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1. Introduction. The present note deals with bounded endomorphisms of free
p-algebras (pseudocomplemented lattices). The idea of bounded homomorphisms was
introduced by R. McKenzie in [8]. T. Katrifidk [5] subsequently studied the properties of
bounded homomorphisms for the varieties of p-algebras. This concept is also an efficient
tool for the characterization of, so-called, splitting as well as projective algebras in the
varieties of all lattices or p-algebras. For details the reader is referred to (2], (5], [6], [7]
and other references therein. Let us emphasize that the main results that are contained in
the above mentioned references strongly depend on the boundedness of each en-
domorphism of any finitely generated free algebra in a given variety.

In [8], R. McKenzie showed that each endomorphism of a finitely generated free
lattice FL(X') is bounded. For the variety of all p-algebras, the same statement was
proved by T. Katrifdk in [§]. More precisely, he has considered the countable chain of
equational classes of p-algebras

PcPc...cP,c...cP,,

where P, is the variety of all p-algebras and the nth variety P, is determined by Lee’s
identity &£, (the definition is recalled in the next section). In [5, Lemmas 11, 12], it is
shown that each endomorphism of FP,(X) (a free p-algebra in P, freely generated by a
finite set X) is bounded. Using this result, it is possible to characterize both the splitting
p-algebras [5, Theorem 3] and projective p-algebras [6, Proposition 5] in the variety P,,.

Concerning the boundedness of endomorphisms of FP,(X), n =1, Katriidk posed
the question whether the above mentioned result for FP,(X) can be extended to the
remaining varieties P,, n=1. Hence the aim of this note is to investigate bounded
endomorphisms of free p-algebras FP,(X), where n =1 and X is finite.

The paper is organized as follows. In Section 4, we recall the basic notions and some
of the known results of the theory of free p-algebras. The main results of this paper are
contained in Section 3. We give necessary and sufficient conditions for an endomorphism
of FP,(X) to be bounded. We make use of the constructive method of limit tables for
endomorphisms of FP,(X). Of course, the concept of limit tables is well known from
lattice theory (see, for example [8]). However, in the case of p-algebra limit tables we
have to take into account the principal inner antisymmetry of p-algebras as well as Lee’s
identity &,. An effective algorithm for determining the boundedness of a given
endomorphism is also presented. In Section 4, we investigate the variety P, i.e. the
equational class of all p-algebras satisfying the Stone identity x* v x** = 1. In this class,
we shall construct explicit examples of endomorphisms of FP,(X) that are not bounded.

2. Preliminaries. A p-algebra (pseudocomplemented lattice) is a universal algebra
(L; v, A,*0,1), where (L; v, A,0,1) is a bounded lattice and the unary operation * is
defined bya ab=0if and only if a <b*.

DeriNiTION (R. McKenzie [5], T. Katrifidk [4]). Suppose A, B are p-algebras and f is
a homomorphism of A into B. We say f is upper bounded if and only if, for each b € B,
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{aeA;f(a)=b} has a greatest element f~(b). We say f is lower bounded if and only if,
for each b e B, {a€ A;f(a)=b} has a least element f_(b). We say f is bounded if and
only if it is both upper and lower bounded.

In this paper we deal with the p-algebra varieties
PcPc...cP,c...cP,,

where P, = P is the equational class of all p-algebras and for a p-algebra L, L € P, for
1=n < w if and only if L satisfies the identity

(L) AX A A VT AXA . ALYV L V(X AX AL AR =1,

In what follows, the symbol FP,(X), 1=n =< w, denotes a free p-algebra freely
generated by a set X. We shall frequently use the following rules of computation in

p-algebras:
(a) a=b implies b*<a*, (d) (av b)*=a* A b*,
(b) a =a**, (e) (@anb)**=a** Ab**,
(c) a*=a***, (f) 0*=1and 1* =0.

If, in any p-algebra L, we write B(L) = {a € L; a =a**} then (B(L); +, A, *,0,1) is
a Boolean algebra when a + b is defined by a + b = (a v b)**.

