
Math. Struct. in Comp. Science (2015), vol. 25, pp. 1132–1146. c© Cambridge University Press 2014

doi:10.1017/S096012951400053X First published online 17 November 2014

A notion of homotopy for the effective topos

JAAP VAN OOSTEN

Department of Mathematics, Utrecht University, P.O. Box 80.010, 3508 TA Utrecht, the Netherlands

E-mail: J.vanOosten@uu.nl

Received 1 March 2010; revised 20 January 2014

We define a notion of homotopy in the effective topos.

1. Introduction

This paper deals with a notion of ‘homotopy’ one can define in the effective topos of

Hyland (1982).

In recent years, there has been an upsurge of interest in connections between abstract

homotopy theories and type theory: see Gambino and Garner (2008), Warren (2008),

Awodey and Warren (2009), Voevodsky (2010), Van den Berg and Garner (2011), Kapulkin

et al. (2012) and Van den Berg and Garner (2012). A prominent area of focus is that

of (closed) model categories, first defined by Quillen (1967); for modern expositions

see Hovey (1999), Dwyer and Spalinski (1995) and Hirschhorn (2003). A closed model

structure on a category defines a notion of homotopy, and this is used in order to model

the identity types of Martin-Löf’s type theory. For a comprehensive recent account, see

Univalent (2013).

In this paper, the focus is on a topos that is often considered an oddity in the world of

toposes and chiefly useful for applications in logic. However, we show that it is possible to

think of the objects of this topos as spaces and understand the effective topos in geometric

(topological) terms.

It is shown that a sensible notion of ‘path object’, for every object of the topos, arises

out of the so-called ‘discrete reflection’. In the effective topos, the full subcategory of

discrete objects has been thoroughly studied (see, e.g. Hyland et al. (1990)). I remind

the reader that an object of the effective topos is called ‘discrete’ if it is a quotient of a

subobject of the natural numbers object. There are several equivalent characterizations of

the discrete objects, among which:

An object X is discrete if and only if the canonical map from X to the exponential XP(N) is an

isomorphism, where P(N) denotes the power object of the natural numbers.

Easy proofs of this and related facts may be found in Van Oosten (2008). The fact above

means that the discrete objects are defined by an orthogonality property, and hence enjoy

good completeness properties relative to the effective topos. In particular, the inclusion of

the discrete objects as full subcategory of the effective topos has a left adjoint, which is

called the ‘discrete reflection’.
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Part of the significance of the present paper is to provide a new and very concrete,

intuitive meaning to the word ‘discrete’. Indeed, my notion of ‘path’ will be such that:

1. An object X is discrete if and only if there are no nontrivial (= nonconstant) paths

in X.

2. The discrete reflection of X is (internally) the set of path components of X.

This should lead, hopefully, to a study of ‘topological’ properties of non-discrete objects.

For, the non-discrete part of the effective topos has not been studied nearly as extensively

as the discrete part (for example, the following question has, to my knowledge, not been

answered: which objects Y have the property that X → XY is an isomorphism, for every

discrete object X?).

Note, by the way, that the properties of ‘paths’ above imply that there is no connection

to the real line. Indeed, in the effective topos the object of real numbers is discrete. This

is nothing unusual in the study of abstract homotopy theory: after all, in the topos of

simplicial sets the standard interval has nothing to do with the real numbers object of the

topos (whose geometric realization is a discrete space). We are studying a notion which is

similar in spirit to the homotopy in a closed model category.

One may doubt whether the terminology ‘discrete’ for the objects of the effective topos

described above, was well-chosen. However, I do not feel that this paper is the place to

quarrel with established language.

We obtain sensible interpretations of standard notions from topology. For example,

an object is path connected if and only if its discrete reflection is isomorphic to the

terminal object; an object is simply connected if it is path connected and its fundamental

group is trivial. We shall see that these notions do not coincide: we have ‘circles’ whose

fundamental group is isomorphic to Z. We also define ‘spheres’.

In the final section of this paper, we define Hurewicz fibrations, strong deformation

retracts and homotopy equivalences in a natural way. We show that every arrow in the

effective topos has a factorization as a strong deformation retract followed by a Hurewicz

fibration. The resulting structure should satisfy Baues’ axioms for a fibration category

(there is still an embarrassing open question) and Van den Berg and Garner’s axioms for

a path object category.

Many questions remain for future work. Is there a model structure on the effective

topos with Hurewicz fibrations and homotopy equivalences as fibrations and weak

equivalences, respectively? What does the homotopy category of the effective topos look

like? It seems obvious that the construction of this paper can be performed in arbitrary

‘realizability toposes’. Is there a generalization to toposes coming from an arbitrary

tripos?

1.1. Preliminaries

For the sake of self-containedness, I give the definition of the effective topos as a category.

