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We present a mathematical model built to describe the fluid dynamics for the heat transfer fluid
in a parabolic trough power plant. Such a power plant consists of a network of tubes for the heat
transport fluid. In view of optimisation tasks in the planning and in the operational phase, it is crucial
to find a compromise between a very detailed description of many possible physical phenomena and
a necessary simplicity needed for a fast and robust computational approach. We present the model,
a numerical approach, simulation for single tubes and also for realistic network settings. In addition,
we optimise the power output with respect to the operational parameters.
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1 Introduction

It is well known that the worldwide energy consumption is increasing rapidly both in industrial
and in developing countries. The classical way to produce energy is co-responsible for the climate
change and for environmental pollution. Therefore, there is a strong need to reduce the use of
traditional non-renewable resources and to strongly increase the use of renewable resources. This
refers to all types of energy, the electrical current as well as to energy in form of heat.

A important renewable source is given by the solar radiation. There are different possibilities
to use the solar radiation. The radiation is typically used to heat a medium. In some cases, the
heat is used directly, e.g. for heating or hot water production. However, in most of the cases on
a industrial scale of bigger power plants, the heat is used to produce electrical energy, which can
be transported easily over long distances.

One of the most promising types of solar power plants are the so called parabolic trough power
plants. In parabolic trough’s, a special fluid in tubes positioned in the focus of big parabolic
mirrors is heated by the solar radiation (see Figure 2–3). This fluid circulates and heats up a big
heat storage. From there on, demand heat is extracted and used to power a steam turbine to finally
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FIGURE 1. Parabolic trough solar power plant (Noor I) in Ouarzazate, Morocco (from Google Earth (left)
and from https://commons.wikimedia.org/wiki/File:Mirrors.JPG (right)).

FIGURE 2. Schematic of a parabolic trough plant [5, dredit to NREL/SAM].

produce electric current in an electric generator. This technique is realised in many places all over
the world (see [26] as a database on existing and planned powerplants). Today we have already a
few thousands of GW power available by parabolic trough power stations worldwide. A typical
modern parabolic trough power plant has a pike power in the order of magnitude 102 − 103 MW.

As an example in this paper, we will refer often to the power plant NOOR I in Morocco
[6, 9], see Figure 1. The Moroccan solar plan implemented by Moroccan Agency For Solar
Energy (MASEN) consists of creating various solar power plants to be located in different
regions [23]. NOOR I is one of the first power complex constructed by MASEN in Ouarzazate-
Morocco in 2016. The plant generates solar power using parabolic trough collectors that uses
thermal oil as a heat transfer fluid (HTF) [2].

For a deeper and profound understanding of the possibilities and limitations of parabolic
trough systems, accurate models have to be available. We describe the complete power plant
by including the main components, e.g. the thermo-fluid dynamics in the tube network and the
pumps as driving forces for the fluid. This is done by a set of PDE’s describing the thermo-
fluid dynamics in a network of tubes. However, to make such an approach realisable a series of
simplifications are necessary. First we reduce the equations to a one (spacial and longitudinal)
dimensional system on the tube network by appropriately describing the relevant effects from
the (omitted) cross-sectional dimensions. Then we apply an asymptotic analysis with respect to
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FIGURE 3. Schematic diagram of the different aspects of the operation of a parabolic solar collector.

certain small parameters to further reduce the system. Finally we obtain a set of 3 nonlinear
coupled first-order PDE’s on every tube complemented with a set of physical meaningful condi-
tions in the nodes of the network. This model allows for fast and robust simulations and thus for
optimisation approaches. On one side, we optimise with respect to the various input data such
as applied pressures or inflow temperature. On the other side, we can optimise with respect to
various system parameters, e.g. network structure, dimensions and properties of the tubes and
the thermo fluid in use. Therefore, this model can be applied both in the planning phase and in
the operational phase of a parabolic trough power station. Also it is a good starting point for
modelling more complex hybrid power plants which will become more and more important.