Later we will need some of Katrifidk’s results concerning free p-algebras (see [4,
Lemmas 2, 3 and Theorem 3]).

Let a p-algebra L be generated by a subset X, i.e. [X]=L. Then the set
X**={x**;xe X} generates B(L) in the class of Boolean algebras, i.e. B(L)=
[X**]booi- The set X U B(L) generates L in the class of lattices, i.e. L =[X U B(L)}ja.

Suppose that K is a nontrivial equational class of p-algebras. Let L = FK(X) be a
free p-algebra freely generated by X in K. Then B(L)=FB(X**) (the free Boolean
algebra freely generated by the set X **).

Put

P(X)=X U B(FP,(X)).

From the above resulits, it follows that 2(X) =X UFB(X**) and FP,(X) = [P(X )]s
For 1 =n < w, a family %, of subsets of B(FP,(X)) is defined as follows:
S € 9, if and only if

S={(aynayn...~na) (@Y AayA. o na), (@ Aa AL Aal)Y)

for some a,,4,,. .. ,a, € B(FP,(X)).

For n = w, we simply set %, = .

We see that \/ S =1 for each S € U,, 1 =<n < w, because FP,(X) € P,.

The following lemmas give an algorithm enabling us to decide whether a<b in
FP,(X) for given words a, b € FP,(X) = [P(X)] -

LemMa 1 [3, Lemma 10]. Let a,b € FP,(X) and p € P(X). Then p<a v b if and
only if p<a or p =<b or there exists S € U, such that s <a or s <b for every s € S.

LemMa 2 [3, Lemma 8]. a Ab=c v din FP,(X),1=n=w, if and only if
(W)a=cvdorb=cvdoranb=coranb=d.
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With regard to the previous lemmas, the word problem for FP,(X), 1=n < w, has
an affirmative solution. In addition, an algorithm is given which can be used to decide
whether a = b in FP, (X)) for words a, b € FP,(X).

THEOREM 3 [4, Lemmas 11 and 12]. Let f:FP,(X)— FP,(X) be an endomorphism.
Then
(i) fis upper bounded,
(ii) fis lower bounded for n = w,
(iii) f is lower bounded, 1 =n < w, whenever the set {a € FP, (X); f(a)=1} has a
smallest element f_(1).

Finally, we recall that FP,(X) is infinite, whenever |X|=2 and 1=n=<w (see [4,
Theorem 2)).

3. Limit tables for endomorphisms of FP,(X). In this section, we give necessary
and sufficient conditions for an endomorphism of FP,(X) to be bounded. The
characterization is based on the properties of limit tables for a given endomorphism of
FP,(X). In the class of lattices the idea of limit tables was introduced by B. J6nsson and
widely exploited by R. McKenzie and A. Kostinsky. In what follows, we shall introduce a
p-algebra type of limit table similar to that in [8]. However, there are principal difficulties
arising in the direct application of the known lattice theoretical type of limit table. More
precisely, we must carefully take into account inner antisymmetries of FP,(X) (the lattice
theoretical dual of a given p-algebra need not be a p-algebra) as well as the identity <Z,.

From now on we shall suppose that f:FP,(X)—FP,(X) is an endomorphism,
1=n<w, and X is a finite freely generating set.

Let the maps 8,,: B(FP,(X))— FP,(X), m =0, be defined inductively as follows:

Bo@) =\ {p € P(X);f(p)=a}
and, for m=0,
ﬂm-i-l(a) = ABO(a) A /\ \/ {Bm(S); S € oun} (1)

for any a € B(FP,(X)).
We call the family {8, },.=0 a limit table for the endomorphism f. From the definition
(1), one can easily verify the following rules:

(@) Bm+i(a)=Pn(a);

(b) a = b implies ,,(a) < B..(b);

(©) a=f(Bn(a));

(d) f(Bn(a)) =f(Bo(a));

(€) Bm(a)=Pn(b) if and only if Bo(a) = Bo(b);
() Bn(a)=PBo(a) A Bm(1);

(g) Bm+l(1) = /\ \/ {ﬂm(S)a S € au"}

We say that a limit table {f,,},.-0 is closed if and only if there is k =0 such that
Bi+1(a) = Bi(a) for each a e FB(X**). It is easy to see that {8, },.-¢ is closed if and only
if there is k =0 such that §;,,(1) = B.(1).