From now on, it will be denoted by Eff. You are referred to Hyland (1982) and Van

Oosten (2008) for further information.
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The category Eff is built on the notion of a computable function on the natural

numbers.

An object is a pair (X,∼) where X is a set and ∼ is a function from X × X to the set

P (N) of subsets of N , usually written as x, y �→ [x ∼ y]. This function ∼ has to satisfy

the requirement that there exist computable functions s (symmetry) and t (transitivity),

such that the following hold:

— if a ∈ [x ∼ y] then s(a) ∈ [y ∼ x],

— if a ∈ [x ∼ y] and b ∈ [y ∼ z] then t(a, b) ∈ [x ∼ z].

The set [x ∼ y] is called the equality of x and y.

Given two objects (X,∼) and (Y ,≈), a morphism (X,∼) → (Y ,≈) is represented by

a function F : X × Y → P (N) for which there exist computable functions stX , stY
(strictness), relX , relY (relationality), tl (totality) and sv (single-valuedness), satisfying:

— if a ∈ F(x, y) then stX(a) ∈ [x ∼ x] and stY (a) ∈ [y ≈ y],

— if a ∈ F(x, y), b ∈ [x′ ∼ x] and c ∈ [y ≈ y′] then relX(b, a) ∈ F(x′, y) and relY (a, c) ∈
F(x, y′),

— if a ∈ [x ∼ x] then tl(a) ∈
⋃
y∈Y F(x, y),

— if a ∈ F(x, y) and b ∈ F(x, y′) then sv(a, b) ∈ [y ≈ y′].

Two such functions F,G determine the same morphism (X,∼) → (Y ,≈) if there is

a computable function φ such that whenever a ∈ F(x, y), φ(a) ∈ G(x, y) (this is an

equivalence relation on functions which represent a morphism).

We shall write 〈a1, . . . , an〉 for the natural number which codes the finite tuple of natural

numbers (a1, . . . , an) in some coding for which all the operations one wishes to perform

are given by computable functions: e.g. determining the length of a sequence coded by x,

computing the code of the sequence which is the concatenation of the sequences coded

by x and y, determining the ith element of the sequence coded by x, etc.

For an object (X,∼) and x ∈ X we shall often write E(x) for [x ∼ x]. E(x) is called the

existence of x.

Example 1. Suppose (X,∼) and (Y ,≈) are objects of Eff and f : X → Y is a function

such that there exist computable functions φ and ψ satisfying:

— whenever a ∈ E(x), φ(a) ∈ E(f(x)),

— whenever a ∈ [x ∼ x′], ψ(a) ∈ [f(x) ≈ f(x′)].

Then the following function F represents a morphism (X,∼) → (Y ,≈):

F(x, y) =
⋃
x′∈X

{〈a, b〉 | a ∈ [x ∼ x′], b ∈ [f(x′) ≈ y]}.

Let us say that this morphism is induced by the function f.

Example 2. If (X,∼) is an object of Eff, then a subobject of (X,∼) is determined by a

function F : X → P (N) for which there exist computable functions φ and ψ satisfying

— if a ∈ F(x) then φ(a) ∈ E(x),

— if a ∈ F(x) and b ∈ [x ∼ x′] then ψ(a, b) ∈ F(x′).
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The subobject determined by F is then represented by the object (X,∼′) where

[x ∼′ y] = {〈a, b〉 | a ∈ F(x), b ∈ [x ∼ y]}.

Example 3. An assembly is an object (X,∼) which is such that [x ∼ y] = � if x �= y. Hence,

an assembly is given by a map E : X → P (N). The assemblies are (up to isomorphism)

the ¬¬-separated objects of Eff. An assembly is called canonically projective if E(x) is a

singleton for each x. These are (up to isomorphism) the projective objects of Eff.
Every morphism into an assembly is induced by a unique function on the level of sets,

as in Example 1.

2. Intervals and paths

Since, in Eff, the object of real numbers is discrete, it will come as no surprise that the

‘intervals’ defined here have nothing to do with the unit interval [0, 1] of real numbers.

Definition 2.1. Let A = {α0, α1, . . .} and B = {β0, β1, . . .} be two disjoint countable sets.

The generic interval of length n is the object (X,∼) where X = {α0, . . . , αn, β0, . . . , βn} and

∼ is given by:

[αi ∼ αi] = {〈i〉} [αi ∼ αj] = � if i �= j

[βi ∼ βi] = {〈i+ 1〉} [βi ∼ βj] = � if i �= j

[αi ∼ βi] = {〈i, i+ 1〉} [αi ∼ βj] = � if i �= j

[βi ∼ αi] = {〈i+ 1, i〉} [βi ∼ αj] = � if i �= j

This object is denoted In.