There is existing literature on various aspects of parabolic trough power plants. There is
overview articles on collectors [12], there is literature comparing the parabolic trough and the
heliostat technology [31] using space independent models for a single pipe. There is literature
studying and comparing the parabolic trough plants with thermo fluids to direct steam gener-
ating power plants [35, 8]. Another direction is literature considering in particular alternative
thermo fluids in [21, 1]. There is models which focus on the detailed cross-sectional physics and
dynamics in a tube, i.e. in [13, 28, 10]. There is literature doing a space independent thermal
analysis for a single pipe in [25] with related optimisation tasks in [24]. There is other Ansatzes
based on simple algebraic models or space independent models aiming to optimise economic [3],
structural [18] or network structural [22] aspects. Control aspects can be found in [34]. Network
simulations based on algebraic models can also be found in [32]. Optimisation based on complex
3D models can be found in [38]. Energy balancing models for the power plant Noor I in Marocco
can be found in [1]. Then, there is literature doing thermo fluid dynamic simulations with opti-
misation tasks on tailored software tools like ColSimCSP in [29]. Unfortunately, we could not
find out which model in detail is coded in the software package ColSimCSP. However, not con-
sidering fluid dynamics aspects (apart from the temperature) is a very rough approximation since
in a HTF fluid in the relevant temperature range from 300 to 700 K the density is varying up to
50% (see Figure 5).

To summarise, our approach represents a complete thermo-fluid model on a network with
spatial and time dependency. The model is a result of various asymptotic processes simplifying
the model significantly. It includes appropriate node conditions for the network. The model is
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robust and fast in simulations. Therefore, it allows us to optimise with reasonable effort, i.e. the
net power output.

To our knowledge, the model presented here is unique and one of the most complete models
available to describe a parabolic trough power station. In particular, it is based on first principal
thermo–fluid equations and does not only consider energy balances. It promises a wide range of
applicability.

In Section 2, we set up and analyse a one-dimensional mathematical model on the network,
including the scaling and the asymptotic analysis. In Section 3, we deal with the numerical sim-
ulation of the model and present some examples. Finally, in Section 4 we select real world
power plants models and present optimisation results for both the planning and the operational
phase.

2 Mathematical model

Here, we introduce a system of balance laws for the relevant quantities under consideration that
we will use to model, to simulate and to optimise a parabolic trough power plant described in
the previous section. Since the power plant consists of a network of tubes conducting the heated
flow, we start with the description of a single pipe in such a network.

Models of the type we are going to use here are widely used in similar applications where
the heat transport is crucial. We refer to applications in gas pipelines [7], exhaust pipes [16, 17],
tunnel ventilation [15], solar updraft towers [14, 37], energy towers [4] etc. In particular, the
application for tubes in solar parabolic trough’s were studied in [27, 30].

In the following, a mathematical model for the heat-transfer fluid flow in a collector is intro-
duced. Different fluid quantities including fluid density, velocity, temperature and pressure are
described as functions of time and space.

2.1 The unidirectional flow system

Generally, the cross-sectional area of the collector flow tube is very small compared to its length.
Based on that, a one-dimensional flow model is derived by averaging variables over the cross-
sectional variables ỹ and z̃ directions. Namely, for a given quantity F̃, we have

Ã(x̃)f̃ (x̃, t̃) =
∫∫

F̃(x̃, ỹ, z̃, t̃)dỹdz̃, (2.1)

where the ˜ indicates unscaled variables (with physical dimensions). f̃ denotes the cross-sectional
averaged quantity. Here, x̃, t̃, Ã(x̃) are the longitudinal space variable (along the tube), the time
and the cross-sectional area of the tube, respectively.