)
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THEOREM 4. An endomorphism f:FP,(X)— FP,(X) is bounded if and only if the
limit table for f is closed.

Proof. The crucial step in the proof consists of proving the following statement:

(P) for any a € B(FP,(X)) and b e FP,(X), f(b)=a implies b = B,(a) for some
k=0.

As is usual in such circumstances, we shall proceed by induction on the length of a
lattice term b € FP,(X) =[P(X)|..- For b e P(X), it is clear that (P) holds true with
k =0. We now suppose that (P) holds for b,, b, with corresponding indices k,, k,=0.
Then, using Lemmas 1, 2 and (2), one can easily show that (P) holds for b = b, A b, with
k =max{k,, k,} and for b =b, v b, with k =1+ max{k,, k,}, respectively. Now, thanks
to the property (P), the rest of the proof can be carried out as in [8, Section 6] and
therefore is omitted.

LEMMA 5. Let m be an integer such that log,log,log,m=|X|+1. Then an
endomorphism f :FP,(X)— FP,(X) is bounded if and only if the limit table for f is closed
before the m-th column.

Proof. Only the necessity needs a proof. If B,(1) =1 then 8,(1) = B¢(1). Hence, the
limit table is closed in the first column.

We now consider the case 8,(1) <1. Let an equivalence relation 8 on w be defined as
follows:

0(k,m) if and only if, for any a, b e FB(X**),

Bi+1(a) = Bi(b) & B, i(a) = B, ().

We shall prove, in a manner similar to that in [8, Lemma 6.1], the following
statement:

(H) 6(k, m) implies 8(k +1,m +1).

In order to prove (H), we assume 6(k, m) holds and B, ,,(a) = B, (b).

Let R € U,. Then

1> B,(1) =V Besr(R) = Biro(1) = Brsa(@) = Bresa(b) = Bo(b) A AV (Bi(S); S € U,).
From Lemma 1 and 2, we obtain either the existence of r € R such that §;,,(r) =
Brs1(d) or \/ Bisi(R)=\/ Bi(S)) for some S, € U,. In the first event, by (2), we have
V Bms1(R) = B,usi(r) = B,,..1(b). In the second event two cases can arise:
(1), for every s € Sy, there is r, € R, Bi(s) < Brsi(rs),
(il), there exists s, € Sy, such that B,(s,) ¥ Bi+.(r) for any r e R.
In case (i);, the assumption 6(k, m) implies

B(s)=Bnii(r)=V Bn.+1(R) foreachses,.
Therefore
ﬁm+l(b) = ﬁm+l(1) = \/ ﬁm(sl) = \/ ﬁm+1(R)'

In case (ii);, by Lemma 1 and 2, we have

V Beaa(R)=V Bi—i(S2)  for some S, € U,

Repeating this procedure, we obtain a sequence S;e€U,, j=1, such that
V Bes1(R) =V Br—j+1(S;). Again two cases can occur:

(i); for each s € §;, there is r, € R with B, _;,(s) = Bri(ry),

(ii); there exists 5; € §; such that By _;,(s;) ¥ Br+i(r) for any re R.
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Let j=k + 1. According to Lemmas 1 and 2, case (ii); is not possible. Thus there
exist j=k and S;_;+, € U, such that, for each s €S,_;,,, there is r, € R with B,(s)=<
Bis1(rs). Since B, < B; for j =k, the assumption 6(k, m) implies B,.,(b) =\ B, (R).
Thus both (i), and (ii), also imply B,.,(b) =V B,.+1(R). Therefore B, ,.1(b) = B,...(1).
Clearly, from the assumption S, .,(a) = By+.(d), it follows that By(a) = By(b). Hence

Bm+2(a) = Bo(@) A Bri2(1) = Bo(b) A Brusi(b) = Brnsa(D).

Thus Bi42(a) = Br4i(b) implies B, ..(a) = B,.,,(b) and vice versa. The proof of (H) is
complete.

