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Abstract. We investigate whether ordinary quantification over objects is an extensional
phenomenon, or rather creates non-extensional contexts; each claim having been propounded
by prominent philosophers. It turns out that the question only makes sense relative to a
background theory of syntax and semantics (here called a grammar) that goes well beyond
the inductive definition of formulas and the recursive definition of satisfaction. Two schemas for
building quantificational grammars are developed, one that invariably constructs extensional
grammars (in which quantification, in particular, thus behaves extensionally) and another that
only generates non-extensional grammars (and in which quantification is responsible for the
failure of extensionality). We then ask whether there are reasons to favor one of these grammar
schemas over the other, and examine an argument according to which the proper formalization
of deictic utterances requires adoption of non-extensional grammars.

§1. Introduction. Is quantification over objects a non-extensional operation? In
other words (speaking somewhat loosely for now), does the presence of ordinary
quantification in an interpreted formal language ipso facto prevent it from having
the property that, whenever in any complex well-formed expression one replaces
some proper subexpression by another, coextensive one, the resulting expression is
coextensive with the original one?

There are no doubt many readers to whom this question seems silly. Some will want
to point out that Quine1 gave a categorical affirmative answer long ago:

It is well known, and easily seen, that the conspicuously limited means
which we have lately allowed ourselves for compounding sentences—
viz., ‘and’, ‘not’, and quantifiers—are capable of generating only
extensional contexts. Quine [14, p. 12]

Others, coming from a different tradition, will likewise dismiss the question, but rather
because they take it to have been answered in the negative. Nathan Salmon2 may be
cited as an example:

The nonextensionality of a quantifier phrase is a surprising but trivial
consequence of the way the quantifier works with a variable. (Salmon
[17, p. 416])
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The very fact that these eminent authors provide different answers to our question
suggests that it might be worth taking a closer look. This is what we propose to do in
this essay.3

That contradictory answers should have been given is the more surprising in light of
the fact that the two parties appear to agree on what we might call the generating syntax
(i.e., the inductive definition of the well-formed expressions, particularly of quantified
formulas), the ingredients for the semantic evaluation of well-formed expressions (to
wit, model-theoretic structures and variable assignments), and the recursive (Tarskian
[23]) steps to be taken in evaluating expressions relative to structures and variable
assignments, as well as, presumably, on what it takes for well-formed expressions to be
coextensive:4

• Two sentences are coextensive if and only if they are both true or both false.
• Two singular terms are coextensive if and only if they designate the same object.
• Two predicative expressions (“predicators,” as we will call them for brevity) are

coextensive if and only if they are true of the same arrangements of arguments
(such as n-tuples or sequences of objects) and false of the same arrangements
of arguments.

We will see that what allows for reasonable disagreement as to the extensionality of
quantification is the fact that the generating syntax and the recursive procedure under-
lying Tarskian satisfaction do not by themselves suffice to constrain coextensiveness
sufficiently in order to answer the question. To do that, we need a grammar.5 As we
shall use the term here, a grammar G comprises all of the following:

(G1) A lexicon Λ and a definition of the set WFG of G-well-formed expressions
(G-expressions for short) over Λ, together with a relation of G-constituency
on WFG.

(G2) A specification of the logical space relevant to G, i.e., the class Mod(G) of
G-models in which G-expressions are to be evaluated.

(G3) An ontology, i.e., a function ObjG that assigns to each G-model M the set
ObjGM of G-objectsM.

(G4) For each G-model M, a partition of the G-expressions into three
G-categoriesM: G-sentencesM, G-termsM, and G-predicatorsM.

3 In my [25] I argue that quantifiers are extensional operators, but the argument is based on
finding “Fregean” formalisms for quantification (as presented in [24]) superior to “Tarskian”
ones (but see Pickel and Rabern [13] for an opposing view). In that paper, I grant that within
standard Tarskian languages, quantification is non-extensional; my point there is just that we
shouldn’t put much stock in this diagnosis. Here I tackle the extensionality question directly
with respect to standard (“Tarskian”) languages for quantification. Our discussion might
also be usefully compared to that by Glanzberg and King [5], who react to Rabern’s [16]
diagnosis that the treatment of quantification in Kaplan [8] is not compositional (see Pickel
and Rabern [12] for a critique).

4 We will make these criteria more precise below.
5 We intend “grammar” to be understood in the broad sense of a complete description of a

language system, including in particular both syntax and semantics (as e.g. in “Montague
grammar”), not the narrow one of a description of a syntax only (as in “context-free
grammar”).
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(G5) A G-truth operator trueG that maps each G-model M to a function trueGM
from the set of G-sentencesM into {0, 1}, where a G-sentenceM φ is said to be
G-true in M just in case trueGM(φ) = 1, and G-false in M if trueGM(φ) = 0.

(G6) A G-designation operator desG that maps each G-model M to a function
desGM all of whose admissible arguments are G-termsM and whose values are
G-objectsM (where, if desGM(t) = m, we say that t G-designates m in M).

(G7) A G-predication operator true-ofG that assigns to each G-model M a function
true-ofGM which maps eachG-predicatorM Π to a function true-ofGM(Π) whose
arguments are arrangements of members of the type hierarchy overObjGM and
whose values are in {0, 1}. If true-ofGM(Π)(�) = 1 (respectively, = 0), we say
that Π is G-true of � in M (respectively, G-false of � in M).

Each of our two camps assumes, more or less tacitly, a background grammar; and
what makes it possible for them to arrive at different answers to the extensionality
question is that their grammars differ. In our reconstruction, the camps make the same
choices, we shall see, with respect to (G1) and, but for a technicality, (G3). Their
model spaces differ in a crucial way that we will explain in due course; but despite this
difference in model spaces, the recursive semantics they pick to drive their respective
items (G4) through (G7) are essentially the same; it’s just that they let the semantics
drive these items in different ways, resulting in different outcomes with respect to (G4)
through (G7) and hence in (closely related but nevertheless) different grammars.

Now suppose G is a grammar. For each G-model M, we define the G-coextensiveness
relation in M, coextGM, as follows:

(DC1) G-sentencesM φ and � are G-coextensive in M if and only if trueGM(φ) =
trueGM(�); i.e., just in case they are either both G-true in M or both G-false
in M.

(DC2) G-termsM t0, t1 are G-coextensive in M if and only if they G-designate the
same G-objectM in M, i.e., if and only if t0 and t1 are both in the domain
of desGM and desGM(t0) = desGM(t1).

(DC3) G-predicatorsM Π0,Π1 are G-coextensive in M if and only if they are G-true
in M andG-false in M, respectively, of the same arrangements of arguments;
in other words, just in case true-ofGM(Π0) and true-ofGM(Π1) are the same
function.

(DC4) The G-coextensiveness relation in M is the union of the three category-
specific G-coextensiveness relations in M defined in (DC1) through (DC3).

Let G be a grammar and suppose that α0, α1, � are well-formed G-expressions.
Suppose further that o is an occurrence, as a constituent, of α0 in � . Then we say that
the replacement of α0 by α1 at the occurrence o in � is G-legitimate if the result of this
replacement is also a well-formed G-expression.

Now let M be a G-model. The G-expressions α0 and α1 are G-equicategorial in M
if they are both G-sentencesM, both G-termsM, or both G-predicatorsM. A complex
G-expression � is said to be G-extensional in M if, whenever (i) α0 and α1 are well-
formed G-expressions that are G-equicategorial and G-coextensive in M, (ii) o is an
occurrence, as a constituent, of α0 in � , and (iii) the replacement of the occurrence o of
α0 with α1 in � is G-legitimate, then the result of this replacement is G-coextensive in
M with � . The grammar G is extensional in M just in case every complex G-expression
is G-extensional in M. Finally, G is extensional if G is extensional in every G-model M.
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Here’s what we will do in the rest of this essay: The grammar-component (G1)
common to both parties, as well as the recursive semantics upon which they agree,
are laid out in Section 2. In Section 3 we define a “Quinean” grammar schema Ext
that constructs, from any given quantificational lexicon Λ, a grammar ExtΛ, shown
in Section 4 to be extensional. Against the background of Ext, the answer to the
question whether quantification is extensional is affirmative. In Section 5 we define
a “Salmonian” grammar schema NExt, whose grammars NExtΛ can be construed as
generalizations of their counterpart grammars ExtΛ. It is shown that no NExtΛ is
extensional, and that it is indeed quantification that is responsible for the failure of
extensionality in NExt-grammars. The question whether quantification is extensional
thus has no absolute, grammar-independent answer. A related but different question,
to wit, whether we should embrace grammars that make quantification extensional or
rather those that make it non-extensional, however, might be answered by showing
that one of Ext and NExt is preferable to the other. Considerations of simplicity
would seem to favor Ext; on the other hand, the non-extensional grammars NExtΛ are
more general than their extensional counterparts ExtΛ. But generality is not per se a
theoretical virtue: Unless the added generality serves a previously unfulfilled purpose,
there is no reason to embrace it. This makes us shift attention, in Section 6, from
formal and conceptual considerations to applications. We consider an argument for
the usefulness ofNExt’s additional generality that turns on the application of grammars
to the analysis of natural-language phenomena, specifically deixis. This argument is
shown to be without force in Section 7, where we explain that the expressive advantage
ofNExtΛ disappears when that grammar is compared to an extensional grammarExtΛ+

over a suitably expanded lexicon Λ+ ⊇ Λ. The concluding Section 8 pulls together the
results and observations obtained.

