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RADIAL FLOW THROUGH DEFORMABLE POROUS SHELLS
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Abstract

The problem of radially directed fluid flow through a deformable porous shell is
considered. General nonlinear diffusion equations are developed for spherical,
cylindrical and planar geometries. Solutions for steady flow are found in terms
of an exact integral and perturbation solutions are also developed. For unsteady
flow, perturbation methods are used to find approximate small-time solutions and
a solution valid for slow compression rates. These solutions are used to investigate
the deformation of the porous material with comparisons made between the planar
and the cylindrical geometries.

1. Introduction

When fluid flows through a porous material, the forces associated with the
flow may deform the material. This deformation alters the properties of the
porous material, which in turn affects the passage of fluid. There is therefore
a complex coupling between the elasticity of the solid matrix and the fluid
flow.

The first study of this was by Terzaghi [29] in 1925 and later by Biot [8]
on fluid seepage from a consolidated soil. This led to the work of Biot [9,
10], used extensively in soil science. This theory has more recently been
reformulated in terms of mixture theory to study the compressive behaviour
of cartilage [24, 25, 26, 15] and arterial tissue [18, 20, 21]. The resultant
nonlinear diffusion equation has been studied by Holmes [15, 13, 14] in
application to stress relaxation and creep in articular cartilage. Comparisons
of various models for the steady flow through a porous sponge [13] indicate
that a simple finite deformation model with nonlinear permeability accurately
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models deformation behaviour. Barry and Aldis [3] have also examined the
nonlinear behaviour of a deformable porous medium due to an unsteady
applied pressure difference.

Although one-dimensional flow through a porous deformable slab has been
considered in some depth, not as much is known about deformation in ra-
dial flow. Nevertheless, the radial flux of fluid through cylindrical shells is of
importance as a model of arterial wall permeability [21] and in filtration tech-
nology [6]. The flow of proteins through the artery wall has been linked [28,
27] to the formation of atherosclerotic plaques (a form of arteriosclerosis).
The deformation of the tissue may then be a factor in this process, especially
if the nonlinear deformation is sufficient to impede the flux of proteins and
hence cause them to accumulate. Filters can also be designed in the form of
cylindrical shells [6] but no comparison has been made between planar and
radial deformable filters.

The flow through an unconfined cylindrical shell of deformable porous ma-
terial has been considered by Kenyon [21, 19] in estimating the deformation
response after a step change in pressure. Jayaraman [17] extended this work
to consider oscillatory flow, as did Jain and Jayaraman [16] who considered
two materials joined together. In both of these works, boundary conditions
were applied at the original boundary position rather than the final position;
an infinitesimal assumption that will be investigated here. Klanchar and
Tarbell [22] considered a simple nonlinear model for flow through a porous
cylinder to find the steady state velocity and pressure relations.

In this paper we investigate the radial flow through cylindrical and spher-
ical shells and compare these to planar flow. After deriving the governing
equations and boundary conditions in a general form applicable to planar,
cylindrical and spherical geometries, general solutions will be found for both
steady and unsteady flow. These are used to compare the flow induced defor-
mation in planar and cylindrical geometries and hence the filtration properties
of these two geometries.

2. Mixture theory for a two phase medium

The theory of mixtures is based on the idea that the individual compo-
nents of the mixture (here a solid matrix and a fluid) can be "modeled as
superimposing continua so that each point in the mixture is occupied simul-
taneously by a material point of each constituent" [7]. The mixture theory
outlined here is based on Bowen [11]. A detailed analysis of mixture theory
is given in [2].

It is assumed that the fluid is a Newtonian viscous fluid and that the
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[3] Radial flow through deformable porous shells 335

elastic solid matrix is homogeneous, isotropic and that there exist no external
body forces or osmotic forces. Shear stresses are not considered since the
flow is purely radial. The individual components of the mixture will be
assumed to be intrinsically incompressible. Thus bulk compression arises
from a reduction in the fluid volume fraction rather than compression of the
individual constituents.