I prefer to visualize the object In in the following way:

αn
〈n+1,n〉

〈n,n+1〉
βn

...

α2
〈3,2〉

〈2,3〉
· · ·

α1
〈2,1〉

〈1,2〉
β1

α0
〈1,0〉

〈0,1〉
β0

0 1 2 · · · n n+ 1

That is, nontrivial equalities are given by labelled horizontal lines; elements on the same

vertical line have the same existence.

The following facts about In are easily established and left to the reader.

Proposition 2.2.

1. Let Kn be the canonically projective object ({α0, . . . , αn, β0, . . . , βn}, E) with E(αi) = {i}
and E(βi) = {i + 1}. Let [n + 1] be the canonically projective object (finite cardinal)

({0, . . . , n}, E) with E(i) = {i}. Then there are morphisms f, g : [n+ 1] → Kn, given by
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f(i) = αi, g(i) = βi, such that there is a coequalizer diagram

[n+ 1]
f ��
g

�� Kn
�� In.

2. The object In is ¬¬-separated, and isomorphic to the assembly Ĩn = ({0, . . . , n}, E) with

E(i) = {i, i+ 1}.

Fact (i) of Proposition 2.2 makes it easy to describe the exponentials (X,∼)In . For, we

have an equalizer diagram

(X,∼)In �� (X,∼)Kn
���� (X,∼)[n+1]

and hence, by the well-known formation of exponentials in the case that the exponent

is canonically projective, we see that (X,∼)In has as underlying set the set of functions

from {α0, . . . , αn, β0, . . . , βn} to X, where the existence of such a function f is the set of

coded pairs 〈σ, τ〉 such that σ is a coded tuple 〈c0, . . . , cn+1〉 satisfying ci ∈ E(f(αi)) for

0 � i � n and ci ∈ E(f(βi−1)) for 1 � i � n + 1; and τ is a coded tuple 〈a0, . . . , an〉 such

that ai ∈ [f(αi) ∼ f(βi)] for 0 � i � n. The equality between two such functions f and g is

the set of coded tuples ν = 〈d0, . . . , dn+1〉 such that di ∈ [f(αi) ∼ g(αi)] for 0 � i � n, and

di ∈ [f(βi−1) ∼ g(βi−1)] for 1 � i � n+ 1.

Definition 2.3. A morphism In
F→ Im is called order and endpoint preserving if the unique

function f : {0, . . . , n} → {0, . . . , m} which induces the corresponding arrow Ĩn → Ĩm (via the

isomorphism of 2.2 2) ), is order-preserving and satisfies f(0) = 0, f(n) = m.

Proposition 2.4. Every order and endpoint preserving map In → Im is surjective; hence

such maps exist if and only if n � m.

Proof. Consider f : {0, . . . , n} → {0, . . . , m}. If i ∈ {0, . . . , m} is not in the image of f then

i �= 0 and i �= m (since f is endpoint preserving) so there must be an element j ∈ {0, . . . , n}
such that f(j) < i and f(j + 1) > i. But then, in Ĩm, E(f(j)) ∩ E(f(j + 1)) = � whereas in

Ĩn, 〈j + 1〉 ∈ E(j) ∩ E(j + 1). So f cannot induce a morphism in Eff.

Definition 2.5. Let (X,∼) be an object of Eff. The path object of (X,∼), denoted P(X,∼),

is defined as follows.

Its underlying set is the set of all pairs (n, f) with n ∈ N and f is a function from

{α0, β0, . . . , αn, βn} to X.

Given two such pairs (n, f) and (m, g), the equality [(n, f) ∼ (m, g)] between them is the

set of all coded triples 〈a, s, b〉 satisfying:

a. a ∈ E(f) as element of (X,∼)In ,

b. b ∈ E(g) as element of (X,∼)Im ,

c. there is an order and endpoint preserving morphism σ : In → Im such that s ∈ [f ∼ gσ] in

the sense of (X,∼)In; or there is an order and endpoint preserving morphism σ : Im → In
such that s ∈ [fσ ∼ g] in the sense of (X,∼)Im .

Remark. It may seem, since our intervals have variable length, that we are modelling a

kind of ‘Moore-path’. However, this is misleading: the nature of the equality relation on
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P(X,∼) precludes that we have a function: P(X,∼) → N giving the length of a path (here,

N denotes the natural numbers object in the effective topos).

Proposition 2.6.

i. The construction of P(X,∼) extends to a functor P : Eff → Eff which preserves finite

limits.

ii. The object P(X,∼) comes equipped with well-defined maps:

s (source), t (target): P(X,∼) → (X,∼)

c (trivial path): (X,∼) → P(X,∼)

∗ (composition of paths): P(X,∼) ×(X,∼) P(X,∼) → P(X,∼), where the domain is

the pullback

P(X,∼) ×(X,∼) P(X,∼)

��

�� P(X,∼)

s

��
P(X,∼)

t
�� (X,∼)

(̃·) (converse path): P(X,∼) → P(X,∼).