§2. The common core.

2.1. Lexicon and well-formed expressions. By a lexicon we shall mean a triple Λ =
(C� , C�,P), where:

• C� is a set of constant symbols of type e, or individual constants for short,
• C� is a set of constant symbols of type (et)t, or Montagovian constants for short,

and
• P is a set of predicate symbols, each P ∈ P having a finite arity #P ≥ 1.

P must contain at least one element. We let Pn be the set of n-ary members of P .
Either or both of the sets C� and C� may be empty. Individual constants are the
constant symbols familiar from elementary logic; Montagovian constants are, as it
were, individual constants lifted to quantifier type. Their availability will only become
relevant in Section 7.

All grammars we shall consider use for the construction of their well-formed
expressions, in addition to the specific vocabulary provided by its lexicon, the following
symbols:

• the members of a fixed countably infinite set V of (individual) variables
v0, v1, v2, ...;

• the Boolean connectives ¬ and ∧; and
• the two quantifier symbols ∀ (universal) and ∃ (existential).
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We make the usual disjointness assumptions, so that no connective may occur in a
lexicon, no quantifier symbol may also be a variable, etc.6

The Λ-formulas are defined inductively as follows:

1. Whenever P ∈ Pn and t1, ... , tn ∈ V ∪ C� , the result Pt1 ... tn of prefixing the
string t1 ... tn with P is a Λ-formula.

2. Whenever φ and � are Λ-formulas, so are ¬φ and (φ ∧ �).
3. Whenever φ is a Λ-formula, x ∈ V , and C ∈ C�, the result Cxφ of prefixing φ

with Cx is a Λ-formula.7

4. Whenever φ is a Λ-formula, x ∈ V , and Q ∈ {∀,∃}, the result Qxφ of prefixing
φ with Qx is a Λ-formula.

The set of all Λ-formulas is FmlΛ. By a well-formed Λ-expression we shall mean a
member of V ∪ C� ∪ C� ∪ P ∪ {∀,∃} ∪ FmlΛ =: WF(Λ).

Where α and � are well-formed Λ-expressions, we define the notion of an immediate
constituent occurrence (ico) of α in � as follows. (1) If � is not a Λ-formula, there are
no ico’s of α in � . (2) If � is Pt1 ... tn, then o is an ico of α in � if and only if either (a) α
is P and o is ∗t1 ... tn, or (b) for some i ∈ {1, ... , n}, α is ti and o isPt1 ... ti–1 ∗ ti+1 ... tn.
(3) If � is ¬φ, then o is an ico of α in � if and only if α is φ and o is ¬∗. (4) If � is
(φ ∧ �), then o is an ico of α in � if and only if either (a) α is φ and o is (∗ ∧ �), or (b)
α is � and o is (φ ∧ ∗). (5) If � is Σviφ with Σ ∈ C� ∪ {∀,∃}, then o is an ico of α in �
if and only if either (a) α is Σ and o is ∗viφ, or (b) α is φ and o is Σvi∗. We say that o
is a constituent occurrence of α in � if and only if o is 	[�], where (a) � is an ico of α
in a Λ-formula 
, and (b) � is 	[
].8 Where α0, α1, and � are Λ-expressions and o is
a constituent occurrence of α0 in � (so that � is o[α0]), α1 is legitimately substitutable
for α0 at o in � if o[α1] is a well-formed Λ-expression.

The set of variables having a free occurrence in a well-formed Λ-expression is defined
as follows. For x ∈ V , FV(x) = {x}, and for α ∈ C� ∪ C� ∪ P ∪ {∀,∃}, FV(α) = ∅.
For Λ-formulas φ, the set FV(φ) is defined recursively thus:

(1) FV(Pt1 ... tn) =
⋃
{FV(ti) : 1 ≤ i ≤ n}.

(2) FV(¬φ) = FV(φ).
(3) FV(φ ∧ �) = FV(φ) ∪ FV(�).
(4) FV(Cxφ) = FV(Qxφ) = FV(φ) \ {x} for C ∈ C�, Q ∈ {∀,∃}, and x ∈ V .

2.2. Recursive semantics. A Λ-structure is a pairM = (M,I), where M, the universe
of M, is a non-empty set and I is a Λ-interpretation in M that maps each α ∈ C� ∪ C�
to an element I(α) ∈M and each P ∈ Pn to a function I(P) :Mn → {0, 1} (i.e., to
the characteristic function of a subset ofMn). The class of all Λ-structures is Str(Λ).9

6 For technical reasons, we assume that the symbol ∗ occurs in no lexicon and is neither a
variable, nor a connective, nor a quantifier symbol. We also assume the convention that
whenever � and � are strings of symbols, �[�] is the result of simultaneously replacing ∗
everywhere in � by �. We call � an occurrence of � in � if and only if � contains ∗ exactly
once and �[�] is � .

7 As is obvious from a comparison of this clause with the next, Montagovian constants behave
syntactically just like the quantifier symbols ∀ and ∃.

8 Note that we’re treating the connectives syncategorematically in not according them
constituent status; a categorematic treatment could easily be given but would add nothing to
the point at issue in this paper.

9 Whenever “M” is used to denote a structure, it will be assumed that M can also be denoted
“(M, I)”.
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A variable assignment (or just assignment) in a non-empty set M is a function from
a finite subset of 
 into M.10 The empty function ∅ is thus an assignment in any M.
The set of all assignments in M is G(M ) or just G when no confusion is likely; where
M is a structure, G(M) is G(M ). When g ∈ G(M ) and i ∈ dom(g), we sometimes
write gi instead of g(i). For g, h ∈ G(M ) and i ∈ 
, we say that h is an i-permissive
extension of g, in symbols g �i h, just in case (a) dom(h) = dom(g) ∪ {i} and (b) for
all j ∈ dom(g) \ {i}: g(j) = h(j). For g ∈ G(M ), i ∈ 
, andm ∈M , we write gmi for
the i-permissive extension of g that maps i to m.

Where g ∈ G, we say that a variable vi ∈ V is covered by g, or g-covered, if i ∈ dom(g).
The set Vg of g-covered variables is {vi : i ∈ dom(g)}; hence V∅ = ∅. A well-formed
Λ-expression α is g-closed if FV(α) ⊆ Vg , that is, if every variable that has a free
occurrence in α is g-covered. Thus the members of C� , of C�, of P and of {∀,∃} are
g-closed for any g; in particular, they are ∅-closed or, as we will also say, closed tout
court. A Λ-expression that is not g-closed is g-open; so the ∅-open expressions (i.e.,
the open expressions tout court) are just those expressions α with FV(α) 
= ∅.

Definition 1 (Tarskian satisfaction values). For each α ∈ WF(Λ), α’s Tarskian
satisfaction value (or just Tarski-value) �α� is a function on Str(Λ), where for
M ∈ Str(Λ), �α�M := �α�(M) is the Tarski-value of α in M. The definition proceeds by
recursion on α. For each α and M, �α�M is to be a function whose domain dom(�α�M)
is a (not necessarily proper) subset of G(M).