The result of the proof is essentially the same as that of [5, Lemma 6.1]. Indeed, a
simple combinatorial argument shows that 6 partitions w into less than 2" classes of
integers, where r=|FB(X**)|. This can be visualized by introducing the following
one-to-one map

[k]6— {(a, b) € B(FP,(X)), Bi+i(a) = Bi(b)}.

Then we infer the existence of / such that / <m =2"" and 6(/, m) holds. Clearly, by (H),
! will be 8-equivalent to an arbitrarily large integer. Since f is bounded, then, by Theorem
4, there exists k, such that B8,,,= B, for all k =k, Hence f,,.,=p,,. The fact that
log, log, r = | X**| = |X| (see [3, Chapter 2, Section II, Theorem 2]) completes the proof
of Lemma 5.

THEOREM 6. Let f be an endomorphism of FP,(X), where 1 =n < w and X is finite.
Then there exists an effective algorithm for determining whether f is bounded.

Proof. In order to decide whether f is bounded, one can construct the first m
columns of the limit table for f, where log,log,log, m =|X|+ 1. By Lemma 5, f is
bounded if and only if f8,.,,(1)=B,.(1). Since the word problem for FP,(X) has a
solution, there is an effective algorithm that determines whether f,,.,(1) = §,.(1).

CoROLLARY 7. Let n=2"%'. Then each endomorphism of FP,(X) is bounded.

Proof. It can readily be shown that n=2"' implies 1€ S for each S e %,. Hence
B1(1) = By(1) and f is bounded by Theorem 4.

On the set %, we define a quasiordering <« in the following manner:

for S, S, € U,, S, < S, if and only if either \/ By(S,) = Bo(1) or, for each s, € §,, there
is 5, € S, such that By(s,) = Bo(s2). 3)

Defining §, =5, if and only if §; < §, and §, <« S;, one gets an equivalence relation
and the resulting classes are made into a partially ordered set (%U,, <) in the standard
fashion. In what follows we shall ignore the classes and refer directly to their
representatives.

LemMA 8. Assume \/ Bi(So) = Bi+1(1) for some Sy € AU,. Then the poset (U,, <<) has a
least element S,,.

Proof. We shall proceed by induction on k =0. Assume kK =0. Put S, =S,. Then
V Bo(S.) = B1(1) =V Bo(S) for each S € U,. Let S € U,. Then either \/ Bo(S) =1 or, by
Lemma 1, for each s € §,,, there is s’ € S such that By(s) < By(s’). In both cases we have
S,, < S. Hence S,, is the least element of (%,, «).
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Assume k > 0. First we consider the case where S, << § for each S € %,. Then S,, = S,
is the least element of (%,,<<). Now we suppose that there exists S, € U, with the
property S, is not <S;. Then \/ Bo(S;) # 1 and there is 5, € Sy such that Bo(se) £ Bo(s) for
any s € §;. Since

Bo(so) A AV Be=i(8); S € Uy = Brls0) =V Bi(So) = Brr1(1) =V Bi(Sy)

and \/ B(S)) =V Bo(S)) # 1, then, by Lemmas 3 and 4, we get \/ Bi_1(So) <\ Bi(S)) for
some Sp € U,. But this yields

Be(D) =V Bi-1(So) =V Bu(S1) = Bi(1).
From the induction hypothesis, we obtain that (%,,, <<) has a least element S,,,.

THEOREM 9. Assume that f :FP,(X)— FP,(X) is an endomorphism, 1 =n<w and X
is finite. Then

(i) if f is bounded then the poset (U,, <) has a least element,

(i) if (U, K<) has a least element and (1) <1 then f is bounded.

Proof. (i) By Theorem 4, there is k=0 such that B,.,(1) = B,(1). If, for each
SeU,, \/ Bo(S)=Bo(1) then S, «< S, for any S, S, € U,. Hence (U,, <) possesses a least
element. Suppose that there exists Sy € %, with the property \/ Bo(So) < Bo(1). Then

AV Bi-1(8); S € Uy) = Bi(1) = Prs1(1) <V Bi(S0).