The volumes of the two constituents are denoted Vp and where ft = s,
f denotes either the solid or the fluid phase. The apparent densities of the
constituents are given as

where dm? is the mass of the /? phase in the small volume dV. The true
(or intrinsic) density of each phase is

/? .. dnv . . .
pp

T = hm j , (2)

where dVp is the small volume occupied by the fi phase. The relative
volume fractions of each phase are

from which it is easy to see that

p = (f) p t (4)

dV = dVs + dVf, (5)

1 = <f> + 4> , ( 6 )

P = p+Pf, (7)

The continuity equation for each phase can then be derived [26] as

^ + V.(//) = 0, (8)

where v^ represents the velocity of the ft phase.
Q

Since the the constituents are intrinsically incompressible, Pj. is constant
and use of (4) in (8) yields

= 0. (9)

Adding the solid and fluid forms of this equation and using (6) leads to

0 V ) = O. (10)
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The momentum equation for each phase can be written as

* / ' ) (11)

where T^ is the stress tensor for the /? phase, b^ is the resultant exter-
nal body force (neglected here) and n is a drag force between the con-
stituents representing internal forces due to frictional interaction between
the two phases.

For small velocities and deformation rates, the inertial terms can be as-
sumed negligible. Barry and Aldis [5] have considered the effect of the inertial
terms in the derivation of the governing equations, and have shown that they
may be assumed negligible if t0 > kop

s
T where /0 is the typical time scale

and kQ is a typical permeability of the medium to fluid flow.
With these assumptions, (11) becomes

V-Tfi = -nfi, (12)

where Newton's third law implies ns = —n ; the force on the solid by the
fluid is opposite to the force on the fluid by the solid.

The stress tensors can be modeled as

l" = -iffpi + a", (13)

-ns = Kf = K(vs-rf)-pV4>s, (14)

where as represents a solid stress, the "contact stress" [18], a function of the
strain, K is the drag coefficient of relative motion, p is the fluid pressure
and I the identity tensor. These stress equations split the stress tensors into
contributions due to hydrostatic pressure and those due to viscous stress or
solid matrix stress. The interaction term represents the linear drag between
the constituents that is drawn from Darcy's law.

For one dimensional and radial flows the viscous stress in the fluid can be
taken as zero. Hence it is assumed for the rest of this derivation that a = 0
and as = a.

Substituting (13) into (12) and adding both phase equations to eliminate
n^ gives

Vp = V-<7. (15)

Substituting the interaction term (14) into (12) gives

s f s ( 1 6 )

-V((/>fp) = - K(ys - / ) + pV<t>s. (17)
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Making use of (ps = 1 - <f> leads to

V • a = K(\ - / ) + <f>sVp, (18)

0 = - K(\ - / ) + <f>fVp. (19)

Elimination of p from these equations yields

V.<T = ^(VS-/). (20)
<j)J

The continuity equation can be rewritten as

V-v = 0 (21)

where v is the macroscopic medium velocity vector, v = <$>W + </>V . Using
this in (20) gives

£ ( £ ) (22)

where k = (<f)^)2/K is the permeability, u is the displacement of the solid
and du/dt = vs. A derivation of this relationship between k and K is given
in [23].

Equation (22) can be easily explained in physical terms. Taking Darcy's
law and expressing it relative to the movement of the solid it is easy to obtain
Vp = £ (du/dt - v). Considering the stress in the solid matrix as being
governed by the standard equilibrium equation of elasticity gives V • a - V/?
where the gradient of pressure is acting as an internal body force on the solid
matrix.

As a porous medium is compressed the resulting decrease in porosity will
lead to a reduction in the permeability k. The simplest model that allows
for this is if k = k(<j>) where (f> is the dilation (the change in porosity) of the
medium. Various forms for this functional dependence have been considered
[23, 22, 3] and it seems that the most versatile is

k = koe\p(m(f>) (23)

where kQ and m are constants.