With these data, P(X,∼) is an internal category in Eff which has a contravariant

involution which is the identity on objects.

Proof. I leave most of this to the reader. That P preserves products is a consequence

of the equality relation we defined on P(X,∼), which ensures that we ‘can assume that

two paths are of the same length’, i.e. for (n, f) representing an element of P(X,∼) and

a ∈ E(n, f) we can, for each m � n, find a canonical element (m, f′) and an element of

[(n, f) ∼ (m, f′)].

For functions f : {α0, β0, . . . , αn, βn} → X and g : {α0, β0, . . . , αm, βm} → X let f ∗ g :

{α0, β0, . . . , αn+m, βn+m} → X be the function defined by

f ∗ g(αi) =

{
f(αi) i � n

g(αi−n) i > n

f ∗ g(βi) =

{
f(βi) i < n

g(βi−n) i � n

Then composition of paths is represented by the function which sends a triple (n, f),

(m, g), (k, h) to the set of coded 4-tuples 〈a, b, c, d〉 such that a ∈ E(f), b ∈ E(g), c ∈
[f(βn) ∼ g(α0)] and d ∈ [(k, h) ∼ (n + m, f ∗ g)]. Here E(f), E(g) refer to the existence of

(X,∼)In , (X,∼)Im respectively.

Composition is strictly associative. It is another consequence of the particular equality

on P(X,∼) that the trivial (constant) paths are strict identities for composition.

https://doi.org/10.1017/S096012951400053X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400053X


J. van Oosten 1138

For the following proposition, I find it convenient to visualize paths in (X,∼) in the way

of the picture for In; so if f : {α0, β0, . . . , αn, βn} → X represents such a path, xi = f(αi) and

yi = f(βi) and 〈σ, τ〉 ∈ E(f) in the sense of (X,∼)In , so σ = 〈c0, . . . , cn+1〉, τ = 〈a0, . . . , an〉,
we picture f as

xn an
yn

...

x1 a1
y1

x0 a0
y0

c0 c1 c2 · · · cn cn+1

Such a path proceeds (in X ) by alternately taking a horizontal and a vertical step: a

horizontal step involves an equality in (X,∼), a vertical step involves an element in the

intersection of the existences.

Proposition 2.7. There is a morphism P(X,∼) ×(X,∼) P(X,∼)
L→ PP(X,∼) such that

s(L(f, g)) = f ∗ g and t(L(f, g)) = g.

Proof. We do this for the special case that g is constant; the generalization to the

statement in the proposition is straightforward and left to the reader.

So, we wish to show that there is L : P(X,∼) → PP(X,∼) such that sL = idP(X,∼) and

tL = ct:

P(X,∼)

id ������������
L �� PP(X,∼)

s

��
P(X,∼)

P(X,∼)

t

��

L �� PP(X,∼)

t

��
(X,∼)

c
�� P(X,∼)

First we show that there is a map Lk : (X,∼)Ik → ((X,∼)Ik )Ik with these properties. It is

induced by the function 	k which we now describe:

Suppose f represents an element of (X,∼)Ik :

xk ak
yk

...

x1 a1
y1

x0 a0
y0

c0 c1 c2 · · · ck ck+1
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Then 	k(f) is the path (f0, p0, . . . , fk, pk) defined inductively. Let f0 = f. Now suppose

inductively that fi is the path

xk ak
yk

...

xi+1 · · ·
xi ai

yi

...

xi ci
xi · · ·

xi ci
xi

ci ci ci · · · ci ci+1 · · · ck ck+1

Then we can take a horizontal step, obtaining pi, which is

xk ak
yk

...

xi+1 · · ·
yi

ci+1
yi

...

yi
ci+1

yi · · ·
yi

ci+1
yi

ci+1 ci+1 ci+1 · · · ci+1 ci+1 · · · ck ck+1

We have 〈ai, . . . , ai, ci+1, . . . , ck+1〉 ∈ [fi ∼ pi]. Subsequently, we take a vertical step,

obtaining fi+1 from pi. Clearly, pk is the constant path at yk . This defines the function 	k .

In order to see that 	k really induces a morphism (X,∼)Ik → ((X,∼)Ik )Ik , suppose

f, g represent elements of (X,∼)Ik and γ = 〈γ0, . . . , γk+1〉 ∈ [f ∼ g]. If f is the sequence

(x0, y0, . . . , xk, yk) and g is (z0, w0, . . . , zk, wk), then γ0 ∈ [x0 ∼ z0], γi ∈ [xi ∼ zi]∩[yi−1 ∼ wi−1]

for 1 � i � k, and γk+1 ∈ [yk ∼ wk].

