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DIFFUSION LAW FOR THE DISPERSION OF HARD
PARTICLES IN AN ICE MATRIX THAT UNDERGOES
SIMPLE SHEAR DEFORMATION

By J. WEERTMAN*

(U.S. Army Cold Regions Research and Engineering Laboratory, Hanover,
New Hampshire 03755, U.S.A.)

AsstracT. A diffusion equation is obtained that describes the mechanical dispersion of a dilute mixture
of solid particles within an ice matrix that is undergoing deformation. It is shown that within the limits of
time intervals and strain-rates appropriate to the movement of glaciers and ice sheets, the dispersal distance
usually is no larger than a distance about one order of magnitude greater than the size of the particles
themselves.

Risumi. Loi de diffusion pour la dispersion de particules dures dans une matrice de glace soumise d une simple
déformation de cissaillement. 11 a été obtenu une équation de diffusion qui décrit la dispersion mécanique d’un
mélange dilué de particules solides dans une matrice de glace soumise & déformation. Il est montré que dans
les limites d’intervalles de temps et de valeurs de contrainte appropriées au mouvement des glaciers et
indlandsis, la distance de dispersion est d’ordinaire pas plus grande qu’une distance d’environ un ordre de
grandeur de plus que la taille des particules elles-mémes.

ZUSAMMENFASSUNG. Das Diffusionsgesetz fiir die Dispersion harler Partikel in Eis, welches einfachen Scherde-
formationen unterliegt. Eine Diffusionsgleichung fiir die mechanische Dispersion einer verdiinnten Mischung
von festen Partikeln in sich verformendem Eis wird aufgestellt. Es wird gezeigt, dass innerhalb der
Zeitspannen und Spannungswerte, wie sie bei der Bewegung von Gletschern und Eisschilden auftreten, der
Dispersionsabstand gewohnlich nicht grésser ist als eine Strecke, welche das Format der Partikel selbst um
etwa eine Grossenordnung iibertrifft,

INTRODUCTION

Boulton (1967) has made the reasonable suggestion that solid particles in ice can be
dispersed as a result of shear deformation. The theory of Bagnold (1954, 1966) that Boulton
cites in support of this suggestion is not very useful for obtaining an estimate of how much
dispersion should occur in ice at a given shear strain. Bagnold’s theory was developed for
a Newtonian fluid of either small or large viscosity. The theory was cast in terms of finding a
“dispersive pressure” that could be measured in a laboratory experiment.

We wish to show in this paper that merely from geometric arguments it is possible to
derive the diffusion law that describes the dispersion of second-phase particles in a solid
matrix (e.g. ice) that undergoes simple shear deformation. This theory is applicable only to
dilute dispersions of hard, essentially undeformable second-phase particles. The diffusion
that occurs is independent of the particular flow law that governs the plastic shear strain of the
matrix. Once the diffusion law is known the amount of dispersion for a particular problem
can be found. Application of the diffusion law shows that this dispersal mechanism is not
responsible for the “dirty” ice layer that exists at the bottom of the Greenland ice sheet at
“*Camp Century”.

THeoRY

The physical origin of the dispersion of particles in a matrix that undergoes shear deforma-
tion is obvious. Consider Figure 1. Figure 1a shows two spherical particles of radius a that are
separated by a vertical distance k, where h << 2a. The deformation causes the upper particle
to move to the right with respect to the lower particle. After the two particles collide their
vertical separation must increase to k', where A > h. This increased separation is illustrated
in Figure 1h. It is inevitable that particles will be dispersed throughout the matrix by this
collision process.
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Fig. 1. (a) before, (b) after collision of two particles

Consider how the diffusion law for the dispersal of particles may be obtained. The follow-
ing assumptions and approximations now are made: The particles are hard and do not
themselves deform. They are spheres and have a uniform size. The matrix undergoes only
simple shear. The term “simple shear” means that the matrix shown in Figure 1 has a
velocity component in the horizontal x direction but no velocity component in the horizontal 2
or vertical y direction. The increase in separation of two colliding particles is not reduced
after the collision through any relaxation effects or through some complex stress state in the
surrounding matrix. The motion of the center of each particle, other than during periods of
collisions, is the same as that which would occur if the sphere were replaced by matrix
material. The average spacing between the particles is greater than their diameter.

The probability P8y (per unit time) that a sphere situated at the origin will collide with
another sphere separated from it by a positive (or negative) vertical distance lying between
> and y—+-8y is 2C¢|y[(4a* —»*)t 8y, where C is the number of particles per unit volume and ¢
is the absolute value of the (engineering) shear strain-rate (¢ = 2u/2y, where u is the horizontal
velocity in the x direction of the matrix).