By Lemma 2, two cases can occur: f,(1) = B,(so) for some s € Sy or \/ Bi_1(S;) <
V B«(Sy) for some S, €U, In the first case, we have Bo(se) =PBo(1) and therefore
V Bo(So) = Bo(1), a contradiction. Thus only the second case is possible, i.e. f,(1)<
V Bi-1($) =V Bi(So) = Bi(1).

Applying Lemma 8, we obtain the existence of a least element of (%,, «).

(i) Let S,, be the least element of (U, <) and S € U,. If \/ B(S) = Bo(1) <1 then,
from Lemma 1, we obtain By(s") = By(1) for some s’ € S. By Lemma 1, (2) and (3), we
can establish that, for each s € S,,, there is s" € § such that f,(s) < Bi(s’) for all k=0.
Thus Bi41(1) =V Bi(S,,) for all k =0. Therefore B,(1) =\/ By(S.,,) and, for each s € S,,,
we have B(s) = Bo(s) A B1(1) = Bo(s). Then

BA1)=V Bi(Sm) =V Bo(S») = B:i(1).
Hence, by Theorem 4, f is bounded.

Remark 10. From (1), we see that /30(1)<1 if and only if there exists a in
B(FP,(X)) with a#1 and f(a) =1.

4. Examples of nonbounded endomorphisms in the variety P,. In this section, we
shall construct endomorphisms of FP,(X) which are not bounded. Recall that P, is the
equational class of all p-algebras satisfying the Stone identity x* v x** =1.

THEOREM 11. For every finite set X with |X|=2, there exists a nonbounded en-
domorphism of FP,(X).
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Proof. Consider an endomorphism f : FP,(X)— FP,(X) with
flx) =0T va)*™, f(x)=*vx3)**, where X ={x,,x,} and x,#x,. (4)

Let a Boolean endomorphism g of B(FP,(X)) be defined by g(a) =f(a) for each
a € B(FP,(X)). Since B(FP,(X)) is finite, g is a bounded Boolean endomorphism.
Clearly, g_(a+ b)=g_(a) + g_(b) for every a, b € B(FP,(X)). Moreover g_(a) = B&*(a)
for each a € B(FP,(X)).

Suppose to the contrary that f is bounded. Then, by Theorem 5, (%, <<) possesses a
least element S, = {a,a*}, where a € B(FP,(X)).

Take S; = {x},x**} for i=1,2. Then §,, << S;, i =1, 2. It is routine to check that

Bo(x}) = x1, Bo(x1*) = x2, Bo(x2) =x1 A X2,
Bo(x3*) = ((x7 A x3*) v (x* Ax2))™ and  Bo(1) = (x7 Ax3)* <L
Then, by Lemmas 1 and 2, \/ Bo(S;) < Bo(1) for i =1, 2 and
Bol(1)=g_-(1)=g_(a +a*)=g_(a) +g_(a*) = B5*(a) + B5*(a*).

Without loss of generality, we may suppose that

Bola) = Bo(x7) and Bo(a™)=Bo(x1™).
Then either

Bo(a) = Bo(x7) and By(a™)=Bo(x3*)

Bo(@) = Bo(x3*) and Bo(a*) = Bol(x3).
In the first case, we see that

B&*(@)=xt* Ax3* and Bi*(a*)=x{ Ax3*.

or

Then (x A x3)* = Bo(1) =x3* < (x} A x3)*, a contradiction.

The second case can be handled in the same way. Therefore S,, cannot be the least
element of the poset (%,,<<). Hence, by Theorem 5, the endomorphism f is not
bounded.

In order to construct nonbounded endomorphisms of FP,(X), where |X|>2, let us
consider an endomorphism

h:FP,(X)— FP,(X)

defined by h(a) =f(t(a)), where f is a nonbounded endomorphism of FP,(2) and the
endomorphism

1:FP,(X)—FP(2)

is defined by 7(x;) = x;, t(x;) =x, and t(x;) =1 for i >2.
Since f is not bounded, 4 is a nonbounded endomorphism of FP,(X).
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