1. For variables vi ∈ V :
(a) dom(�vi�M) = {g ∈ G|i ∈ dom(g)},
(b) and where g ∈ dom(�vi�M), �vi�M(g) = g(i).

2. For individual constants c ∈ C� :
(a) dom(�c�M) = G,
(b) and where g ∈ dom(�c�M), �c�M(g) = I(c).

3. For Montagovian constants C ∈ C�:
(a) dom(�C �M) = G,
(b) and where g ∈ dom(�C �M),

�C �M(g) : Pow(M ) → {0, 1} with �C �M(g)(X ) = 1 iff I(C ) ∈ X .
4. For predicate symbols P ∈ Pn:

(a) dom(�P�M) = G,
(b) and where g ∈ dom(�P�M), �P�M(g) = I(P).

5. For quantifier symbols Q ∈ {∀,∃}:
(a) dom(�Q�M) = G,
(b) and where g ∈ G, �Q�M(g) : Pow(M ) → {0, 1} with �∀�M(g)(X ) = 1

iff X =M and �∃�M(g)(X ) = 1 iff X 
= ∅.
6. For predications Pt1 ... tn:

(a) dom(�Pt1 ... tn�M) =
⋂n
i=1 dom(�ti�M),

10 Logic textbooks typically define assignments to be total functions on 
 (or equivalently,
total functions on the set of all variables), but as far as we are aware, there is no satisfactory
conceptual argument for choosing as assignments total functions on
 over partial functions
on 
 or, as we propose here (and as is customary in formal semantics, e.g., in [6]), finite
partial functions on 
. In this way we will be able to obtain a semantic characterization
of what are traditionally called closed formulas that is unavailable in the “total” setting,
and we will also be able to cast the non-extensionalists’ grammars as generalizations of the
extensionalists’.
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(b) and for g ∈ dom(�Pt1 ... tn�M):
�Pt1 ... tn�M(g) = �P�M(g)(�t1�M(g), ... , �tn�M(g)).

7. For negations ¬φ:
(a) dom(�¬φ�M) = dom(�φ�M),
(b) and where g ∈ dom(�¬φ�M): �¬φ�M(g) = 1 – �φ�M(g).

8. For conjunctions (φ ∧ �):
(a) dom(�φ ∧ ��M) = dom(�φ�M) ∩ dom(���M),
(b) and where g ∈ dom(�φ ∧ ��M):

�φ ∧ ��M(g) = min{�φ�M(g), ���M(g)}.
9. For formulas C viφ with C ∈ C�:

(a) dom(�C viφ�M) = {g ∈ G : for all h ∈ G with g �i h, h ∈ dom(�φ�M)},
(b) and where g ∈ dom(�C viφ�M):

�C viφ�M(g) = �C �M(g)
(
{m ∈M | �φ�M(gmi ) = 1}), which equals

�φ�M(gI(C )
i ).

10. For formulas ∀viφ:
(a) dom(�∀viφ�M) = {g ∈ G : for all h ∈ G with g �i h, h ∈ dom(�φ�M)},
(b) and where g ∈ dom(�∀viφ�M):

�∀viφ�M(g) = �∀�M(g)
(
{m ∈M : �φ�M(gmi ) = 1}) .

11. For formulas ∃viφ:
(a) dom(�∃viφ�M) = {g ∈ G : for all h ∈ G with g �i h, h ∈ dom(�φ�M)},
(b) and where g ∈ dom(�∃viφ�M):

�∃viφ�M(g) = �∃�M(g)
(
{m ∈M : �φ�M(gmi ) = 1}) .

Note that, if c ∈ C� ,C ∈ C�, and I(c) = I(C ), the formulasCxφ and ∃x(x = c ∧ φ)
have the same Tarski-value in M (and so does φx [c], the result of replacing all free
occurrences of x in φ by c). Montagovian constants are therefore quite innocuous
with respect to first-order languages, since they are definable in terms of individual
constants, identity, and the existential quantifier (conversely, of course, individual
constants are reducible to Montagovian constants as well). As the identity of �Cxφ�M,
�∃x(x = c ∧ φ)�M, and �φx [c]�M suggests, the members of C� are hybrids between
individual constants and quantifiers: Their syntactic behavior is that of quantifiers,
and they bind variables just like quantifiers do; on the other hand, their interpretations
are single objects, just like those of individual constants, and like individual constants,
they are essentially scopeless (cf. [27]).

One readily shows:

Lemma 1. Let M be a Λ-structure and α a Λ-expression. Then:

1. For all g ∈ G, g ∈ dom(�α�M) if and only if α is g-closed.
2. If g, h ∈ dom(�α�M) agree on the indices of all variables in FV(α), �α�M(g) =

�α�M(h).
3. If g ∈ dom(�α�M) and h ∈ G extends g, then h ∈ dom(�α�M) and �α�M(g) =

�α�M(h).

For g ∈ G, we let Gg be the set {h ∈ G | dom(g) ∩ dom(h) = ∅}. Obviously G∅ = G.
If F is a function whose domain is a subset of G, we let F [g] be the function with
domain {h ∈ Gg : (g ∪ h) ∈ dom(F )} that maps any assignment h in its domain to
F (g ∪ h), i.e., F [g](h) = F (g ∪ h). Note that F [∅] = F . Moreover, ∅ ∈ dom(F [g])
if and only if g ∈ dom(F ). For any set X, let 1X be the total constant function on X
with value 1 and let 0X be the total constant function on X with value 0.
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We can then show, using Lemma 1:

Lemma 2. Let M be a Λ-structure, g ∈ G, and φ a Λ-formula. The following are
equivalent:

(a) φ is g-closed,
(b) �φ�M[g] ∈ {1Gg , 0Gg},
(c) dom(�φ�M[g]) = Gg ,
(d) ∅ ∈ dom(�φ�M[g]).

As an immediate consequence of Lemma 2, we obtain:

Corollary 1. Let M be a Λ-structure and φ a Λ-formula. The following are
equivalent:

(a) φ is closed,
(b) �φ�M ∈ {1G , 0G},
(c) dom(�φ�M) = G,
(d) ∅ ∈ dom(�φ�M).

§3. The grammar schema Ext. In this section we define, for each lexicon Λ, a
grammar ExtΛ, by providing the necessary ingredients (G1) through (G7); in Section 4
we’ll see that each ExtΛ is extensional. The function Λ �→ ExtΛ will be called the
grammar schema Ext.

Let Λ be an arbitrary lexicon.
(G1) requires the specification of a lexicon; this is our chosen Λ. The set of well-

formed expressions of ExtΛ is WF(Λ) as defined in Section 2.
(G2) requires the specification of ExtΛ’s logical space or model class Mod(ExtΛ).

We let the ExtΛ-models be the Λ-structures as defined in Section 2; so Mod(ExtΛ) is
Str(Λ).

(G3) requires the specification of a function ObjExtΛ that maps each Λ-structure M

to a set ObjExtΛ
M

of ExtΛ-objectsM. For each Λ-structure M = (M,I), let ObjExtΛ
M

be M.
(G4) requires, for each Λ-structure M, a partition of ExtΛ’s well-formed expressions

into ExtΛ-sentencesM, ExtΛ-termsM, and ExtΛ-predicatorsM. In the present case, this
partition will in fact be independent of the ExtΛ-model M: The ExtΛ-sentencesM (in
any M) are the closed Λ-formulas, the ExtΛ-termsM (in any M) are the members of
V ∪ C� , and the ExtΛ-predicatorsM (in any M) are the members of C�, the members
of P , the quantifier symbols ∀ and ∃, and the open Λ-formulas.11 (We will in future
simply speak of ExtΛ-sentences, ExtΛ-terms, and ExtΛ-predicators.)

(G5) requires the definition of a truth operator that maps each Λ-structure
M to a {0, 1}-valued function true

ExtΛ
M

on the set of ExtΛ-sentences (i.e., closed
Λ-formulas). Let true

ExtΛ
M

be the function that maps each closed Λ-formula φ to
�φ�M(∅). Equivalently, a closed Λ-formula φ is ExtΛ-true in M if and only if its
Tarskian value in M is 1G .

11 Note that the classification of open formulas as predicators is an integral part of Quine’s
conception of coextensiveness: “In defining coextensiveness, I lumped predicates, general
terms, and open [formulas] together. They are what can be predicated of objects or sequences
of objects, and in that capacity they all three come to the same thing” (Quine [15, p. 215];
Quine uses “open sentence” for what we call “open formula”). We will encounter this passage
again, within in its larger context, in Section 4.
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(G6) requires the definition of a designation operator that maps each Λ-structure
M = (M,I) to a designation function des

ExtΛ
M

. Let des
ExtΛ
M

be the set that contains,
for each individual constant c ∈ C� , the pair 〈c,I(c)〉, and nothing else (so that, in
particular, no variable designates anything in any ExtΛ-model).