The governing equations are derived from the conservation and balance laws for the mass,
momentum and energy, where the unknown variables are the density ρ̃ = ρ̃(x̃, t̃), the velocity
ũ = ũ(x̃, t̃), the temperature T̃ = T̃(x̃, t̃) and the pressure p̃ = p̃(x̃, t̃), all intended as cross-sectional
mean values. Thus, the governing equations are given by

(i) Conservation of Mass

(Ãρ̃)t̃ + (Ãρ̃ũ)x̃ = 0 (2.2)
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(ii) Momentum balance (
Ãρ̃ũ

)
t̃
+
(

Ã(ρ̃ũ2 + p̃)
)

x̃
= −Ũiτ̃w + Ã (τ̃11)x̃ (2.3)

(iii) Energy balance(
Ã(c̃vρ̃T̃ + 1

2
ρ̃ũ2)

)
t̃

+
{

Ãũ

(
c̃vρ̃T̃ + 1

2
ρ̃ũ2 + p̃

)}
x̃

= Ũiũτ̃w + Ã (ũτ̃11)x̃ + Ã
(

k̃T̃x̃

)
x̃
+ ˜̇qs − Ũo ˜̇qrad − Ũo ˜̇qconv , (2.4)

where τ̃11 = τ̃11(x̃, t̃) is the internal shear stress, τ̃w = τ̃w(x̃, t̃) the wall friction, ˜̇qs = ˜̇qs(t) the beam
solar radiation, ˜̇qconv = ˜̇qconv(x̃, t̃) the convective heat loss and ˜̇qrad = ˜̇qrad(x̃, t̃) the radiation heat
exchange between the absorber and the atmosphere, Ũi = Ũi(x̃) = πD̃i(x̃) is the inner circumfer-
ence (diameter) of the tube and Ũo = Ũa(x̃) = πD̃a(x̃) is the absorber circumference (diameter).
The physical parameters c̃v and k̃ denote the specific heat capacity and the heat conductivity of
the fluid, respectively.

The shear stress of the turbulent fluid on the wall is described classically as follows

τ̃w = ξ

8
ρ̃ũ|ũ|, (2.5)

where ξ denotes the coefficient of friction calculated according to the Colebrook equation
[20, 1].

For the unidirectional flow of a Newtonian fluid the shear stress τ̃11 is given as follows [27]:

τ̃11 = 4

3
μ̃ũx̃, (2.6)

where μ̃ is the viscosity of the fluid.
The solar radiation received is considered as a heat flux/rate and can be expressed as [1]:

˜̇qs(t̃) = γαgrmW̃akθ G̃bt(t̃), (2.7)

where G̃bt is the beam solar radiation, Wa is the collector width, γ is the intercept factor, αg is
the absorbance of glass cover, rm is the specular reflectance of the mirror and kθ is the incident
angle modifier.

The heat loss by convection is given by [1]:

˜̇qconv = h̃w

(
T̃ − T̃a

)
, (2.8)

where T̃a is the ambient temperature and h̃w is the convective heat transfer coefficient.
The radiation heat loss is described by [1]:

q̇rad = εradσ̃
(

T̃4 − T̃4
sky

)
, (2.9)

where T̃sky is the sky temperature assumed to be [1]:

T̃sky = 0.0552 T̃a (2.10)

with σ̃ as Stefan–Boltzmann constant and εrad as the emittance.
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The equations (2.2)–(2.4) form a set of 3 equations for the 4 unknowns ρ̃, ũ, T̃ , p̃. We still
need to define a constitutive relation for the medium under consideration. The fluid under con-
sideration is a special oil called Terminol VP-1 [36]. The constitutive relation is only known by
measured data (given in [36]). The temperature dependence of the data (for a given pressure) can
be approximated by polynomials (as in [1]). In Figure 5(a), we can see that the dependence of the
density on the temperature is almost linear. There is also a theoretical pressure dependence of the
density, which was studied in detail in [27], combining the data at different pressure values from
[36] with additional data for a very similar fluid, called Dow-Corning 210 H [11]. The resulting
approximative relation derived in [27] reads as

ρ̃(p̃, T̃) = G̃ + B̃p̃ + C̃T̃ + D̃p̃T̃ . (2.11)

However, as we will see after scaling in Section 2.3, the pressure dependence is neglectable.
Thus finally we work with a linear approximation of the density (as function of the temperature).
See also Table A.2 for the parameters, Table A.3 and Figure 5 for the properties of the fluid.