Then if 	k(f) = (f0, p0, . . . , fk, pk) and 	k(g) = (g0, h0, . . . , gk, hk), one sees by induction

that γ ∈ [f0 ∼ g0], that 〈γi, . . . , γi, γi+1, . . . , γk+1〉 is an element of [fi ∼ gi] ∩ [pi−1 ∼ hi−1]

for 1 � i � k, and 〈γk+1, . . . , γk+1〉 is in [pk ∼ hk]. So if ρi = 〈γi, . . . , γi, γi+1, . . . , γk+1〉, then

ρ = 〈ρ0, . . . , ρk+1〉 ∈ [	k(f) ∼ 	k(g)].

So we have a well-defined morphism Lk : (X,∼)Ik → ((X,∼)Ik )Ik .

The next step is to see that the maps Lk extend to a map L : P(X,∼) → PP(X,∼): that

is, that they interact well with the equality relation on P(X,∼).
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Let 	 be the function which sends (k, f) (where f represents an element of (X,∼)Ik )

to (k, 	k(f)). We have to see that there is a computable function φ such that whenever

a ∈ [(k, f) ∼ (m, g)] then φ(a) ∈ [	(k, f) ∼ 	(m, g)]. From a we can computably extract k

and m and hence their maximum; say this is m. Then we only have to consider order and

endpoint preserving maps Im → Ik . Such a map is a composition of maps σj induced by

functions tj : {0, . . . , k + 1} → {0, . . . , k} of the form: tj(i) = i for i � j, and tj(i) = i − 1

otherwise. Then the resulting map (X,∼)σj : (X,∼)Ik → (X,∼)Ik+1 is induced by the

function sj which sends

f = (x0, y0, . . . , xk, yk)

to

sj(f) = (x0, y0, . . . , xj , xj , xj , yj , xj+1, . . . , xk, yk).

Suppose, a ∈ [(k, f) ∼ (k + 1, g)] so (ignoring irrelevant information) a ∈ [sj(f) ∼ g]

in (X,∼)Ik+1 . From a we find elements a1 ∈ E(sj(f)), a2 ∈ E(f) and a3 ∈ [	k+1(sj(f)) ∼
	k+1(g)] (the last since 	k+1 induces a morphism as we have seen). It suffices therefore to

find an element of

[(k, 	k(f)) ∼ 	k+1(sj(f))]

which does not depend on j.

Now from the definition of 	k it is clear that if 	k(f) = (f0, g0, . . . , fk, gk) then

	k+1(sj(f)) = (sj(f0), sj(g0), . . . , sj(fj), sj(gj), sj(fj), sj(gj), sj(fj+1), . . . , sj(gk))

= sj(sj(f0), sj(g0), . . . , sj(fk), sj(gk)).

So from a3 we find an element of

[	k+1(sj(f)) ∼ (sj(f0), . . . , sj(gk))]

and successively elements of [sj(fi) ∼ fi], hence (by the equality of function spaces) an

element of

[(sj(f0), . . . , sj(gk)) ∼ (f0, . . . , gk)].

Combining, we get the desired element of [	k+1(sj(f)) ∼ 	k(f)].

3. Discrete and path connected objects

In the effective topos, an object is called discrete if it is a subquotient of the object of

natural numbers N. The object N is the canonically projective object with underlying set

N , and E(n) = {n}. The following characterization of the discrete objects is taken from

Van Oosten (2008), 3.2.20.

Proposition 3.1. An object (X,∼) of Eff is discrete if and only if there is a computable

function φ such that for all x, x′ ∈ X we have: if n ∈ E(x) ∩ E(x′) then φ(n) ∈ [x ∼ x′].

This is the case if and only if (X,∼) is isomorphic to an object (Y ,∼) for which we have

E(y) ∩ E(y′) = � whenever y �= y′.

Let Effd be the full subcategory of Eff on the discrete objects. Effd is a very rich category:

it contains all of ‘constructive mathematics’.
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The inclusion functor Effd → Eff has a left adjoint which preserves products: the

discrete reflection.

Definition 3.2 (Van Oosten (2008), 3.2.19iii)). The discrete reflection of an object (X,∼),

denoted (X,∼)d, is the object with underlying set
⋃
x∈X E(x), and with the following equality:

[n ∼ m] consists of all coded sequences

σ = 〈n0, a0, n1, . . . , nk, ak, nk+1〉

satisfying: for each i � k there are xi, yi ∈ X such that ni ∈ E(xi), ni+1 ∈ E(yi) and

ai ∈ [xi ∼ yi].