This expression can be derived from the similar expression that appears in the preceding
paper of this issue. Note that for a fixed value » a collision between two spheres can take
place for all values of z (in the notation of that paper) such that (z*+43%)! < 24. Therefore
collisions take place with particles whose z coordinates lie in the range

— (42" < 2 < (4a* )t

The vertical separation between two colliding particles increases as a result of collision.
The increase in separation depends on the particular paths taken by the colliding spheres
during the collision process. Suppose that the projections onto a plane perpendicular to the
x axis of the paths taken by the center of each of the two spheres are always radial. Under
this assumption spheres separated by a vertical distance & before collision will be separated
an average distance /f(h) = {2¢h/(4a*—A*)}} In {[(4a*—A*)}+-2a]/k} after the collision.
Each sphere is, of course, displaced by an average amount }(A—#) in the vertical direction,
The two colliding spheres are displaced in opposite directions.

As a result of collisions a particle moves with respect to the matrix with a velocity whose
average vertical component Vis equal to the product of the number of collisions per unit time
and the average vertical displacement produced by a collision. Account must be taken of the
fact that some collisions cause downward displacements and others upward displacements.
The following equation is found for I:

2a

V=—}|Ph(y)—id (1)

—2a

where the origin has been placed at the center of the particle under consideration.
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If both C and ¢ are independent of », Equation (1) predicts, as it must, that V = o. If
these two quantities are functions of y and z and they do not vary too strongly over distances
of the order of 24, the integral of Equation (1) can be evaluated by making use of the approxi-
mation Cé = (C€) y=o, z=0+p 0(Cé)/2y+z 3(Cé)[/0z. The following result is obtained:

V = —15(2a)5 5(C€) [0y (2)

A particle also may move with respect to the matrix in the z direction. The z component
of velocity, W, can be found from an analysis similar to that just presented.

W = —3'5(2a)5 8(Cé)/0z. (3)

The rate of change of the particle concentration with time, 2C/at, is equal to —c(VC)/cy

when C or ¢ do not depend on x or z. Thus, the one-dimensional diffusion equation that
describes the dispersion of spherical particles in a matrix undergoing simple shear is

2C/et = 5(2a) 2(C 2(C&) [ 33} By (@)
1f the shear strain rate € is a constant this equation reduces to the classic diffusion equation
2Cjot — #D aC| 2y} oy (5)
where D is a concentration-dependent diffusion constant given by
D = {4(2a)5 Cé. (6a)

Equation (6a) can be rewritten as
D = (8/5m) a* V* (6b)
where V* = (4m/3) a3 C is the total volume of the particles in a unit volume.

If D is independent of the particle concentration C, the characteristic diffusion distance
A obtained from solutions of Equation (5) is

A = (4D)t. (7)
This expression gives the average distance moved in a time ¢ by a diffusing entity. Equation
(7) sets an upper limit to the distance a particle can diffuse in time ¢ when the maximum
value of C (or V'*) is used to calculate D). Table I lists values of A obtained from Equation (7)
if it is assumed that the maximum value of F* is 0.1 and ¢ = o.1/year. Various values of a
and ¢t were used to obtain the calculated X’s. The actual diffusion distance of a particle is of
the same magnitude as these listed upper limits.

DiscussioN

Table I demonstrates that for the diffusion distance of a particle to be an order of magni-
tude larger than the size of the particle itself the total shear strain must exceed 1 000 (or 10°
per cent). This fact implies that dispersion could be important only in very old glacier ice
since the strain-rate of é = o.1/year used in Table 1 is a typical value for glaciers and ice
sheets.

Tapre I. Upper Limrts T0O AVERAGE DIFFUSION DISTANCE A (IN oM) FOR F'* = 0.1 AND € = 0.1/YEAR

t 1 year 100 years 104 years 10° years
a
0.1 mm 7.1 X 1073 0.0071 0.071 0.71
1 mm 0.0071 0.071 0.71 2.3
1 cm 0.071 0.71 7-1 71
10 cm 0.71 7.1 71 7.1 X 10%
Im 7.1 71 7.1 X 10% 7.1 X103

The oldest ice in an ice sheet with no appreciable ablation area exists at and near its
bottom surface. An immediate question that comes to mind is whether or not the dispersion
mechanism can cause appreciable incorporation of rock, sand, silt, etc., from the glacier bed
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into the body of the glacier. At “Camp Century”, for example, 17 m of “dirty” ice were found
at the bottom of the ice sheet (Hansen and Langway, 1966). Behrendt (1963), Bentley [¢1964],
and Bentley and Ostenso (1961) believe that an ice layer containing morainal material under-
lies part of the Antarctic ice sheet and that this layer is up to 450 m thick.

