 

have been measured. The data presented in section 9.3 
are consistent with the assumption of isotropy in the 
solid-liquid interfacial energy 'sl. They thus imply that 
the variations in the dihedral angles and vein widths are a 
consequence of anisotropy in the grain-boundary energy 
ISS, and that therefore the radius of curvature Tv is 
constant over the vein faces. However, this result only 
concerns the limited range of crystallographic orient­
ations exposed over the surfaces of the node shown in 
Figure 18. Also, the node happens to be particularly 
regular in appearance, and the method itself is not very 
sensitive as the large error ( ±30% ) on the values of Tv in 
Table 3 indicates. Further measurements are needed 
before we can generalize this result. 

The method of measuring dihedral angles used here is 
preferable to observations of vein outcrops such as those of 
Morris (1972) and Ketcham and Hobbs (1969) for two 
reasons: 

I. Veins are not generally normal to the surface and so, at 
the outcrop, some plane section through the vein at an 
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acute angle to the vein axis is observed. The outcrop 
will only be a vein cross-section when the vein axis 
happens to be normal to the surface. 

2. The vein cross-section at the outcrop will not be the 
same as the vein cross-section in the interior of a sample 
because of the flaring of the vein near the surface. At an 
outcrop, the curvature parallel to the vein axis is large 
and so the curvature around the vein cross-section l/rv 
is reduced to maintain a constant total curvature. 

The dihedral angle <p was typically in the range 30-
40° with much larger values (and also some smaller 
values) observed in a small but significant number of 
cases. If the variations in <p are due to anisotropy in 'Yss 
alone, then the observations suggest that the grain­
boundary energy as a function of misorientation of the 
grains has a plateau value with cusps at special 
misorientations where 'Yss is low and hence <p is large. 

There has been speculation in the literature concern­
ing whether or not a glacier is permeable to water because 
of the existence of the vein system. Deformation, 
recrystallization and blocking by bubbles might cause 
glacier ice to be impermeable. The samples in these 
experiments are not subject to any of these processes and 
so are at maximum permeability. The non-uniformity of 
the vein system is the only mechanism which can limit the 
permeability. The observations have shown many 
instances of pinched-off veins; however, even in samples 
where many absent veins were noted, they did not 
amount to more than about 5% of the total. 

It is possible that the number of pinched-off veins is 
exaggerated in these samples because of the way they 
were grown. It has been mentioned, that, when ice is 
grown from the melt, competitive grain growth occurs. 
The preferred crystal orientation is one in which the c-axis 
is perpendicular and the basal plane is parallel to the 
direction of growth. The method of growing the samples 
therefore tends to produce many low-energy grain 
boundaries and hence large dihedral angles, thereby 
increasing the probability of pinched-off veins. This also 
occurs in natural ice grown from the melt such as in lake 
ice (see e.g. Knight, 1962). Also, recrystallization 
processes in glaciers and ice sheets lead to a coarsening 
of the grains and therefore most likely to an increase in 
the number of low-energy boundaries. 

In natural temperate ice, pinched-off veins arising 
from the non-uniformity of the vein system will provide 
an additional mechanism to those suggested by Lliboutry 
(1971), Nye and Mae (1972) and Raymond (1976) which 
might limit the permeability. To determine whether or 
not a temperate glacier is permeable, we need to know 
what the probability p is for a grain edge to have a 
continuous, unblocked vein lying along it, taking account 
of all of the above effects. The problem then is one of bond 
percolation in say a diamond lattice. The bonds represent 
the veins which meet in nodes at four-grain intersections 
with roughly tetrahedral coordination. The lattice is 
permeable if an infinitely connected system of bonds 
exists. Frisch and others (1962) studied the probabilities 
in such a lattice (the diamond lattice) using Monte Carlo 
computer simulations of the percolation. By contrast, the 
results of Sykes and Essam (1964) were achieved using 
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series methods. Both approaches produced similar results. 
An infinite network exists for p > 0.39 but it does not 
include all the open bonds until p > 0.6. No data are 
available at present from which we might estimate the 
value of p in natural temperate ice. To do this, we would 
have to take account of the non-uniform vein system as 
well as the other limiting mechanisms suggested in the 
introduction. It seems unlikely that in general p < 0.39, 
and so temperate ice is probably to some extent 
permeable. However, p < 0.6 might be true, at least in 
certain regions of a temperate glacier, in which case the 
glacier may only be permeable over short distances, 
depending on the exact value of p. 
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