2.2 Scaling

The governing equations are scaled in order to obtain a dimensionless mathematical model, to
reduce the number of (dimensionless composed) parameters and to identify order of magnitudes
in the various terms. The reference values are denoted by an index r, the dimensionless quantities
have no index and no tildes, i.e. for a general quantity f

f (x, t) = f̃ (x̃, t̃)

fr
= f̃ (xxr, ttr)

fr
.

Moreover, the scaling of the Therminol VP-1 constitutive law leads to the following nondimen-
stional parameters:

G = G̃

ρr
, B = B̃u2

r , C = C̃
Tr

ρr
, D = D̃Tru

2
r . (2.12)

The reference values are associated with the real-world data of the considered power plant, in
our case the Ouarzazate Noor I [1]. Table A.1 shows the typical reference values that we use for
scaling and Table A.2 contains the Noor I model parameters.

From now on, we assume the cross-sectional area A to be constant in a single tube. After
scaling the governing equations (2.2)–(2.4) together with (2.11) can be written in dimensionless
form as follows

ρt + (ρu)x = 0 (2.13)

(ρu)t + (ρu2 + 1

ε
p)x = − η

Di
ρu|u| + (μux)x (2.14)

(ρT + εδ
1

2
ρu2)t + (ρuT + εδ

1

2
ρuu2 + δpu)x = εδ

η

Di
ρu2|u| + (μuux)x + (kTx)x + κ

A
q̇s

− κς
Uo

A

(
T4 − T4

sky

)
− κ�

Uo

A
(T − Ta) (2.15)
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Table 1. Dimensionless composed parameters with their order of magnitude

Coeff. Expression Order Coeff. Expression Order Coeff. Expression Order

ε
ρru2

r

pr
10−6 η

ξxr

2Dr
10−2 μ

4

3
μ̃

xrur
10−8

δ
pr

c̃vρrTr
100 k

k̃

c̃vρrurxr
10−8 �

TrUrh̃w

q̇r
100

κ
xrq̇r

ρrc̃vurTrÃr

10−2 ς
T4

r Urεradσ

q̇r
10−2 G

G̃

ρr
100

B B̃u2
r 10−8 C C̃

Tr

ρr
10−1 D D̃Tru2

r 10−8

ρ(p, T) = G + εBp + CT + εDpT , (2.16)

where the dimensionless coefficients and its order of magnitude are expressed in Table 1. We see
that we have series of small and very small parameters. This will be used to simplify the model.

2.3 Asymptotic analysis

In this section, we look at the order of magnitudes (see also [27]). We see that the parameters
μ, k, B and D are of order O(10−7) and below. Therefore, we skip the corresponding terms. Not
surprisingly, this refers to viscous and to heat conducting terms (in this 1d approach). And it
simplifies the constitutive law to a linear relation. With this we are left to

ρt + (ρu)x = 0 (2.17)

(ρu)t + (ρu2 + 1

ε
p)x = − η

Di
ρu|u| (2.18)

(ρT + εδ
1

2
ρu2)t + (ρuT + εδu

1

2
ρu2 + δpu)x = εδ

η

Di
ρu2|u| + κ

1

A
q̇s − κς

Uo

A

(
T4 − T4

sky

)

− κ�
Uo

A
(T − Ta) (2.19)

ρ(p, T) = G + CT . (2.20)

Now we take advantage of the fact that ε and δ are always small in this application, everywhere
and at any time. This is used to do an asymptotic approximation in terms of the small parameters
ε and δ. We develop the quantities asymptotically with respect to ε and δ, i.e. for f = (ρ, u, T , p)
we write

f (x, t) = f0(x, t) + εf10(x, t) + δf11(x, t) +O(ε2, εδ, δ2). (2.21)

In equation (2.14), the leading order term on the left (p0)x (order ε−1) has as only relevant coun-
terpart on the right the term −ε