The universal arrow η : (X,∼) → (X,∼)d is represented by the function

H(x, m) =
⋃

n∈E(x)

[n ∼ m].

It is easily verified that η is always an epimorphism. Now from the definition of P(X,∼)

in the previous section it should be obvious that the kernel pair of η is just the image of

the map (s, t) : P(X,∼) → (X,∼) × (X,∼). Furthermore, since Effd is a full subcategory

of Eff we have that η is an isomorphism if and only if (X,∼) is discrete. Summarizing:

Proposition 3.3.

i. An object (X,∼) of Eff is discrete if and only if it is internally true that there are no

nonconstant paths (i.e. the map c : (X,∼) → P(X,∼) is an isomorphism).

ii. The discrete reflection is, internally, the set of path components.

We shall therefore call an object path connected if its discrete reflection is isomorphic to

1, the terminal object of Eff.

4. Homotopy and fundamental group(oid)

Two maps f, g : (X,∼) → (Y ,∼) are homotopic if there exists a homotopy from f to g,

that is: a map H : (X,∼) → P(Y ,∼) such that sH = f and tH = g. By composition of

paths, converse paths and constant paths, homotopy is an equivalence relation.

For paths in (X,∼) there is the further notion of endpoint preserving homotopy. This is

an element H of PP(X,∼) such that both P(s)(H) and P(t)(H) are constant paths. The

picture is:

s(s(H))

P(s)(H)

s(H)
t(s(H))

P(t)(H)H

s(t(H))
t(H)

t(t(H))
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Composition of homotopies is ‘vertical composition’:

s(s(H))

P(s)(H)

s(H)
t(s(H))

P(t)(H)H

s(t(H))

P(s)(G)

t(H)=s(G)
t(t(H))

P(t)(G)G

s(t(G))
t(G)

t(t(G))

⇒

s(s(H))
s(H)

t(s(H))

H ∗ G

s(t(G))
t(G)

t(t(G))

We also have ‘horizontal composition’: if P(t)(H) = P(s)(G) then the pair (H,G) is actually

a path in the object P(X,∼) ×(X,∼) P(X,∼) and we have H ◦ G = P(∗)(H,G):

s(H) s(G)

H G

t(H) t(G)

⇒

s(H)∗s(G)

H ◦ G

t(H)∗t(G)

which is a homotopy from s(H) ∗ s(G) to t(H) ∗ t(G).

It is easy to see that the map L from Proposition 2.7, satisfying sL(f) = f and

tL(f) = ct(f), preserves the endpoint: P(t)(L(f)) = c(t(f)).

Using this map L and horizontal composition, one readily verifies that there is, for each

f ∈ P(X,∼), and endpoint preserving homotopy from c(s(f)) to f ∗ f̃.

Definition 4.1. Let (X,∼) be an object of Eff and x : 1 → (X,∼) a base point. The

fundamental group of (X,∼) with base point x, or π1((X,∼), x), is the set of endpoint

preserving homotopy classes of paths from x to x, with composition of paths as operation.

The fundamental group is in fact a group: composition is well defined on homotopy

classes by horizontal composition, and strictly associative, the constant path on x is

the unit, and f̃ is a two-sided inverse for f. As usual, if (X,∼) is path connected the

fundamental group does not really depend on the base point and we can omit it.

Definition 4.2. An object is simply connected if it is path connected and its fundamental

group is trivial.

We can also define, for each (X,∼), the fundamental groupoid of (X,∼): its object of

objects is (X,∼), its object of arrows is the object of endpoint preserving homotopy classes

of paths.

As an example, I now briefly discuss ‘circles’. A circle, naturally, is constructed by

identifying the endpoints of an interval.

Definition 4.3. The circle Cn is defined by the coequalizer diagram

1
0 ��
n

�� Ĩn �� Cn.
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Proposition 4.4. For n �= 2, the object Cn is separated. In fact, C0
∼= C1

∼= 1 and for n > 2,

the object Cn is isomorphic to the assembly ({0, . . . , n− 1}, E) with

E(0) = {0, 1}, . . . , E(n− 2) = {n− 2, n− 1}, E(n− 1) = {n− 1, 0}.

Proof. Straightforward calculation.

One can show that the object C2, which has 2 points, is not separated.

Proposition 4.5. For each n > 2, π1(Cn) ∼= Z.

Proof. This follows standard lines. First one defines the ‘line’ R: it is the object (Z, E)

with

E(n) = {2n− 1, 2n+ 1} n > 0

E(0) = {0, 1}
E(n) = {−2n,−2n− 2} n < 0

One observes that R is simply connected and that the map R → Cn given by m �→ m mod n

is a ‘universal covering’: it has the unique path lifting and homotopy lifting properties.