3. Governing equations

In developing the governing equations it will be assumed that deforma-
tions are infinitesimal, that by symmetry only the radial components of dis-
placement and velocity are nonzero and that the permeability function is
dependent on the change in local porosity, <f>.
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The components of the stress tensor for the solid are

du .u ....
— + nX-, (24)

- + X^- + (n-l)-X, (25)
r or r

where n = 0, 1,2 correspond to planar (x, y, z), cylindrical (r, 6, z) and
spherical (r, 6, <p) geometries respectively and u = ur, the radial displace-
ment. Here X and n are the Lame stress constants. In the case of planar
flow it should be remembered that arr is simply a with r = x and that the
equation for age does not apply. Also because of symmetry in the spherical
case, aee = a . All other stress components are zero. The divergence of
the stress in the radial direction can be written as

(V • a), = —^LL + « —̂  — . (zo)
>r dr r

It can also be shown, with a little algebra, that substitution of (24) and (25)
into (26) gives

where

<t> = ±§-r(r"u) (28)
is the local change in porosity and Ha = A + 2/z is the aggregate modulus.
Integration of the continuity equation (21) leads to the macroscopic velocity
component in the radial direction

vr=
V-^- (29)

The governing equation (22) then becomes

(°H!W\ (30)
(3U)dr ~H"dr \r"dr{r U>) ' k{<t>) \dt r"

A useful transformation

w(r,t) = -u(r,t) + ± fv{x)dx (31)
f Jo

allows the governing equation to be written as

Tr^'kWM)^' <32>
where the operator L is given by

^r{r"w). (33)
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H°7d~ [k{<t>)r d?) = -dt

The velocity term has now been removed from the governing equation. Al-
ternatively equations in terms of <fi can be derived. If (30) is rewritten using
(28) as

«.*<•>£ - §? - 9
and the operator L applied to both sides, the governing equation becomes

r d

°7d~r
which is also independent of the velocity. It will be shown in the next section
that the boundary conditions for (35) can also be expressed independent of
the velocity. This allows solutions to be found for the more experimentally
feasible case of a specified pressure gradient rather than a specified velocity.
Depending on the situation, either (30), (32) or (35) can be used to evaluate
the displacement. Equation (35) is preferable if the pressure is specified,
while (32) would be more suitable if the velocity is given.

4. Boundary conditions

The problem under consideration is shown in Figure 1. A section of a
cylinder or a sphere is shown with fluid moving radially out from the centre.
The outer boundary is constrained by a rigid mesh that offers no resistance
to the passage of the fluid. The inner radius is a and the outer radius is b.

The boundary condition for the displacement at the rigid porous mesh,
r — b, is simply u = 0. Making use of the relation for <p in (28) this can

Mesh

FIGURE 1. Schematic diagram of radial flow through a cylindrical or a spherical shell. In this
case of constrained flow the outer boundary is constrained by a rigid mesh.
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also be written as

<j>(b, i) = — ( b , t ) . (36)

At the free boundary, r = a, the contact stress is zero since the flow is
normal to the surface [12] and so

orr(a,t) = 0. (37)

This can be written as

L i l + rtA- = 0 , (38)

where J = A/(A + 2/t). In terms of (f> this is

t) = n ' (1 - A). (39)

By integrating (28) the displacement can be written as

u{r,t) = ~ f an<l>{a,t)da. (40)
' Jr

By substitution of u into (39) a boundary condition in terms of 4> is derived
as _

0(fl,O + / l ^ = ^ / a"cl>(a,t)da = 0. (41)
a Jo

Making use of the relation between pressure and stress (30), the boundary
condition at the constrained boundary, r — b, is

(42)

Equations (41) and (42) then form boundary conditions for (35). Boundary
conditions for the variable w in (31) can be written simply as

1 /"'w(b,t)= -ys- J v(T)dT,

Ofw*-
The problem of the position of the inner boundary, a, is a potentially

important one usually avoided. It can be shown [4] that the intuitive result

a = a0 + u(a, t), (44)

is valid where the original position of the boundary is denoted a0. This is
an implicit equation for the new boundary position, a. It can only be solved
after the displacement function has been evaluated and will normally require
a numerical solution.
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An approximate form would be to assume the explicit relation

a = a° + u(a°,t), (45)

where the boundary condition is applied at the initial position of the bound-
ary. The error associated with this approximation is discussed in the next
section.