η

Di
ρ0u0|u0|. For big longitudinal extensions xr, small diameters

Di and/or big friction coefficients ξ we have
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ε
η

Di
≈O(1), or

η

Di
≈O(ε−1). (2.22)

This reflects the fact that friction effects cannot be neglected in this application. Therefore in
leading order (in ε and δ), we have the equations

(ρ0)t + (ρ0u0)x = 0 (2.23)

(p0)x = −ε
η

Di
ρ0u0|u0| (2.24)

(ρ0T0)t + (ρ0u0T0)x = κ
1

A
q̇s − κς

Uo

A

(
T4

0 − T4
sky

)
− κ�

Uo

A
(T0 − Ta) (2.25)

ρ0 = G + CT0. (2.26)

This model includes as physical most relevant phenomena friction losses in the momentum bal-
ance, the solar input and the radiative and convective heat losses in the energy balance. We can
rewrite and simplify the model using (2.26) in (2.25). This gives (dropping the index ()0)

ρt + (ρu)x = 0 (2.27)

px = −εη

Di
ρu|u| (2.28)

ux = −Cκ

ρ2

(
1

A
q̇s − ς

Uo

A

(
T4 − T4

sky

)
− �

Uo

A
(T − Ta)

)
(2.29)

T = ρ − G

C
. (2.30)

This is a coupled system of 3 first order nonlinear PDE’s and a linear algebraic relation.
Therefore, we need initial data for the quantities

p(x, 0) = pI , T(x, 0) = TI , u(x, 0) = uI , (2.31)

where the initial condition for the density ρ is then given by (2.37). And we need 3 physically
meaningful boundary conditions. Typically a certain pressure is applied to the tube and as a
consequence a flow is induced. This is realised by prescribing the pressures at the inlet and the
outlet and consequently the density at the inlet (inflow condition)

p(0, t) = pl, p(1, t) = pr (2.32)

ρ(0, t) = ρl if u(0, t) > 0 and/or ρ(1, t) = ρr if u(l, t) < 0. (2.33)

2.4 Network

Since a typical parabolic trough power plant is composed as a network of pipes, we now consider
the network setting (see also [30]). We have – including an inlet and an outlet tube – np tubes
connected in nv nodes. For each tube i = 1, ..., np we have density ρ i, velocity ui, temperature
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T i and pressure pi. In each of the tubes various parameters may differ, e.g. the length Li, the
cross-sectional area Ai and the diameter Di.

The fluid in each tube is described by (2.34)–(2.37)

ρ i
t + uiρ i

x = Cκ

(ρ i)

(
1

A
q̇s − ς

Uo

A

(
(Ti)4 − T4

sky

)
− �

Uo

A

(
Ti − Ta

))
(2.34)

pi
x = −εη

Di
i

ρ iui|ui| (2.35)

ui
x = − Cκ

(ρ i)2

(
1

A
q̇s − ς

Uo

A

(
(Ti)4 − T4

sky

)
− �

Uo

A

(
Ti − Ta

))
(2.36)

Ti = ρ i − G

C
. (2.37)

The parameters are given in Table A.4. We have boundary conditions for the network at the inlet
and the outlet tube, i.e. we add boundary conditions for the pressure pl and the density ρl at the
inlet tube and for the pressure pr at the outlet tube

pl = pin(0, t) pr = pout(Lout, t) (2.38)

ρl = ρin(0, t). (2.39)

The inflow temperature Tin depends via (2.37) from the inflow density ρin. The subscripts in and
out refer to the tubes connected to the outside world with in or outgoing flow.

We complete the system with intial condition for temperature, pressure and velocity

pi(x, 0) = pi
I (x), Ti(x, 0) = Ti

I (x), ui(x, 0) = ui
I (x), (2.40)

where the initial density is again given by (2.37). In the network, we have to define node condi-
tions which act as boundary conditions for the internal (or non-external) ends of the tubes, i.e.
those parts ending in a network node. We need 3 boundary conditions per tube – e.g. 2 pres-
sure and 1 density inflow condition – and thus in total 3 · np boundary conditions in the whole
network.