Consider both R and Cn as equipped with the base point 0. The map from π1(Cn, 0)

to R, sending a homotopy class of a path to the target of its lifting, is well-defined and

gives a bijection from π1(Cn, 0) to Z. Composition of paths corresponds under this map

to addition, so the required isomorphism is there.

Of course, in Eff we also have ‘tori’ Tn = Cn × Cn and since we can prove that π1 is

a functor from Eff∗ (the category of objects of Eff with a base point, and base point

preserving maps) to the category of groups and preserves products, we have

π1(Tn) = Z × Z

for n > 2.

Similarly, we can discuss (at least finite) ‘wedges of circles’. ‘Spheres’ would be quotients

of cubes (products of intervals).

5. Homotopy equivalences and Hurewicz fibrations

Definition 5.1.

a. An arrow f : (X,∼) → (Y ,∼) embeds (X,∼) as strong deformation retract into (Y ,∼)

if there is a map F : (Y ,∼) → P(Y ,∼) with the properties:

i . sF = id(Y ,∼),

ii . the diagram

(X,∼)

f

��

c �� P(X,∼)

P(f)

��
(Y ,∼)

F
�� P(Y ,∼)

commutes, i.e. for x ∈ (X,∼), F(f(x)) is the constant path on f(x),

iii . the map tF factors through f.
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b. An arrow f : (X,∼) → (Y ,∼) is a homotopy equivalence if there is an arrow g : (Y ,∼)

→ (X,∼) such that fg is homotopic to id(Y ,∼) and gf is homotopic to id(X,∼).

Clearly, every embedding as strong deformation retract is a homotopy equivalence.

Proposition 5.2. The map c : (X,∼) → P(X,∼) embeds (X,∼) as strong deformation

retract into P(X,∼).

Proof. Use L.

Definition 5.3. Given f : (X,∼) → (Y ,∼), denote by Cf the object defined by the pullback

square

Cf

��

�� (X,∼)

f

��
P(Y ,∼)

s
�� (Y ,∼)

So, Cf = {(α, x) ∈ P(Y ,∼) × (X,∼) | s(α) = f(x)}.
Let νf : P(X,∼) → Cf be the map defined by the commutative diagram

P(X,∼)

P(f)

��

s �� (X,∼)

f

��
P(Y ,∼)

s
�� (Y ,∼)

i.e. νf(ω) = (P(f)(ω), s(ω)).

The map f is called a Hurewicz fibration if the map νf has a section.

Our definition of ‘Hurewicz fibration’ is equivalent to the standard one for topological

spaces (this is usually considered a theorem: a map is a Hurewicz fibration if and only if

it has a Hurewicz connection), and is a rewrite in a language with no interval, but only

path objects.

Proposition 5.4. Every arrow f : (X,∼) → (Y ,∼) in Eff factors as an embedding as strong

deformation retract, followed by a Hurewicz fibration.

Proof. This follows the usual definition for topological spaces. Factor f as

(X,∼)
ι �� Cf

π �� (Y ,∼)

where ι(x) = (x, c(f(x))) and π(x, ω) = t(ω). Analogously to the embedding (X,∼) →
P(X,∼), ι is easily seen to be an embedding as strong deformation retract. For the other

map π, we have to show that the map

P(Cf)
(s,P(π))

→ Cπ

has a section.

The object Cπ is internally defined as

Cπ = {((x, ω), η) ∈ Cf × P(Y ,∼) | f(x) = s(ω), t(ω) = s(η)}.
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A typical element of P(Cf) is a pair (α,H) where α is a path in (X,∼) and H is a path in

P(Y ,∼) with P(s)(H) = P(f)(α), so f(s(α)) = s(s(H)).

Now for ((x, ω), η) ∈ Cπ we have to find (α,H) such that s(H) = ω and P(t)(H) = η. But

we can use Proposition 2.7 again: let α be c(f(x)) and H be the path from ω to ω ∗η such

that P(s)(H) is constant on f(x) and P(t)(H) = η. So indeed, π is a Hurewicz fibration.

Remarks

1. In an old paper by Strøm (1972) it is shown that there is a closed model structure on

the category of topological spaces in which the fibrations are the Hurewicz fibrations,

the weak equivalences are the homotopy equivalences and the cofibrations are the

‘Hurewicz cofibrations’, that is in our terminology: all maps which have the left lifting

property with respect to all maps P(X)
s→ X. I have not been able to find good

factorizations as Hurewicz cofibrations followed by trivial fibrations, and I doubt they

exist.

2. Baues (1989) proposes the following relaxation of the notion of closed model structure:

the notion of a fibration category. It is a category together with two classes of maps, the

fibrations and the weak equivalences satisfying the following requirements (in stating

them, I assume that we work in a category with pullbacks):

F1.Every isomorphism is both a fibration and a weak equivalence; fibrations are closed

under composition and weak equivalences satisfy the 2-out-of-3 property.