Alternatively a Lagrangian coordinate frame can be considered ([3], [5])
allowing the boundary conditions to be applied at the initial boundary po-
sition as in (45). The transformation from Eulerian to Lagrangian frame-
works, however, adds further nonlinearities to the governing equation (35).
For large deformations, nonlinear stress relations are required ([3], [5]) and
the Lagrangian formulation would be preferred. For small deformations it is
often advantageous to use Eulerian coordinates, hence keeping the governing
equation simple, at the expense of having a nonlinear boundary condition
(44).

5. Steady radial flow

The governing equation and boundary conditions are nondimensionalised
using

P=PmP, r = bf, k = kjz,

u = uou, v = -vHakob"^, a = ba, (46)

for typical pressure pm , outer radius b, permeability k0 and displacement
M0 . The steady form of the governing equation (30) can then be written as

dr dr ?nk(S<t>)

where

(t>=7fdl{ru) ( }

and dimensionless parameters are

The hats denoting nondimensional variables will now be dropped as all vari-
ables will be assumed nondimensional unless stated otherwise.

The parameter 5 is now taken to be S = 1, equivalent to nondimen-
sionalising u with respect to b . In the next section this parameter will be
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reintroduced in a perturbation analysis. By using the function

[10]

(50)

the governing equation (47) can be written as

Integration yields

v\nr + c for n — 1,
{ 5 2 )

where c, is a constant of integration. Inverting this equation, assuming that

r1-"- n)vr1-" + Ci) forn = 0or2 ,
(53)

g~x exists, yields

\ d , n , I g~\(l - n)v
r dr \ g~\vlnr + Cl) forn = l.

This can be integrated to obtain

- - 1 fr
l s^-'dl - n)vs1-" +cl)ds+C-± for n = 0 or 2,

\ r (54)
--fr

lsg~\vlns + cl)ds + ^ f o r « = l ,

where c2 is a constant of integration. Using the boundary condition of
M( 1) = 0 it is easy to see that c2 — 0. At r — a, the inner boundary,

nu(a)(l-l)
m =

Also from (52)

= {g[<Ka)]-V-n
1 \ g[<fr(a)]-v\na,

for« = 0 , 2 ,

for n = 1.

( 5 5 )

Substituting this into (54) gives

for n = 0 or 2, and

for n = 1. The pressure can be found from (42) which gives

AP _ u(a). j du
Ha dr

(57)

(58)

(59)
r=\
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The derivative du/dr can be expressed in terms of the inner radius a using
the relationships

du

« = 0 , 2 ,

which are found by expressing the constant c, in (53) in terms of both the
inner and outer boundary conditions.

Thus if the permeability function is known and (57) and (58) are analyti-
cally integrable then an implicit equation for a is found which can be solved
numerically, and the pressure can then be found directly.

When solving the governing equation, many authors apply the boundary
conditions at the original positions of the boundary a even though using
Eulerian coordinates. The assumption, often not stated, is that the error in
applying the boundary conditions at a° rather than at a will be negligible
for sufficiently small deformations. A nonlinear permeability relation is often
used to provide more accurate results even though the boundary conditions
are still approximate. The relative error of the boundary assumption versus
the change due to permeability relation is now investigated.

Using a small nondimensional velocity of v = —0.1, parameter X = 0.6
and initial inner radius of 0.5 we calculate the displacement for flow in a
cylindrical shell for three situations. For case 1, we use using a constant
permeability relation, k = 1, with the inner radii a found numerically
using the exact equation (44). Equation (58) was used to evaluate u(r). For
case 2, we consider a constant permeability where the approximate boundary
condition (45) is used. For case 3, we consider a permeability relation k =
1/(1 - m<f>), m — 4.0 with the exact boundary condition, (44), used. This
form for the permeability was chosen since it yields exact integral results via
equation (58) and has been used previously for arterial tissue [22]. These
are depicted in Figure 2. The solid line indicates case 1, the dashed line case
2, and the dotted line case 3. The maximum displacements shown here are
approximately 2% of the outer radius. We also note that when X is varied
the relative order of the solutions (case 2 < case 1 < case 3) changes.