(G7), finally, requires the definition of a predication operator that maps each
Λ-structure M to a function true-ofExtΛ

M
on the set of ExtΛ-predicators whose value

for a given predicator Π is a {0, 1}-valued function on some set of arrangements of
members of the type hierarchy over M. We let true-ofExtΛ

M
be the function mapping:

(i) each Montagovian constant C ∈ C� to the function �C �M(∅), which is
the characteristic function of the unary relation {X ⊆M | I(C ) ∈ X} on
Pow(M ).

(ii) eachP ∈ Pn to �P�M(∅), i.e., to I(P), which by definition is the characteristic
function of an n-ary relation overM.

(iii) each Q ∈ {∀,∃} to the function �Q�M(∅), which in either case is the
characteristic function of a unary relation on Pow(M ), viz. of {M} or of
{X ⊆M |X 
= ∅}, respectively.

(iv) each open Λ-formula φ to the function �φ�M : dom(�φ�M) → {0, 1}, which
is the characteristic function of the unary relation {g ∈ dom(�φ�M) |
�φ�M(g) = 1} on dom(�φ�M).

With respect to (iv), we take members of G to be bona fide arrangements of
objects, just as members of Mn are. In fact it would not be stretching terminology
to call both types of arrangement sequences: A member {〈0, k〉, 〈1, l〉, 〈2, m〉} ofM 3,
say, is a sequence 〈k, l,m, , , ...〉 all of whose gaps occur after an initial gapless
segment, and is at the same time an assignment in M covering v0, v1, v2; whereas
g = {〈1, k〉, 〈3, l〉, 〈6, m〉} is a sequence 〈 , k, , l, , , m, , , ...〉 with gaps between
entries, and is at the same time an assignment in M, covering v1, v3, and v6. We thus
take both predicate symbols and open formulas to be true and false of arrangements of
objects (which, incidentally, we’ll need to do within the grammar schema NExt, too).

§4. Extensionality of ExtΛ. Given ExtΛ, conditions (DC1) through (DC4) deter-
mine the ExtΛ-coextensiveness relation in each Λ-structure M. Applied to ExtΛ, these
conditions yield:

(DC1ExtΛ ) Closed Λ-formulas φ and � are ExtΛ-coextensive in M just in case
they are either both ExtΛ-true in M or both ExtΛ-false in M, i.e., just
in case �φ�M = 1G and ���M = 1G , or �φ�M = 0G and ���M = 0G .
It follows that closed Λ-formulas φ and � are ExtΛ-coextensive in M

just in case �φ�M = ���M.
(DC2ExtΛ ) Members t1 and t2 of V ∪ C� are ExtΛ-coextensive in M just in case

they are both members of C� and I(t1) = I(t2). Equivalently, distinct
members t1, t2 of V ∪ C� are ExtΛ-coextensive in M just in case t1
and t2 are both members of C� and �t1�M = �t2�M. It follows that
distinct members t1, t2 of V ∪ C� are ExtΛ-coextensive in M just in
case �t1�M = �t2�M.12

12 This is because no two variables have the same Tarski-value in any M (the Tarski-values of
distinct variables have distinct domains), and no variable has the same Tarski-value in any
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(DC3ExtΛ ) Where each of α0 and α1 is either a member of C�, a member of
P , a member of {∀,∃}, or an open Λ-formula, α0 and α1 are ExtΛ-
coextensive in M just in case they are ExtΛ-true and ExtΛ-false in M

of the same arrangements of members of the type hierarchy over M.
It follows that:

(a) If n ≥ 1 and α0 and α1 are both members of Pn, they are ExtΛ-
coextensive in M just in case �α0�M(∅) = �α1�M(∅), i.e., just
in case �α0�M = �α1�M (since each �αi�M is a total constant
function on G).

(b) If α0 and α1 are both members of C� ∪ {∀,∃}, they are ExtΛ-
coextensive in M just in case �α0�M(∅) = �α1�M(∅), i.e., just
in case �α0�M = �α1�M (again since each �αi�M is a total
constant function on G).

(c) If α0 and α1 are both open Λ-formulas, they are ExtΛ-
coextensive in M just in case �α0�M = �α1�M.

(DC4ExtΛ ) Well-formed Λ-expressions belonging to distinct ExtΛ-categories are
not ExtΛ-coextensive in M.

What will matter for the extensionality of ExtΛ in M is to what extent distinct ExtΛ-
equicategorial Λ-expressions α0 and α1 that are legitimately substitutable for each
other are ExtΛ-coextensive in M. Among ExtΛ-equicategorial expressions, there are
five cases of legitimate substitutability:

(GS1) A member of V ∪ C� may be legitimately replaced by another member of
V ∪ C� .

(GS2) A member of any Pn may be legitimately replaced by another member of
Pn.

(GS3) A member of C� ∪ {∀,∃} may be legitimately replaced by a member of
C� ∪ {∀,∃}.

(GS4) An open Λ-formula may be legitimately replaced by another open
Λ-formula.

(GS5) A closed Λ-formula may be legitimately replaced by another closed
Λ-formula.

In case (GS1), we already know that distinct members α0 and α1 of V ∪ C� are
ExtΛ-coextensive in M just in case �α0�M = �α1�M. In case (GS2), we likewise already
know that distinct members α0 and α1 of Pn are ExtΛ-coextensive in M just in case
�α0�M = �α1�M, and again in case (GS3), we’ve already seen that distinct members α0

and α1 of C� ∪ {∀,∃} are ExtΛ-coextensive in M just in case �α0�M = �α1�M. In cases
(GS4) and (GS5), we already know that two open (respectively, two closed) formulas
α0 and α1 are ExtΛ-coextensive in M just in case �α0�M = �α1�M. Thus:

Lemma 3. Λ-expressions α0 and α1 that are ExtΛ-equicategorial and legitimately
intersubstitutable are ExtΛ-coextensive in M iff �α0�M = �α1�M.

A Quinean digression. We note that (DC1ExtΛ) through (DC4ExtΛ) accord with
Quine’s notion of coextensiveness (if we take into account that, unlike us, Quine
treats quantifier expressions syncategorematically, and assume that he leaves (DC4ExtΛ)

M as any individual constant (Tarski-values of constant symbols have domain G while those
of variables do not).
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implicit). Of particular relevance here is (DC3ExtΛ)(c), the treatment of open formulas,
which is the critical difference between our two grammar schemas. This comes out most
clearly in the following passage from “Confessions of a Confirmed Extensionalist”
[15], where we’ve indicated in boldface which of (DC1ExtΛ) through (DC3ExtΛ) we take
Quine to be referring to.13

(DC1ExtΛ ) I shall call two closed [formulas] coextensive if they are
both true or both false. (DC3ExtΛ ) Two predicates or general terms
or open [formulas] are coextensive, of course, if they are true of just
the same objects or sequences of objects. (DC2ExtΛ ) Two singular
terms are coextensive if they designate the same object. [...] In
defining coextensiveness, I lumped predicates, general terms, and
open [formulas] together. They are what can be predicated of objects
or sequences of objects, and in that capacity they all three come to the
same thing. [...] (DC3ExtΛ )(c) Two open [formulas] are coextensive
if they have the same free variables and agree with each other in
truth-value for all values of those variables. [15, p. 215]

Note that two open formulas are ExtΛ-coextensive in M (i.e., have the same Tarski-
value in M) if and only if they have the same free variables and have the same truth
value in M for all assignments covering those variables, just as Quine requires in the
final sentence of the quoted passage. End of Quinean digression.

We are now in a position to show that ExtΛ is extensional in every Λ-structure
M. This requires showing that, for any M and any Λ-formula φ, if we construct a
new Λ-formula φ′ from φ by legitimately replacing some constituent α0 of φ by some
α1 that is ExtΛ-equicategorial and ExtΛ-coextensive in M with α0, the formula φ′ is
ExtΛ-coextensive in M with φ.