For the node dynamics, we make the assumptions that the fluid is homogeneoulsy mixed such
that

(i) we have a single pressure value Pj = Pj(t) at each node j,

(ii) we have a single density value ρinflow,j = ρinflow,j(t) for each tube with (node-)outgoing
flow at node j.

This reduces the unknowns to a single pressure values and a single density values at each node.
We formulate physical reasonable and necessary node conditions (like in [15] or [7]):

(iii) mass is conserved in the nodes, i.e. the in and outgoing mass fluxes are balanced∑
sign(i,j)�=0

sign(i, j)ρiuiAi = 0 (2.41)
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(iv) the inner energy is conserved in the nodes, i.e. the in and outgoing fluxes for the inner
energy are balanced ∑

sign(i,j)�=0

sign(i, j)ρiuiTiAi = 0. (2.42)

Remember that the kinetic energy parts were of orders of magnitude smaller and not
relevant in this leading order approximation.

where the function sign(tube i, node j) indicates at which end of the tube i the node j is located

sign(tube i, node j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 left end of the tube i ends in node j

−1 right end of the tube i ends in node j

0 no connection of tube i with node j.

Using (2.37) in the inner energy balance at the nodes (2.42), then using (2.41) and the fact all
outflowing tubes have the same (well mixed) denisty, we obtain at every node j = 1, ..., nv∑

sign(i,j)ui<0

sign(i, j)(ρi)
2uiAi (2.43)

= −
∑

sign(i,j)ui>0

sign(i, j)(ρi)
2uiAi (2.44)

= −ρinflow,j

∑
sign(i,j)ui>0

sign(i, j)ρiuiAi. (2.45)

Using again (2.41), we obtain coupling conditions for the outflow density in node j

ρinflow,j =

∑
sign(i,j)ui<0

(
ρ2

i uiAi

)∣∣
x=Li∑

sign(i,j)ui<0
(ρiuiAi)|x=Li

, j = 1, ..., nv (2.46)

which only depends on inflow data at the related node. We remark that (2.46) by construction
guarantees the conservation of mass in every node. With this the solution of the network problem
is prepared. In Section 3, the details of the numerical realisation of the solution of the network
problem are presented.

We start with given data at a certain time (e.g. initial data) on every tube of the network and a
set of pressures Pj at the nodes. We perform a step forward (in time) in the continuity equation
(2.34). Then we solve the combined network problem

�pi = −εη

Di
i

∫ 1

0
ρ iui|ui|dx i = 1, ..., np (2.47)

∑
sign(j,i)ui>0

(
ρ iuiAi

)
x=0

=
∑

sign(j,i)ui<0

(
ρ iuiAi

)
x=Li

j = 1, ..., nv , (2.48)
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where �pi denotes the pressure differences of right an left node pressure acting on tube i. This
problem promises to behave well since we have – at least formally – a ‘monotonicity’ behavior
of the node pressures at every node. A strategy o solve this problem is in a first step to guess
the pressures Pj at all the nodes. The higher we chose the pressure Pj in a node j the higher is
the outflow in the outflowing tubes and the lower is inflow in the inflowing tubes (at node j). As
long as there is no change in the flow direction with respect to the tubes linked to node j, there
is exactly on pressure value Pj such that outflow balances inflow at that node. This monotinicity
remains even true if by lowering (highering) the node pressure Pj an outflowing (inflowing) tube
switches and becomes an inflowing (outflowing) tube. Insofar we expect a unique solvability
with respect to the pressures. This algorithm will be used in Section 3 to solve the network
problem.

2.5 Power optimisation

In the previous section, we studied and performed direct numerical simulations on a network for
a given set of parameters and initial and boundary data. As already mentioned, we would like
to go further and – as required for the application – optimise the output. A natural quantity to
be optimised is the power output. In an operational phase, an important control variable is the
pressure drop between the outlet and inlet to the solar field, �p.