The displacements show that the error is using an approximate boundary
condition is of the same order of magnitude as the improvement in the model
by using a nonlinear permeability. Thus a nonlinear permeability relation
should only be used if the boundary conditions are also applied correctly. If
analytical solutions are required for more complicated geometries the fully
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0.02-

u(r)

0.0

0.5 1.0

FIGURE 2. Equilibrium displacement, u(r), for a cylindrical shell with 0.5 < r < 1 ,
X = 0.6, v = —0.1 and a constrained outer boundary. Solid line: Solution with k = 1
and exact boundary position; Dotted line: Solution with k = 1/(1 - 40) and exact boundary
position; Dashed line: Solution with k = 1 and boundary conditions applied at the initial
boundary positions.

linearised problem (case 2) can be solved as long as both sources of error are
recognized as limitations on the solution.

The change in porosity <j> is shown for cylindrical and planar geometries
in Figure 3. This illustrates that although in the planar case the medium is
always under compression, the cylindrical porous shell undergoes an expan-
sion in the inner regions of the shell. This is due to annular stretching of
the medium as the inner region of the shell increases in radius. The annu-
lar expansion more than compensates for the radial contraction du/dr in
the inner region. It is apparent that the planar flow leads to finer filtration
for the same applied pressure, filtering a smaller particle size in the highly
compressed downstream region. However in some applications of filters,
particularly in ultrafiltration of organic compounds, the aim is to capture the
macromolecules within the porous medium to be recovered after the flux is
stopped. The cylindrical shell will then be able to 'capture' larger molecules
than the planar geometry in which larger particles are excluded from the
medium. Average sized particles will also be able to travel further into the
medium before becoming trapped, hence increasing the probability that they
will remain permanently trapped when the fluid flux is stopped.
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0.02n

0

-0.1 -

\ 0.6 1.0

FIGURE 3. The change in porosity <j> for planar (solid line) and cylindrical (dashed line)
problems. The applied pressure was AP/Ha = 0.1 and I = 0.5. Note the expansion in the
inner region of the cylindrical shell.

The expansion of the inner section of the medium for small times can play
an important role in the dynamics of the solid-fluid interaction. Firstly care
must be taken in choosing a permeability relation that gives feasible values
for an expanded medium. Secondly it is as yet unknown whether for some
media the permeability should be a function of the porosity or a function of
the radial strain du/dr. For random media the permeability dependence on
porosity is probably correct.

6. Perturbation solution for infinitesimal displacements

When analytic solutions via (57) and (58) are not possible, a perturbation
technique can be employed. The parameter S is now reintroduced as a
perturbation parameter assuming that the deformation is small compared to
the outer radius of the shell. The permeability can then be written in the
form

) ^ - + O(S3). (61)

In the limit of no deformation, k{<f>) = 1 as <j) —* 0 and therefore £(0) = 1 •
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By defining the displacement as

u(r) = uo(r) + dux (r) + S2u2(r) + 0(S3), (62)

the governing equation (47) can be expanded in powers of S. Taking coeffi-
cients of 5 , the zeroth order equation is

--uQ \=v, (63)
\ ar i " '

which has solutions

uQ(r) =

2 > for n = 2 ,

(64)

2 ' " = °>
where c3, c4 are constants of integration found from application of the
boundary conditions. The first order equation then becomes

„ ( d2u. ndu, n \ „,,
V dr2 r dr r*

 lJ (65)

which can be easily integrated using standard algebraic manipulation rou-
tines.

1. Small time solutions in unsteady flow

Upon application of a pressure gradient the initial behaviour of the porous
medium is governed by the linearised form of (35) using a constant perme-
ability. The initial deformation is not large enough to change the permeability
significantly. The governing equation can then be written as

7d-r{r-dr-) = JI> (66)

with boundary and initial conditions

4>{a, t) = - {\ - k)-^ a"<j>(a,t)da,
a Ja

t) = 4>(a,t)-AP(t),

<f>(r, 0) = 0. (67)