As a first step, we observe that this holds if we replace “constituent” with “immediate
constituent”. Call this property immediate-constituent substitutivity.14

This follows by Lemma 3 from inspection of clauses 6 through 11 in Definition 1.
For suppose α0 and α1 are legitimately intersubstitutable, ExtΛ-equicategorial, and
ExtΛ-coextensive in M. Then �α0�M = �α1�M by Lemma 3. Now if φ is Pt1 ... tn, as
long as �P�M = �R�M and �ti�M = �si�M for each 1 ≤ i ≤ n, we have �Pt1 ... tn�M =
�Rs1 ... sn�M by clause 6 of Definition 1, and so �φ�M = �φ′�M. Similarly, by clause
7, if φ is ¬α0, as long as �α0�M = �α1�M, we have �¬α0�M = �¬α1�M, and thus
�φ�M = �φ′�M. The case of conjunction works analogously. Finally, by clauses 9–11,
for anyα0, α1 ∈ C� ∪ {∀,∃} and Λ-formula�, ifφ isα0vi�, as long as �α0�M = �α1�M,
we will have �α0viφ�M = �α1vi��M and thus �φ�M = �φ′�M; and for any Q ∈ C� ∪
{∀,∃} and Λ-formulas α0, α1, if φ is Qviα0, as long as �α0�M = �α1�M, �Qviα0�M =
�Qviα1�M and hence �φ�M = �φ′�M. Thus in all cases �φ�M = �φ′�M. Therefore φ
and φ′ are either both closed or both open Λ-formulas (otherwise dom(�φ�M) 
=
dom(�φ′�M)), hence ExtΛ-equicategorial and ExtΛ-legitimately substitutable in M and
so, by Lemma 3, ExtΛ-coextensive in M.

13 In order to avoid terminological confusion we have replaced “sentence” by “formula” in
the quotation throughout, since Quine uses the former to mean what we’ve been calling the
latter.

14 This is, of course, essentially the compositionality of Tarskian semantics.
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This observation generalizes easily to arbitrary-constituent substitutivity.15

Observation 1 (General substitutivity). Let M be a Λ-structure and let α0 be be
legitimately replaceable by α1 at a constituent occurrence o in φ. Let α0 and α1 be ExtΛ-
equicategorial and ExtΛ-coextensive in M. Let φ′ be the result of replacing α0 at o by α1.
Then φ and φ′ are ExtΛ-coextensive in M.

Proof. Since α0 and α1 are ExtΛ-equicategorial and legitimately substitutable,
they are either both in C� ∪ V , both in Pn for the same n, both in C� ∪ {∀,∃},
both open Λ-formulas, or both closed Λ-formulas. Since α0 and α1 are ExtΛ-
coextensive in M, �α0�M = �α1�M. We show by induction on φ that �φ�M = �φ′�M
(from which ExtΛ-coextensiveness of α0 and α1 follows as above). For the induction
basis, note that any constituent occurrence of α0 in an atomic Λ-formula φ is
an immediate constituent occurrence, and hence the desired result follows from
immediate-constituent substitutivity.

If φ is ¬� and α0 occurs once in φ, α0 is either � and thus an immediate constituent
(so we’re done by immediate-constituent substitutivity), or α0’s occurrence is within
�. In the latter case, by induction hypothesis ���M = ��′�M and so �φ�M = �¬��M =
�¬�′�M = �φ′�M by immediate-constituent substitutivity. The case of conjunctions is
quite analogous.

If finally φ is Qvi� with Q ∈ C� ∪ {∀,∃} and α0 has a single occurrence in φ, α0

occurs either as (i) one of Q, vi , and � and thus as an immediate constituent (so the
desired result follows from immediate-constituent substitutivity), or else (ii) within �.
In the latter case, by induction hypothesis ���M = ��′�M and again, by immediate-
constituent substitutivity, �φ�M = �Qvi��M = �Qvi�

′�M = �φ′�M, as required.

Corollary 2. For any Λ-structure M, ExtΛ is extensional in M.

Corollary 3. For any lexicon Λ, ExtΛ is extensional.

§5. The grammar schema NExt. We now define a grammar schema NExt, i.e., a
function Λ �→ NExtΛ mapping lexicons Λ to grammars NExtΛ, that will be able to
underwrite Salmon’s claim regarding the non-extensionality of quantification. As with
ExtΛ, we need to provide, for each lexicon Λ, the ingredients (G1) through (G7)
required for the specification of a grammar. We begin by picking an arbitrary lexicon
Λ = (C� , C�,P).

(G1) requires the specification of a lexicon; this is our chosen Λ. The set of well-
formed expressions of NExtΛ is WF(Λ). Thus ExtΛ and NExtΛ agree on (G1).

(G2) requires the specification of NExtΛ’s model class. We let the NExtΛ-models be
pairs Mg := (M, g) consisting of a Λ-structure M and an M-assignment g. We will call
such pairs Λ-context systems, g being the context and M the underlying structure of the
context system Mg . (By a minimal context system we will mean a context system M∅.)
The logical space Mod(NExtΛ) of NExtΛ is thus the class of all Λ-context systems. Thus
every NExtΛ-model Mg contains an ExtΛ-model M as its underlying structure.

15 That immediate-constituent substitutivity implies arbitrary-constituent substitutivity under
very general conditions is well known, see, e.g., (Pagin and Westerståhl [11, note 15]). We
include a proof for our special case since the argument is brief and the claim central to our
discussion.
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(G3) requires the specification of a function ObjNExtΛ that maps each Λ-context
system Mg to a set ObjNExtΛ

Mg
of NExtΛ-objectsMg . Where the structure M underlying

the context systemMg is (M,I), we letObjNExtΛ
Mg

be M. ThusExtΛ andNExtΛ essentially
agree, modulo the difference in their notions of model, on (G3).

(G4) requires, for each Λ-context system Mg , a partition of NExtΛ’s well-formed
expressions into NExtΛ-sentencesMg , NExtΛ-termsMg , and NExtΛ-predicatorsMg . The
NExtΛ-sentencesMg are the g-closed Λ-formulas, the NExtΛ-termsMg are the members
of V ∪ C, and the NExtΛ-predicatorsMg are the members of C�, the members of P , the
members of {∀,∃}, and the g-open Λ-formulas. Thus the NExtΛ-categories are model-
dependent, unlike the ExtΛ-categories. Note that relative to minimal context systems,
the NExtΛ-notions of sentence, term, and predicator are just those of ExtΛ.

(G5) requires the definition of a truth operator that maps each Λ-context system
Mg to the set true

NExtΛ
Mg

of NExtΛ-sentencesMg (i.e., g-closed Λ-formulas) that are
NExtΛ-true in Mg . Let true

NExtΛ
Mg

be the set of all g-closed Λ-formulas φ for which
�φ�M[g](∅) = 1 (equivalently, for which �φ�M[g] = 1Gg ). Note that by Lemma 2, a

g-closed formula φ that is not in true
NExtΛ
Mg

is such that �φ�M[g](∅) = 0, or equivalently,
�φ�M[g] = 0Gg . Also, since �φ�M[∅] = �φ�M, trueNExtΛ

M∅
= true

ExtΛ
M

.
(G6) requires the definition of a designation operator that maps each Λ-context

system Mg to a function des
NExtΛ
Mg

whose domain consists of NExtΛ-termsMg (i.e.,
variables and constant symbols) and whose values are NExtΛ-objectsMg (i.e., members
of M). Let desNExtΛ

Mg
be the set that contains, for each individual constant c ∈ C� , the

pair 〈c,I(c)〉, and for each g-covered variable vi , the pair 〈vi , g(i)〉; and nothing else (so
that variables not covered by g do not designate anything). Thus desNExtΛ

M∅
= des

ExtΛ
M

.
(G7), finally, requires the definition of a predication operator that maps each

Λ-context system Mg to a function true-ofNExtΛ
Mg

mapping each NExtΛ-predicatorMg
(i.e., member of C�, member of P , member of {∀,∃}, or g-open Λ-formula) to a {0, 1}-
valued function on a set of arrangements of members of the type hierarchy over M.
We let true-ofNExtΛ

Mg
be the function mapping:

(i) each Montagovian constantC ∈ C� to the function �C �M[g](∅), which is the
characteristic function of the subset {X ⊆M | I(C ) ∈ X} of Pow(M ).

(ii) each P ∈ Pn to �P�M[g](∅), i.e., to I(P), which by definition is the
characteristic function of a subset ofMn.

