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FINITENESS CONDITIONS FOR NEAR-RINGS 

H. E. HEATHERLY AND J. D. P. MELDRUM 

ABSTRACT. There have been a number of papers which give necessary conditions 
for a ring to be finite, and a few, most notably H. E. Bell [1], which do the same for 
near-rings. We wish to make a contribution to this latter theme. Most of Bell's results 
concern distributive near-rings. Our main contribution is to extend a number of these 
results to weakly distributive near-rings. 

We will use left near-rings, and all our near-rings will be zero-symmetric. A d.g., or 
distributively generated, near-ring R will often be denoted (R, S), where S is the semi­
group of distributive generators. Unless otherwise stated, all our near-rings will be dis­
tributively generated. A d.g. near-ring R is said to be weakly distributive if there exists a 
series of ideals of R 

R = /o > h > • • • > / „ = {0} 

such that (y + z)x — zx — yx £ Ij+\ for all x £ R, v, z 6 /,, 0 <j<n—l, or in other words 
all elements of R distribute over sums of elements of Ij modulo Ij+\. The least length 
of such a series is called the weak distributivity class of R. If R has class 1, i.e. n = 1, 
then R is a distributive near-ring. A fastest descending such distributive series exists, but 
we do not need it in this paper. More material on such near-rings can be obtained from 
Meldrum [3], Chapter 9 where we see the close relation of these near-rings to those with 
soluble additive group. This book also serves as a general reference on near-rings, as 
does Pilz [4]. We write most of our groups additively, and we will use <5/(G) to denote 
the terms of the derived series of the group G. 

The starting point is the following result due to Szele [5]. 

THEOREM 1. If a ring R has both the ascending chain condition and descending 
chain condition on subrings, then R is finite. 

We state and prove a corresponding result for soluble groups. This result may well 
exist somewhere in the literature, but we have not been able to find it. 

THEOREM 2. If G is a soluble group with both the ascending and descending chain 
conditions on subgroups, then G is finite. 

The proof is accomplished by induction on the solubility class of G. 
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COROLLARY 3. A zero near-ring on a group of exponent 2 or on a soluble group 
which also has both chain conditions on subnear-rings is finite. 

PROOF. A group of exponent 2 is necessarily abelian. So in all cases, the underlying 
group is soluble. As all additive subgroups of a zero near-ring are subnear-rings, the 
theorem can be applied here to obtain the result. 

The next situation we are going to look at is that of a tame endomorphism near-ring. 
We set up the situation first. 

HYPOTHESIS 4. Let G be a group, S a group of automorphisms of G containing Inn G, 
the inner automorphisms of G. Let R denote the near-ring of mappings of G generated by 
5, so (R, S) is a d.g. near-ring. The condition that S is a group of automorphisms can be 
replaced by the condition that if a G S and H/K is an S-simple homomorphic image of 
an S-subgroup H of G, then (H/K)a = H/K. We will call this the epimorphismproperty. 

The next series of results is aimed at showing that if such an R satisfies both chain 
conditions on subnear-rings, then it is finite. 

REMARK 5. Under Hypothesis 4, any S-subgroup of G, i.e. a subgroup H of G such 
that HS Ç //, is normal in G. This follows immediately from the hypothesis that S con­
tains the inner automorphisms of G. Hence any /^-subgroup of G is an /?-ideal of G. 

LEMMA 6. Assume Hypothesis 4. Let H be an S-subgroup of G. Then S induces 
actions on H and on G JH both of which satisfy Hypothesis 4. 

PROOF. Since H is an S-subgroup of G, and G JH is well defined as an S-group, the 
elements of S define actions on H and G JH. So there are homomorphisms 9: S —• End //, 
(p:S —-> EndG/H, where EndX denotes the semigroup of endomorphisms of X. The 
conditions that S9 D Inn H and S(f 2 Inn G JH can be seen to be satisfied trivially. The 
epimorphism property is also trivially satisfied, as is the alternative property of being a 
group. 

We next recall a result from Lyons and Meldrum [2], where it occurs as Theorem 4.3. 
Let G be an S-group with an S-series G = Go > • • • > Gn — {0} such that each G, is an 
S-subgroup of G and let R be the d.g. near-ring of mappings of G generated by S. Then 
each Gt is an /?-ideal of G. 

THEOREM 7. In the situation described just above, ifR satisfies the descending chain 
condition on right ideals then all the S-simple non-abelian factors of an S-series of G are 
finite and there are only a finite number of them. 

We now come to the point at which we need the epimorphism property. 

LEMMA 8. Let H be an S-subgroup of G and let CG(H) = {geG:g + h = h + g 
for all h G H}. If Ha = H for all a G S then CG(H) is also an S-subgroup ofG. 

PROOF. That CG(H) is a subgroup is an elementary and well-known result. Let g G 
CG(H), a £ S. Then for all h G H, there exists h' G H such that h = h'a. Hence 
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ga + h — ga + h'a — (g + h')a — (hf + g)a = h'a + ga = h + ga, showing that 
ga G CG(H) and proving our result. 

The key step in the path to our main result is the following. It amounts to the ability to 
"move" an S-simple non-abelian factor of an S-series from below past a soluble factor. 