Here we assume that the boundary conditions are applied at r = a rather
than at r = a{t), an approximation that is justified since we are using a
linear infinitesimal theory valid only for small times when the medium has
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not deformed far from the initial position. The nonlinear moving boundary
problem is currently the subject of further research. Solutions to the linear
problem can be found using a number of approaches. For oscillatory pres-
sure gradients the Fourier components of the system could be found. As
the governing equation here is only valid for the infinitesimal displacements
present in the initial stages of the deformation a Laplace transform technique
is preferred. Taking the Laplace transform of (66) gives

r24>" + nr$ - s$r2 = 0 (68)

where &{4>(r, t)} = 0(r, s) and ~<j) = d~4>{r, s)/dr. Using r\ = rjs this
can be written as

r]24> = 0 (69)

where now <f> = d<p(r], s)/drj. The solution of (69) in the case of cylindrical
geometry is

0(i;, s) = A^I^r,) + A2(s)K0(ri), (70)

where / 0 , Ko are modified Bessel functions of order zero and Ax, A2 are
functions found from application of the boundary conditions to be

Al(s) = £(s)A2(s), (71)

A (*\ — Z _ (17)
2K) A : ( f / ) ^ ( f , ) { ( 5 ) ( / ( ^ ) / ( ^ ) ) ' l >

s,s) = iX(Q-^(-^i(^) + ^i(^)) ( 7 3 )

l W h I { ) I { ) ) '

where t}a = a^/s, r\b = b^/s and X — 1 - A. Abramowitz and Stegun [1,
equations 11.3.25-11.3.28] was used to evaluate the integrals of the Bessel
functions. This is difficult to invert in general. However, a small-time solu-
tion can be found by inverting the asymptotic form valid for s -* oo of the
above solution. Using the asymptotic results for Iv , Kv from Abramowitz
and Stegun [1, equations 9.7.1 and 9.7.2] it can be shown that as 5 —» oo

(74)

(75)

Since a < b and s —> oo then t]a -* oo so en° <£. enb. It is easy to see that
rjb = riab/a. The constants c, , c2 were determined using Mathematica [30]
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0.2 -

t=0.02

FIGURE 4. Change the porosity, <j>(r), for a constrained cylindrical shell 0.5 < r < 1 . The
solid lines are </> at four small times, I = 0.005, 0.01, 0.015, 0.02 . The dotted line is the final
equilibrium state of the shell.

and are
1 3a

°2~ 128 + 128
3A 3a-
8 + 8b

(76)

(77)

Also

where
1 a bX

(79)

The constants Ax, A2 can then be determined giving the final solution as

1 -r-^ -(6-rl-i
a

The "constant''
a bX

(80)

(81)

was determined using Mathematica [30] and is needed in the solution to
ensure both parts are given to the same order of accuracy. For an applied
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0.02H t=0.02

0.5
r

1.0

FIGURE 5. Displacement, u(r), for a constrained cylindrical shell with 0.5 < r < 1 . The
solid lines are u at four times, t = 0.005, 0.01,0.015, 0.02. The dotted line is the final
equilibrium state of the shell. Note the formation of a maximum consolidation region near
r = 1 that expands inwards with time.

pressure gradient of the form AP = tm/2, m — 0, 1, 2, . . . , the solution
then becomes as t —> 0

1 Jh b Hf1(m+1) /2 im+1 erfc (r~a^
asfra \

r erfc_ r ( 1 + «)

(82)

The notation i erfc denotes integration of the complementary error func-
tion. The displacement is found from numerical integration of <j>. Although
the full time dependent behaviour of radial flow may be obtained using a nu-
merical scheme, much of the useful information of the deformation can be
found analytically from the small-time behaviour of the displacement. Fig-
ure 4 shows the porosity change <f> at four different times after application
of a unit step change in pressure. The inner radius was initially chosen to be
0.5. The final equilibrium result is shown as the dotted curve and is found
from solving the steady-state equations.