(iii) each Q ∈ {∀,∃} to the function �Q�M[g](∅), which in either case is the
characteristic function of a subset ofPow(M ), viz. of {M}or of {X ⊆M |x 
=
∅}, respectively.

(iv) each g-open Λ-formula φ to the function �φ�M[g] : dom(�φ�M[g]) → {0, 1},
which is obviously the characteristic function of some subset of the domain
of �φ�M[g] ⊆ Gg .

Note that true-ofNExtΛ
M∅

= true-ofExtΛ
M

.
Obviously, modulo the identification of minimal Λ-context systems (M,∅) with

their underlying Λ-structures M, the grammar ExtΛ is simply the result of restricting
the logical space of NExtΛ to minimal context systems, i.e., context systems with an
empty context. In this precise sense, then, NExtΛ is a generalization of ExtΛ. It also
follows that ExtΛ-coextensiveness in M and NExtΛ-coextensiveness in M∅ coincide,
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so any violation of extensionality in NExtΛ will have to occur in non-minimal context
systems.

The coextensiveness condition (DC1) plays out as follows in NExtΛ:16

(DC1NExtΛ ) g-closed Λ-formulas φ and � are NExtΛ-coextensive in Mg just in
case they are either both NExtΛ-true in Mg or both NExtΛ-false
in Mg , i.e., just in case �φ�[g]M(∅) = 1 and ���[g]M(∅) = 1, or
�φ�[g]M(∅) = 0 and ���[g]M(∅) = 0. Since, for g-closed formulas
�, ���M[g](∅) = ���M(g), we have that g-closed Λ-formulas φ and
� are NExtΛ-coextensive in Mg just in case �φ�M(g) = ���M(g).

Violations of extensionality occur within NExtΛ regardless of the nature of Λ: By
definition P 
= ∅. Suppose without loss of generality that P contains a one-place
predicate symbol P. Let M be such that I(P)(a) = 1 and I(P)(b) = 0. Let g(0) =
g(1) = a. Then both Pv0 and Pv1 are NExtΛ-true in Mg , yet ∀v0Pv0 will be NExtΛ-
false and ∀v0Pv1, NExtΛ-true in Mg . (Clearly a variant of this strategy can be used
for a lexicon containing a predicate symbol of an arity n > 1.)17,18 And since atomic
formulas can be shown to be NExtΛ-extensional in any Λ-context system, it is indeed
quantification that is responsible for this failure of extensionality.19 Thus:

Observation 2. NExtΛ is never extensional.

§6. Context systems and deixis. In Ext and NExt, we have two grammar schemas
that build on the same generating syntax and the same recursive semantics but that
nevertheless differ with respect to the extensionality of their generated grammars. Since
grammars of either kind are, in an intuitive but clear sense, grammars of quantification,
we are led to conclude that the question whether quantification is extensional is, unless
further qualified, ill-posed, because it is answerable only relative to an antecedently
chosen grammar.

It is nevertheless conceivable that one of our two grammar schemas should, all things
considered, be preferable to the other, and if this were the case, it might indirectly
support the answer to the extensionality question given by the camp endorsing the

16 It is routine to spell out (DC2) through (DC4) in analogous terms, but we won’t need to
invoke them.

17 For a counterexample that doesn’t involve vacuous quantification, let P,Q ∈ P1, let M =
(M, I) be a model, let m ∈M , let I(P) the constant function on M with value 1, and let
I(Q) :M → {0, 1} be non-constant with I(Q)(m) = 1. Let g be the function with domain
{0} for whichg(0) = m. ThenPv0 andQv0 are bothNExtΛ-true sentences inM

g . But∀v0Pv0
is NExtΛ-true in M

g while ∀v0Qv0 is NExtΛ-false in M
g . Thus switching the constituent Pv0

of ∀v0Pv0 forQv0, with which it isNExtΛ-coextensive inM
g , results in an expression, namely

∀v0Qv0, that is not NExtΛ-coextensive in M
g with the original ∀v0Pv0.

18 The reader is encouraged to consult Salmon’s [17, pp. 415–416] counterexample to
extensionality, which uses a binary predicate symbol and identity. It is, we admit, much
wittier than ours.

19 The root cause for the non-extensionality of NExt-grammars is actually variable-binding
rather than quantification in the narrow sense of universal and existential quantification. One
way to see this is by noting that Montagovian constants also generate extensionality failures in
NExt-grammars. For suppose that g(v0) = a and I(C ) = b, where I(P)(a) = I(P)(b) = 1
while I(Q)(a) = 1 and I(Q)(b) = 0. Then Pv0 and Qv0 are both NExtΛ-true in M

g while
C v0Pv0 is NExtΛ-true and C v0Pv0 is NExtΛ-false in M

g .
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superior grammar schema. Are there arguments, then, that might be advanced in favor
of Ext over NExt or vice versa?

For a start, as we’ve seen in the preceding section, there is a precise sense in which
NExt generalizes Ext (if we identify a Λ-structure M with the minimal Λ-context
system M∅ that it underlies). It is thus tempting to argue that it is the more general
schema, i.e., NExt, that should win out; adherents of Ext, according to this argument,
take too narrow a view of logical space by considering only minimal context systems,
and are misled into adopting a grammar schema that, because of its myopia, makes
quantification look extensional.

One might counter on behalf of the extensionalist that not every generalization is
an appropriate generalization. Perhaps the generalization NExt of Ext is a spurious
one, one that accidentally destroys extensionality but that otherwise has no point. If
that is right, it should be Ext that rules; after all, its grammars are not only more
parsimonious20 than NExt’s, but also extensional; and as Lewis [9, p. 256] notes,
“extensionality itself is generally thought to be an important dimension of simplicity.”
Thus, if there’s no point to adopting NExt, we should embrace Ext on grounds of
theoretical simplicity.

It seems, however, that this argument of the extensionalist’s won’t fly. Granted,
for the purpose of formalizing mathematics there is perhaps little point in replacing
simple structures with arbitrary context systems. But within philosophy of language
and linguistic semantics, context systems are routinely appealed to in the analysis of
deictic utterances involving third-person singular pronouns, and thus certainly appear
to have a point.

The idea that references for deictic pronouns are to be furnished by a contextual
variable assignment goes back at least to Montague [10], is prominent in Kaplan [8],
and has gained wide currency through the influential textbook by Heim and Kratzer
[6].21 In brief, the proposal is that the context g is the result of various demonstrative
acts on the part of the speaker, and that the objects demonstrated can be designated
via variables co-indexed with the objects’ places in g.

To take a simple example, suppose we wanted to formalize the following utterance:

(A) Pointing at Venkatraman Ramakrishnan: He is a genius.

According to the view under discussion, the speaker’s pointing gesture places
Ramakrishnan into a suitable position in the context g, and it is assumed that the
deictic pronoun (tacitly, as it were) carries the index that corresponds to that position.
The utterance is therefore to be represented more precisely as

(Ai) Pointing at Venkatraman Ramakrishnan: Hei is a genius,

where the context g generated by the pointing gesture is such that gi = Ramakrishnan.
Now (Ai) can be formalized, in any grammar NExtΛ whose lexicon contains the

one-place predicate symbol Genius, as

(B) Genius(vi).

20 In that, for instance, its models are mere structures rather than context systems, and its
syntactic categories do not depend on models.

21 The analysis by Del Prete and Zucchi [3] uses precisely the kind of context-system apparatus
we built into NExt.

https://doi.org/10.1017/S1755020324000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020324000066


358 KAI F. WEHMEIER

In any context system Mh whose context h covers vi , formula (B) is NExtΛ-true just
in case hi belongs to I(Genius). So in the intended context system where I(Genius) is
the set of geniuses and g is determined by the speaker’s pointing gesture as assumed
above, (B) will be true just in case gi , i.e., Venki Ramakrishnan, is a genius, which is
precisely what is required of an adequate formalization of (A).22

An analysis of deixis of this nature is unavailable to adherents of Ext. No grammar
ExtΛ counts the open formula (B) as a sentence and thus neither its truth nor its falsity
can even be entertained—after all, no ExtΛ-model, i.e., no Λ-structureM (equivalently,
no minimal Λ-context system M∅) supplies a value for the variable vi . The grammars
ExtΛ therefore seem severely limited in their applicability to natural-language analysis
in that they cannot handle deixis—surely a serious weakness.23

It thus looks like we have a substantive argument, based on the logical analysis of
a natural-language phenomenon, in favor of the more general grammars NExtΛ, and
thus, indirectly, in favor of the non-extensionality of quantification.