LEMMA 9. Let G — GQ\>G\\>- • \>Gn = {0} be an S-series ofG, and let Hypothesis 4 
hold. Assume further that R satisfies the descending chain condition on ideals. Then we 
can re-arrange the series so that all the non-abelian S-simple factors come first in the 
series. 

PROOF. TO prove this result by induction, using Theorem 7, we only need to show 
that we can move a non-abelian S-simple factor past a soluble factor. 

Let H D> K > L • • • be such that K/L is a finite non-abelian S-simple factor. Consider 
G/L. Then let 6.R—+R/ Ann(G/L). Then R6 will also satisfy the descending chain 
condition for right ideals by the homomorphism theorems. Lemma 6 also shows that 
Hypothesis 4 holds in the new situation. So we may assume without loss of generality 
that G > H \> K > {0} where AT is a finite non-abelian 5-simple subgroup. 

Lemma 8 now allows us to deduce that Cc(K) is an S-group. Then CG(K) PI K is an 
S-subgroup of K which is 5-simple. Hence Cc(K)n K is either K or {0}. If it is K, then K 
must be abelian, which contradicts the hypothesis. Thus we must have CG{K)C\K — {0}. 
Write M for CH(K) = H n CG(K). Then M is an S-subgroup and H/M = H/CH(K) is 
isomorphic to a subgroup of Aut K and is, in consequence, finite. Note that M H AT = {0} 
since CG(K) H K = {0}. Also M + K/K ^ M/M H K ^ M and M + K Ç H. So 
M + K/K = M is a subgroup of H/K and must be soluble. We have now H>M> {0}, 
with the finite factor H/M first and the soluble factor M next. 

Using the appropriate form of the Jordan-Holder theorem we know that H/M contains 
a subfactor isomorphic to K, the rest of the factors, if any, being soluble. By repeating the 
above process if necessary a finite number of times, we can move the factor isomorphic 
to K so that we end up with the situation H > L > {0}, where H/L = K and L is soluble. 
This is enough to prove the lemma. 

We are now in a position to prove the theorem. 

THEOREM 10. Let G and (R, S) satisfy Hypothesis 4. IfR satisfies the ascending and 
descending chain conditions on subnear-rings, then R has a finite ideal I such that the 
underlying group ofR/I is soluble. 

PROOF. By Lemma 9 we can assume that G has a soluble S-subgroup H of finite in­
dex. DefineN = {r G R : Gr C H,Hr = 0}. ThenN = Ann*(G/H)DAnn* //, and Af2 = 
{0}, with iV an ideal of R. Also, by definition, (N, +) Ç HG, a direct power of a soluble 
group. Thus HG is soluble and so is (N, +). By Corollary 3, it follows that N is finite. As 
in Lyons and Meldrum [2], R/N is isomorphic to a subdirect product of R/ AnnR(G/H) 
and R/ AnnR(H). The first of these is finite since G JH is finite. The second is soluble 
since any near-ring of mappings of a soluble group is soluble. So R/ AnnR(H) is an 
epimorphic image of R/N with kernel of size at most \R/ Ann/?(G///)|, i.e. finite. Since 
N is also finite, we are home. 
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As we will see shortly, R/ AnnR(H) is also finite. This will follow from the next the­
orem which widens considerably the class of near-rings which are finite. 

DEFINITION 11. Denote by X the class of near-rings with the property that if R e X 
and R has the ascending and descending chain conditions on subnear-rings, then R is 
finite. 

THEOREM 12. Let Rhea near-ring such that R has a series of ideals R = Ro > R\ > 
..\>Rk = {0}, such thatRt/Ri+i G XforO < i < k - 1. Then R <E X. 

PROOF. We use induction on k. If k = 1, then the result is trivial. So assume that 
k > I and that the result is true for all near-rings with an JC-series of length at most 
k — 1. Consider R/R\ and R\. Both these near-rings have both chain conditions on 
subnear-rings, in the first case because of the homomorphism theorems, in the second 
case trivially. By the induction hypothesis both are finite. Hence so is R. This completes 
the induction argument. 

One of the problems in applying Theorem 12 lies in the fact that an ideal of a d.g. 
near-ring is not necessarily a d.g. near-ring. But we can still show that a d.g. near-ring 
with identity on a soluble group is in X. 

THEOREM 13. A d.g. near-ring with identity whose underlying group is soluble is in 
X. 

PROOF. Let R be such a d.g. near-ring and let n be the solubility class. Then R D 
S\(R) D • • • D 6n-i(R) D {0}, the derived series of R is a series of ideals ofR (Mel-
drum [3], Theorem 9.45). By Meldrum [3], Lemma 9.47,8n-\(R) is a zero near-ring and 
as it is abelian it is a ring. So 8n-\(R) is in X. But (R/8n-\(/?),+) is of solubility class 
n—1 and/?/<$„_ i(7?) is distributively generated. An induction argument using Theorem 12 
gives us the result. 

This result enables us to conclude that in Theorem 10 R is finite. 
To sum up we now know that X contains finite near-rings, rings, zero near-rings on 

soluble groups, d.g. near-rings on soluble groups, d.g. near-rings arising as in Hypoth­
esis 4, endomorphism near-rings on soluble groups. Also included are all the classes 
described in Bell [1]. 
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