The power P is the energy converted per unit of time, P = �E
�t , where E is the energy. The

thermal (gross) output of a power plant is the amount of heat generated per unit of time. On the
other hand, we have to employ pumping power to push the fluid trough the network. At the end
the most interesting quantitiy is the net power, i.e. the gross power minus the necessary power
for running the system.

We start with the thermal output. The amount of heat P̃thermal, which is generated by a
temperature difference is calculated by

P̃thermal = Ãρ̃ũ · (c̃v(T̃out)T̃out − c̃v(T̃in)T̃in), (2.49)

where T̃in, T̃out are the in and outlet temperatures, c̃v the (temperature-dependent) specific heat
and Ãρ̃ũ the fluid mass push through the tubes per time. Here, we assume incompressibility and
thus the inflowing mass is equal to the outflowing mass. Applied to our network we get for the
relevant outgoing tube or tubes (if more than one outgoing tube)

P̃thermal =
(

Ãoutρ̃outũout ·
(
c̃v(T̃out)T̃out − c̃v(T̃in)T̃in

))∣∣∣
x̃=L̃out

. (2.50)

Now we integrate P̃thermal over time to account for the performance over the entire simulation
period. In addition, we take into account the fact that there can be several output pipes and form
the sum over the corresponding pipes

J̃thermal =
∫ t̃end

0

∑
i=out

(
Ãi

outρ̃
i
outũ

i
out ·

(
c̃v(T̃ i

out)T̃
i
out − c̃v(T̃in)T̃in

))∣∣∣
x̃=L̃i

dt (2.51)

representing the gross power generated in the solar field by solar thermal heating. The power
functional is still subject to dimensions.
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Now we take into account in our functional the needed pumping power to generate the
pressure. This is calculated according to Sterner et al. [33], as follows

Ppump = Ãinũin

∣∣∣
x̃=0̃

�p̃

ηpump
, (2.52)

where 0 < ηpump < 1 designates the efficiency of the pump and �p = pin − pout the produced
overpressure between inlet and outlet pipes. Since pumps act always at the inlet(s), we have
(again integrated over the simulation period)

J̃pump =
∫ t̃end

0

∑
i=in

Ãi
inũi

in

∣∣∣
x̃=0̃

p̃i
in − p̃out

ηpump
dt. (2.53)

We assume in our model that the pump is installed at the entrance of the first pipe (only one
entrance pipe). Overall, we can now set up the following net power functional J̃ :

J̃ =
∫ t̃end

0

(∑
i=out

(
Ãi

outρ̃
i
outũ

i
out ·

(
c̃v(T̃ i

out)T̃
i
out − c̃v(T̃in)T̃in

))∣∣∣
x̃=L̃i

− Ãinũin

∣∣∣
x̃=0̃

p̃in − p̃out

ηpump

)
dt. (2.54)

We mention that the (in time integrated) net power functional represents the amount of net energy
produced by the power station over the time intervall [0, t̃end].

It remains to scale the functional using the reference values from the Subsection 2.2 (the
reference value for J̃ is given by TrρrurAr). We obtain (cv denotes a scaled version of the heat
capacity)

J =
∫ tend

0

(∑
i=out

(
Ai

outρ
i
outu

i
out ·

(
cv(Ti

out)T
i
out − cp(Tin)Tin

))∣∣
x=Li

− Ainuin|x=0
pin − pout

ηpump

)
dt. (2.55)

The optimisation (maximisation) of the presented net (integrated) power functional is done under
the additional constraint max Tout < Tc since the HTF (in our case Therminol VP-1) should
not go above the critical temperature Tc = 663.15 K

Tr
(390◦C). In the next section, we show how

the numerical realisations of this optimisation is done (in MATLAB based on optimisation
toolbox).

3 Numerical algorithm

In this section, the algorithm for a single pipe is first introduced accompanied with the initial and
boundary values. The coupling conditions are then used for the calculation of missing boundary
values of all pipes.