We note that the expansion of the medium at the inner boundary increases
with time. The results also show that a highly compressed region forms at
the constrained boundary and spreads inwards as time increases. Figure 5

https://doi.org/10.1017/S0334270000008936 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008936


350 S. I. Barry and G. K. Aldis [18]

0.2 -

FIGURE 6. Change in porosity, <j>(r), for a constrained cylindrical shell 0.8 < r < 1 . The
solid lines are </> at four small times, t = 0.0025, 0.0375, 0.005 . The dotted line is the final
equilibrium state of the shell. Note that very little local expansion occurs with this thin shell.

shows the displacement as a function of radial distance for various times,
t — 0.005, 0.01, 0.015, 0.02, confirming the existence of a consolidation
region growing in time. A maximum displacement gradient is reached at r =
1.0 representing the limit of consolidation. In Figure 6 the porosity and the
displacement are shown for the case of a thin shell where 0.8 < r < 1. Since
the thin-walled shell reaches equilibrium faster than the thick-walled shell
the maximum time plotted is t — 0.005. Note that there is little expansion
of the inner region of the shell. Uniform results should be expected since
the shell is essentially thin enough to react like a uniform medium for most
values of time.

8. Perturbation solutions for slow compression rates

The governing equation for this case from (35) is

d<j>\ 1 d</>
) = (83)

where R2 = tQHak0/b
2 and boundary conditions are given by (67). Since

the compression is slow, the parameter l/R2 «: 1 and the problem can be

https://doi.org/10.1017/S0334270000008936 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008936


[19] Radial flow through deformable porous shells 351

expressed as a power series

Hr, t) = - j j ^ r , 0 + X^r, t) + • • • . (84)
R R

The permeability is expanded in the form

k(S4>)« i + -L(<jfc'(O)<£,) + ±(dk\0)<t>2 + d2k"(0)4>2
l). (85)

R R

The coefficient of the first order of 1/R2 is the steady-state equation

giving

f ^ for n = 2,
, forn = l , (87)

, 2 for/i = 0,

where cx{t) and c2(0 are constants of integration. The equation for the
second-order <j>2{r, t) is

which can be solved easily by successive integrations.
The first-order solution can be seen to be the solution to the linearised

time independent equation. Thus <f> behaves as a succession of steady states
with the higher-order terms incorporating nonlinear effects. This has been
discussed in some depth in Barry and Aldis [5] for the planar case.

Since the parameter I//?2 is small, we note that the time derivative dis-
appears in the limit of l/R2 -> 0, hence making the governing equation (83)
singular in time. This can be overcome by redefining a new time variable
T = R2t which will allow us to obtain solutions for small times. A perturba-
tion expansion in 1/i?2 then gives (66) for the first-order equation. That is,
for small-times we expect the equation to be linear since the permeability is
essentially unchanged.

Figure 7 is a schematic diagram of the deformation of the inner boundary
against time under the action of an applied pressure gradient AP = t. Ini-
tially the medium is not highly compressed and the small-time linear solution
is valid. For later times the solution acts as a sequence of steady states with
a time lag due to higher-order terms, and then the nonlinear effects become
apparent.

https://doi.org/10.1017/S0334270000008936 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008936


352 S. I. Barry and G. K. Aldis [20]

0.085

Nonlinear deviation

UJ

LU
O
<
D.
en
Q

0.02 0.06

TIME

FIGURE 7. Schematic diagram of the displacement of the inner boundary versus time for an
applied pressure AP = t. A small boundary layer is followed by the solution for a succession
of steady states with time lag, and then nonlinear effects become important.

9. Conclusions

The theory of mixtures has been applied to flow through deformable porous
media to develop general nonlinear equations and boundary conditions gov-
erning the radially directed flow through either spherical, cylindrical or planar
shells. General solutions for steady flow were given as integrals involving the
permeability function. In addition, a perturbation solution valid for typical
permeability functions was given. For unsteady flow an approximate solution
valid for small time was given as well as solutions valid for slow compres-
sion rates. Figures were presented comparing flow in planar and cylindrical
geometries.

In planar geometries, the medium becomes more compressed for a given
pressure than the cylindrical medium, thus filtering out smaller particles.
The change in porosity was also shown to decrease in the planar case, but for
cylindrical shells of sufficient width, a significant region of expanded medium
occurs. Thus a cylindrical filter will trap within its expanded pores a larger
sized particle for later recovery. It was also shown that error associated with
use of approximated boundary conditions can negate the increased accuracy
with use of nonlinear permeability relations.
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