F2.Fibrations are stable under pullback and weak equivalences are stable under

pullback along fibrations. Also, trivial fibrations (that is: fibrations which are

also weak equivalences) are stable under pullback.

F3.Every arrow factors as a weak equivalence followed by a fibration.

F4.Call an object cofibrant if every trivial fibration into it has a section. For each

object X there is a cofibrant object QX and a trivial fibration QX → X.

The structure we described on Eff with homotopy equivalences as weak equivalences,

and Hurewicz fibrations as fibrations, satisfies at least F1, F3 and F4. That F4 holds

is an easy consequence of the observation that every Hurewicz fibration which is also

a homotopy equivalence, must have a section, so every object is cofibrant. As to F2, it

is straightforward from the fact that the functor P preserves pullbacks, that Hurewicz

fibrations are stable under pullback. That homotopy equivalences are stable under

pullback along Hurewicz fibrations is something I strongly feel should be true (the

Strøm model structure is ‘right proper’), but have not been able to prove.

3. In Van den Berg and Garner (2012), Van den Berg and Garner develop the notion of a

path object category. It is a matter of reading through the axioms to see, that they are

satisfied in our homotopy interpretation in Eff. Therefore, by that paper, our results

imply that there should be a model for the intensional identity types in Martin-Löf

type theory.

Acknowledgements

I like to thank Benno van den Berg and Ieke Moerdijk for fruitful discussions.

https://doi.org/10.1017/S096012951400053X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400053X


J. van Oosten 1146

Basic research for this paper was done while the author spent the Fall of 2009 at

the Mittag-Leffler Institute in Stockholm, in the program Set theory and Model theory.

He is deeply grateful to both the organizers of this programme (for having invited him,

although he is neither a set theorist nor a model theorist) and to the dedicated staff of

the MLI (for making his stay pleasant as well as fruitful).

References

Awodey, S. and Warren, M. (2009) Homotopy theoretic models of identity types. Mathematical

Proceedings of the Cambridge Philosophical Society 146 (1) 45–55.

Baues, H. J. (1989) Algebraic homotopy, Cambridge studies in advanced mathematics volume 15,

Cambridge University Press.

Dwyer, W. G. and Spalinski, J. (1995) Homotopy theories and model categories. In: James, I. M.

(ed.) Handbook of Algebraic Topology, Elsevier.

Gambino, N. and Garner, R. (2008) The identity weak factorization system. Theoretical Computer

Science 409 (1) 94–109.

Hirschhorn, P. S. (2003) Model Categories and Their Localizations, Mathematical Surveys and

Monographs volume 99, AMS.

Hovey, M. (1999) Model Categories, Mathematical Surveys and Monographs volume 63, AMS.

Hyland, J. M. E. (1982) The effective topos. In: Troelstra, A. S. and Van Dalen, D. (eds.) The L.E.J.

Brouwer Centenary Symposium, North Holland Publishing Company 165–216.

Hyland, J. M. E., Robinson, E. P. and Rosolini, G. (1990) The discrete objects in the effective topos.

Proceedings of the London Mathematical Society 60 1–60.

Kapulkin C., Lumsdaine, P. L. and Voevodsky, V. (2012) The simplicial model of univalent

foundations. Available at: arXiv:1211.2851v1.

Quillen, D. G. (1967) Homotopical Algebra, Lecture Notes in Mathematics volume 43, Springer.

Strøm, A. (1972) The homotopy category is a homotopy category. Archiv der Mathematik XXIII

435–441.

The Univalent Foundations Program. (2013) Homotopy Type Theory, Institute for Advanced Study,

Princeton. Collectively written account of HoTT by participants of the Special Year on Univalent

Foundations of Mathematics, organized by S. Awodey, Th. Coquand and V. Voevodsky.

van den Berg, B. and Garner, R. (2011) Types are weak ω-groupoids. Proceedings of the London

Mathematical Society 102 (3) 370–394.

van den Berg, B. and Garner, R. (2012) Topological and simplicial models of identity types. ACM

Transactions on Computational Logic (TOCL) 13(1) 1–44.

van Oosten, J. (2008) Realizability: An Introduction to its Categorical Side, Studies in Logic volume

152, North-Holland.

Voevodsky, V. (2010) The equivalence axiom and univalent models of type theory. Talk at CMU.

Available at: http://www.math.ias.edu/~vladimir/Site3/home files/CMU talk.pdf, 9

pages.

Warren, M. (2008) Homotopy theoretic Aspects of Constructive Type Theory, Ph.D. thesis, Carnegie

Mellon University.

https://doi.org/10.1017/S096012951400053X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951400053X