§7. An extensionalist approach to deixis. What might an adherent of Ext do in
the face of utterances like (A)? More precisely, how might they treat the pronoun he
as it occurs in (A)? Given the available lexical resources, and given that they cannot
model he as a free variable, there would seem to be two options: The pronoun might
correspond to an individual constant, or it might correspond to a bound rather than a
free variable. Let us consider these in turn.

If we want to render deictic pronouns as individual constants, we need to think
of the lexicon as being expanded, at the time of a deictic utterance like (A), by a
new individual constant d corresponding to the deictic pronoun he, and to think
of a demonstrative gesture not as assigning an object m to a certain hitherto
valueless variable vi that thereby becomes covered by the context (as a NExt-theorist
would), but as introducing, and fixing m as the interpretation of, the new individual
constant d.

Put somewhat differently, where the received view regards a deictic utterance like (A),
or rather (Ai), as transforming an initial context system (M, g) via the gesture pointing
at Venki Ramakrishnan, into a richer context system (M, gVenki

i ), Venki thus becoming

22 There are a great many details about this story that would need to be explained, such as the
rule that determines the position in the context into which a demonstrated object is written,
the ability of hearers to identify the right variable index to retrieve the appropriate object
from the context, etc. We will assume, for the sake of argument, that this can be made to
work.

23 Something like this observation appears to underlie Szabó and Thomason’s [22] complaints
about Tarski’s reticence towards counting open formulas as truth-apt: After decrying “a
strong tradition in logic of treating free variables and ‘open formulas’ as second-class
citizens” [22, pp. 172–173], they go on to say: “[...] Tarski was forced to assign temporary
values to variables in order to produce a compositional definition of generalized truth, or
satisfaction, but [...] he refused to give first-class status to open formulas. [...] [O]vercoming
this prejudice was crucial to securing a viable semantic theory of indexicals.” It is presumably
their ineligibility for truth and falsity that makes open formulas “second-class citizens” in
grammars like ExtΛ. But note that Szabó and Thomason may be overshooting their mark
if they mean to suggest that all open formulas should count as sentences. After all, given a
context system M

g , among the ∅-open formulas it is only the g-closed ones that are true or
false. This problem only goes away if one makes context assignments total functions on 
,
and it is hard to see how this could be justified vis-à-vis linguistic applications in particular.
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the value of the variable vi , Ext-grammarians rather think of (A) as transforming an
initial Λ-structure (M,I) via the pointing gesture into a richer Λd -structure (M,IVenki

d ),
where Λd is the expansion (C� ∪ {d}, C�,P) of Λ by the previously uninterpreted
individual constant d, and IVenki

d is I ∪ {〈d,Venki〉}.
It should be clear that, if the extensionalist follows this route, they have no

expressiveness problems in dealing with deixis. After all, in order to say what is
expressed in NExtΛ by φ(vi0 , ... , vin ), with the free variables vi0 , ... , vin having been
assigned values through pointing, our extensionalist can use φ(d0, ... , dn), where each
dj is interpreted by their ExtΛd0 ,...,dn

-model as the object that the NExt-theorist would
assign to the variable vij as its contextual value.

So it looks as if the pendulum has swung back towards Ext: the logical analysis of
deixis does not, after all, favor NExt over Ext, if we’re willing to expand the lexicon
by individual constants for deictic pronouns. But then simplicity considerations would
seem to push us back towards Ext.24

Friends of NExtΛ may not be willing to admit defeat, though. While they can hardly
object to the extensionalist’s claim of being able to formalize deictic utterances in a
truth-conditionally adequate manner, they can point to an implausible feature of the
proposed representation. The issue comes out quite clearly if we compare:

(A) Pointing at Venkatraman Ramakrishnan: He is a genius

with

(C) Every living US President is such that he is a genius.

According to the current extensionalist proposal, the formalization of (A) would be

(B′) Genius(d )

whereas the uncontentious25 formalization of (C) is

(D) ∀vj
(
Pres(vj) → Genius(vj)

)
.

Both (A) and (C) contain the pronoun he, but the formalization (B′) of (A) renders it
as d while the formalization (D) of (C) renders the very same pronoun as vj . Granted,
in (A) he is used deictically while in (C) it is used like a bound variable, but the pronoun
itself is morphologically the same in both cases; indeed this seems to be the situation

24 One might object that each individual NExtΛ actually has an expressive advantage over its
counterpart ExtΛ, since the latter must expand its lexicon in order to achieve expressive
parity. But this is ignoring the fact that NExtΛ needs to do something quite similar in order
to achieve the expressive power that it has: It must shift a variable that previously wasn’t
context-covered into the cover of the context, which is in a sense to lexicalize that variable.
That this doesn’t involve a change of grammar is only due to the possibility of making the
grammatical categories (of sentence, term, and predicator) relative to a model, which we
built into the definition of a grammar precisely in order to accommodate this need of NExt;
Ext does not require such flexibility. We could have alternatively made NExt a function not
just of a lexicon Λ but also of a finite set A of variables, in such a way that the grammar
NExtΛ, A has as its models precisely those Λ-context systems whose contexts cover all and
only the variables in A. Under that definition, a move from ExtΛ to ExtΛd would correspond
to a move from NExtΛ, A to some NExtΛ, A∪{vi}.

25 Assuming a prohibition against vacuous binding, (C) only has the formalization according
to which he is bound by every living US President. Of course any other variable than vj would
do just as well in (D).
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in a wide range of human languages. Formalizing the two occurrences of the same
pronoun by distinct symbols, i.e., in effect positing an ambiguity, for the sole purpose
of safeguarding extensionality, therefore seems difficult to justify.26

Now a similar charge of ambiguity may perhaps be leveled against NExt. Recall that
the NExtΛ-formalization of (A), or rather of (Ai), is

(B) Genius(vi),

in which he corresponds to a variable (here vi), just as it does in

(D) ∀vj
(
Pres(vj) → Genius(vj)

)
,

where it corresponds to vj . So it is certainly true that the pronoun is represented as
a variable in both cases, which is not the case in the Ext-proposal we just examined.
They are nevertheless distinct variables—unless one happens to choose j = i for the
formalization (D) of (C), for which there is no particular reason (after all, the choice of
index for bound variables is largely irrelevant). What is disconcerting is that the NExt-
strategy requires the choice of a particular index i for the formalization of the deictic
pronoun, i.e., a decision that (A) is really (Ai ) rather than, say, (Ak), without an obvious
story as to how this might work; a requirement of choice that has no counterpart in
our Ext-strategy. Stojnić [18, chap. 3] argues that this commits the received analysis
of deixis, i.e., the one appealed to by the NExt-theorist, to a substantive ambiguity
problem. We are sympathetic to this objection but will set it aside here.27

All this said, the extensionalist should, we believe, concede that her strategy of
expanding the lexicon by new individual constants, while able to establish expressive
parity with NExtΛ, is nevertheless problematic as an analysis of deixis.

We’ve left one potential Ext-strategy for the formalization of deixis unexplored,
however, namely the option of rendering the deictic pronoun as a bound rather than a
free variable. Suppose that, instead of introducing the new individual constant d into the
lexicon, with the understanding that its interpretation is to be the demonstrated object
m (which, for the NExt-theorist, would be the new value of vi), we introduce a new
Montagovian constant D into the lexicon, with the understanding that the interpretation
of D is the object m. We then have that �Dvjφ�M(h) = �φ�M(hmj ) and thus in particular
that, for any h ∈ G, �Dvj Genius(vj)�M(h) = 1 if and only if �Genius(vj)�M(hmj ) = 1,
if and only ifm ∈ I(Genius). Accordingly, under this proposal, the ExtΛ-theorist may
formalize (A) as

(B′′) Dvj Genius(vj)

provided that Venkatraman Ramakrishnan is the interpretation of D.
Thus, where the previous extensionalist proposal was to think of (A) as transforming

an initial Λ-structure (M,I) via the pointing gesture into the richer Λd -structure
(M,IVenki

d ), the new proposal is to think of (A) as transforming (M,I) into
the richer ΛD-structure (M,IVenki

D ). It should be clear that this, too, solves the
extensionalist’s expressiveness problem, for they can now do with a closed formula
D1x1 ... Dnxn φ(x1, ... , xn) whatever the non-extensionalist can do with the open

26 See, e.g., Zimmermann [26, p. 204], Jacobson [7, p. 62], and Del Prete and Zucchi [3, sec. 1],
who all express suspicion vis-à-vis such an ambiguity treatment of deictic and bound
pronouns.