So far there have been three mechanisms proposed to explain the incorporation of debris
from the bed of an ice sheet into the body of an ice mass. Chamberlin (Chamberlin and
Salisbury, 1904, ch. 5) suggested movement of particles along a shear plane that extends to
the bed. I presented (Weertman, 1961) a number of fundamental objections to this
mechanism. In any event this mechanism presumably occurs only in regions of compressions.
In extending regions that occur in areas of positive accumulation the “shear” planes should
act in the reverse direction, bringing material down to the bed.

Hocekstra and Keeler (P. Hockstra and C. Keeler, private conversation) have suggested
that particles could diffuse into the ice when a temperature gradient is present. Hoekstra and
Miller (1965) have shown experimentally that particles do move down temperature gradients
in cold ice. However, if the experimental data of the drift velocity obtained by Hoekstra and
Miller are used to calculate the expected thickness of the dirty ice layer at “Camp Century” it is
found that the thickness so obtained is zero because the temperature gradient is such as to
cause particles to move downwards.

I suggested (Weertman, 1961, 1966) that debris could be incorporated into an ice mass
if water should freeze to the bottom surface of an ice sheet. At present this mechanism
cannot cause incorporation of morainal material at “Camp Century” because the temperature
at the bottom of the ice sheet there is well below the freezing point. It appears likely that the
bed remains below the freezing point upslope from ““Camp Century” up to the divide of the ice
sheet. On the other hand an analysis (Weertman, 1968) of the temperature profile of the
“Camp Century” bore hole indicates that in the past either or both of the tollowing conditions
prevailed: (1) the ice temperatures were warmer; (2) the accumulation rate of snow at the
upper surface was smaller than it is at present. Either of these situations could have led to the
bottom surface being at the melting point and water being frozen to the bottom surface.
Thus, the mechanism of freezing water could account for the recently discovered dirty ice
layer at ““Camp Century”.

Boulton’s is a fourth mechanism for the incorporation of particles into an ice mass. How-
ever, as will now be shown, this mechanism appears to be inadequate to account for the
observations at “‘Camp Century”. The particles that give the ice its dirty color cannot be seen
by the naked eye (at least in part of one core examined by the author). Particle size studies
have not yet been carried out on the dirty ice cores. Small pebbles can be seen in the cores
(Hansen and Langway, 1966). The dirty ice layer is about 17 m thick. The shear strain-rate
at the bottom of the ice sheet at “Camp Century” is estimated (Weertman, 1968) to be
about 0.015/year. The volume fraction ¥'* of particles has not been measured but is certainly
not over about o.1. Thus, from Equation (7) and Table I it is possible to estimate that
mechanical dispersion would have required at least 101 years to produce the dirty ice layer
beneath “Camp Century”. Therefore, this mechanism can be ruled out for this particular
example.

The diffusion equation (5) does not take into account the longitudinal stretching of an ice
sheet that occurs under its accumulation areas. Equation (5) was derived under the assump-
tion that no vertical motion of ice takes place. Under an accumulation area the ice at a
distance y above the bed has an approximate velocity in the downward direction equal to
a* y/h, where a* is the accumulation rate and £ is the ice thickness. The following equation
is a modification of Equation (5) that takes into account the effect of the vertical ice velocity

oC|ot = o{D &Cley}/oy+(ap[h) 2C|2y. (8)

(It is assumed in this equation that the longitudinal strain-rate is smaller than the shear
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strain-rate. Then the mechanical dispersion arising from the longitudinal strain-rate is much
smaller than that arising from the shear strain-rate and can be ignored.) Under steady-state
conditions after an infinitely long time a particle could diffuse above the bed no higher than
a characteristic diffusion distance A’ given by

A = (2Dh/a*)}. (9)
Taking again V* = 0.1 and € = o.1/year and assuming the typical values A = 2 000 m
and a* — 20 cm/year, we find that A’ = 10m for boulders 1 m in radius. For boulders

1om in radius the dispersion distance A’ is 100 m. Thus, appreciable dispersion of large
boulders could occur at the bottom of an ice sheet. Boulton’s mechanism thus may account
for the postulated morainal layer beneath certain sections of the Antarctic ice sheet. In order
to account for thicknesses of the order of 450 m it is clear that the boulders within the ice
must have a large size (of the order of 20 m diameter or larger) and occur in a high con-
centration (V* of the order of 0.1 or greater). The mechanism is, therefore, just on the
borderline of being able to furnish a plausible explanation for the presence of a morainal ice
layer beneath the Antarctic ice sheet.

CONCGLUSION

Within the limits of time intervals and strain-rates appropriate to the movement of glaciers
and ice sheets, the mechanism that Boulton has proposed for the dispersion of particles within
an ice mass causes the diffusion of particles out to distances which are, at the most, only about
one order of magnitude larger than the size of the particles themselves.

MS. received 13 October 1967
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