27 Thanks to an anonymous referee for drawing our attention to this issue.
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formula φ(vi1 , ... , vin ).28 Consequently, ExtΛD1 ,...,Dn
can formalize any deictic utterance

formalizable in NExtΛ.
But do these new Montagovian constants solve the representational problem of

unwanted deictic–bound ambiguity in pronouns? Well, yes. For where the extension-
alist’s first attempt at sprucing up the expressive power of ExtΛ was unsatisfactory in
that it formalized:

(A) Pointing at Venkatraman Ramakrishnan: He is a genius

as

(B′) Genius(d )

with an individual constant d rather than a variable, as in NExtΛ’s formalization

(B) Genius(vi),

she can now, in ExtΛD , render (A) as

(B′′) Dvj Genius(vj),

with a variable vj in the argument place of G, as desired.29 Taking that variable to be
the formal equivalent of the deictic pronoun he in (A), she thus avoids the spurious
ambiguity of pronouns that was objectionable about her initial idea: bound and deictic
pronouns alike now correspond to variables.30

But wait—if the deictic pronoun in (A) corresponds to the bound variable occurrence
in the argument place of Genius in (B′′), what in (A) corresponds to the Montagovian
constant D in (B′′)? In other words, what is the justification for including Dvj in the
logical form of (A)?

A comparison of (A) to its proposed ExtΛD -formalization (B′′) suggests an answer:

(A) Pointing at Venkatraman Ramakrishnan: He is a genius.

(B′′) Dvj Genius(vj)

What the extensionalist can say is that the predicate symbol Genius represents the
verb phrase is a genius, the variable vj occurring in its argument place represents the
pronoun he, and the Montagovian constantD represents the pointing gesture, aimed at
Ramakrishnan, that accompanies the speaker’s production of the pronoun. Thus the
pointing gesture itself, the extensionalist will maintain, functions as a Montagovian
constant and is represented as such at the level of logical form.

While we don’t have the space to enter into much detail here, we want to point
out that the recent philosophical and linguistic literature has seen a sophisticated,
comprehensive proposal [18–21] for the semantic analysis of deixis which centrally
includes the requirement that demonstrative gestures be represented at the level of

28 The variables xi can be chosen arbitrarily (provided they are all distinct, as we’re assuming
the vik are).

29 Again, the choice of index is immaterial, since the variable is bound (by D). This contrasts
with the situation in NExtΛ, where the variable’s index is crucial.

30 The “bound” vs. “deictic” terminology then seems unfortunate, since deictic pronouns are
bound, too.
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logical form, and indeed in the form of variable binders, much as we have just
suggested.31

The formal analysis proposed by Stojnić [18] is, setting aside the facts that her
overall framework is a dynamic semantics rather than the “static” one with which we
are concerned in this paper, and that she aims to provide a mechanism for pronoun
resolution as well, very similar to the one at which we have arrived on behalf of
the extensionalist: Stojnić’s demonstration operator 〈	kd 〉 is essentially our Dvk ,
if we follow the convention that D is the Montagovian constant corresponding to
the individual constant d; in other words, a formula 〈	kd 〉φ in Stojnić’s formalism
is essentially equivalent to the gloss ∃vk(vk = d ∧ φ) we gave for Dvkφ under the
assumption that I(d ) = I(D).32

Deictic pronoun use does of course also occur without an accompanying demon-
strative gesture. Does this fact complicate the position of the Ext-theorist?33 We
are inclined to think not. Pointing, the extensionalist will acknowledge, is just one
way of introducing a (Montagovian) constant into the language, a way that makes
the mechanism responsible for the identification of a particular individual as its
interpretation particularly transparent. But there are other rule-based mechanisms
that can serve the same purpose, as Stojnić et al. [19] have shown in some detail, using
the theory of coherence relations. And such cases of deixis without ostension, too,
Stojnić’s proposed logical-form correlate of introducing into the discourse an object
made salient by coherence relations is essentially a Montagovian constant that binds
the variable representing the deictic pronoun.

§8. Conclusion. In order better to understand the disagreement between Quine and
Salmon over the extensionality of quantification that we saw in Section 1, we developed
(or perhaps better: made explicit) two schemas for constructing quantificational
grammars. Both schemas base their syntax and semantics on the Tarskian techniques
reviewed in Section 2, but the first, Ext, builds an extensional grammar ExtΛ from any
lexicon Λ (Sections 3 and 4), while the second, NExt, builds a non-extensional grammar
NExtΛ (in which quantification is responsible for the failure of extensionality) from
any Λ (Section 5). There is thus a sense in which both Quine and Salmon are right:
depending on the ambient grammar, quantification can turn out extensional, as Quine
claims, or non-extensional, as Salmon has it. At the same time, there is a sense in which
they are both wrong—quantification per se is neither extensional nor non-extensional;
it is only relative to an entire grammar environment that it turns out one way or another.

In Section 6, we imagined our two camps not being content with this annoyingly
philosophical outcome, and wondered what arguments there might be to favor the
grammar schema Ext over NExt or vice versa, arguments that would then indirectly

31 The central insight of this proposal, as we see it, is that in the case of physical ostension,
the identification of the relevant object can be construed as an entirely rule-based,
grammaticalized mechanism rather than a more or less free-wheeling attempt to guess the
speaker’s referential intention.

32 Basically the same analysis is independently suggested by Ebert et al. [4]. They, too, work in
a dynamic framework; the projection of their analysis of deictic utterances into our setting
gives essentially ∃vi (vi = d ∧ φ) rather than our Dvi φ, where again it is assumed that
I(d ) = I(D) (cf. [4, p. 167]).

33 Thanks to two anonymous reviewers for insisting on this point.
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support either the extensionality or the non-extensionality of quantification. In terms
of purely conceptual arguments, we ended up in something of a stalemate: On the one
hand, Ext’s grammars are simpler than NExt’s in that they are extensional and their
internal machinery is more parsimonious; on the other hand, NExt’s grammars seem to
generalize Ext’s. At this point in the dialectic, we had the extensionalist challenge their
opponent to demonstrate that the ostensibly greater generality of NExt’s grammars
wasn’t just a pointless complication. The non-extensionalist came back with a well-
established application of NExt-grammars in the logical analysis of natural language,
namely to deixis. According to a widely held view, Ext-type grammars are inadequate
for the modeling of deixis since deictic pronouns are to be rendered as free variables, and
consequently, deictic utterances as open formulas; within the grammars ExtΛ, however,
open formulas are never truth-eligible, and thus the formalization of deixis appears to
fall outside the range of applicability of the extensionalist’s grammar schema.

The final dialectical move we considered was the extensionalist’s attempt to refute
their opponent’s contention that Ext is unable to handle natural-language deixis. To
this end, we examined two strategies available within Ext, namely, on the one hand,
rendering deictic pronouns as individual constants, and on the other, rendering them
as variables bound by a Montagovian constant. While the first strategy was found to
be problematic in that it postulates a morphologically unattested ambiguity in natural-
language pronouns between deictic occurrences (which would correspond to individual
constants) and bound occurrences (which would correspond to variables), the second
strategy was seen to avoid this problem, but is committed to loading additional
material into the logical forms of deictic utterances, to wit, Montagovian constants.
We suggested on behalf of the Ext-theorist that there is a natural interpretation of this
additional material, namely that it is the logical-form counterpart of the demonstrative
gesture. Indeed, as it happens, recent proposals for the linguistic treatment of deixis
by Stojnić and by Ebert (and respective collaborators) require just such material in
the relevant logical forms, so the presence of Montagovian constants in the Ext-
formalizations of deictic utterances appears to be an independently motivated feature
of the grammar of deixis.

Where does this leave us? It is still the case that, technically speaking, depending
on the kind of grammar that controls, quantification may present as extensional or as
non-extensional. But there now seems to be little reason to adopt a grammar schema
that makes quantification non-extensional, given that extensional grammars are not
only simpler but, by all appearances, also no less expressive than their non-extensional
generalizations. In the field of quantification theory, extensionalism seems to be the
most attractive option.
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