In order to solve the system of equations (2.34)–(2.37), a temporal and spatial discretisation is
required. The discrete grid points for space and time are denoted, respectively, by x1, . . . , xnx

and t1, ..., tnt . The discrete variables are accordingly provided with the indexing (n, j), where the
first index is relating to the time coordinate, the second to the spatial coordinate.
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In the following, the index for the pipe number is dropped as the algorithm is introduced for a
single pipe. The explicit upwind method is used to solve the mass conservation, equation (2.34),
where CFL condition is preserved [30]. Calculation of the discrete temperature values result from
the linear relationship (2.37) between T and ρ. On the other hand, the velocity solution can be
obtained by integrating (2.36)

u(t, x) = v(t) +
∫ x

0
−Cκ

ρ2

(
1

A
q̇s − ς

Uo

A

(
T4 − T4

sky

)
− �

Uo

A
(T − Ta)

)
ds, (3.1)

where v = v(t) (space independent) represents the value of the velocity at the pipe inlet. To
calculate v = v(t), we use the pressure equation (2.35). If we integrate equation (2.35) over the
whole pipe (from x = 0 to x = L), insert (3.1) and the two pressure boundary values, we get an
equation for v = v(t)

p(1, t) − p(0, t)

= −εη

Di

∫ 1

0
ρ

(
v(t) +

∫ x

0
−Cκ

ρ2

(
1

A
q̇s − ς

Uo

A

(
T4 − T4

sky

)
− �

Uo

A
(T − Ta)

)
ds

)
∣∣∣∣v(t) +

∫ x

0
−Cκ

ρ2

(
1

A
q̇s − ς

Uo

A

(
T4 − T4

sky

)
− �

Uo

A
(T − Ta)

)
ds

∣∣∣∣ dx. (3.2)

After the density, temperature and velocity are solved for the respective time step, the pressure
can also be calculated. In order to take into account the two given pressure boundary values, the
pressure equation (2.35) is differentiated with respect to x

pxx = −εη

Di
(ρu|u|)x . (3.3)

Finally, the pressure values are obtained by solving the above equation using second-order
central finite different scheme.

This is the algorithm for a single pipe. The network approach still requires the numerical
implementation of the coupling conditions in order to derive the required boundary values for
the individual pipes.

As described in Subsection 2.4, a boundary value for the density is required for the explicit
upwind method. For internal pipes, the boundary value for the density is determined via the
equation (2.46) at every node j = 1, ..., nv . With the input density determined in this way for each
pipe, the continuity equation can be solved using the explicit upwind methods.

Furthermore, the nv pressure values at the nodes are required to calculate the speed and
the pressure in the individual pipes. For this, the following nv equations at the nodes and
the np equations for the pipes form a non-linear system of equations for i = 1, . . . , np, and
j = 1, . . . , nv .

�pi = −εη

Di

∫ Li

0
ρ i

(
vi(t) +

∫ x

0
− Cκ

(ρ i)2

(
1

A
q̇s − ς

Uo

A

(
(Ti)4 − T4

sky

)
− �

Uo

A

(
Ti − Ta

))
ds

)

×
∣∣∣∣
(

vi(t) +
∫ x

0
− Cκ

(ρ i)2

(
1

A
q̇s − ς

Uo

A

(
(Ti)4 − T4

sky

)
− �

Uo

A

(
Ti − Ta

))
dx

)∣∣∣∣ dx (3.4)
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FIGURE 4. Hourly variation of solar radiation (left axis) and ambient temperature (right axis) in the region
of Ouarzazate [1].

∑
sign(i,j)ui>0

ρ iviAi

=
∑

sign(i,j)ui<0

ρ i

(
vi +

∫ Li

0
− Cκ

(ρ i)2

(
1

A
q̇s − ς

Uo

A

(
(Ti)4 − T4

sky

)
− �

Uo

A

(
Ti − Ta

))
ds

)
Ai,

(3.5)

where nv + np equations are solved to obtain the nv pressure values at the nodes Pj and the np

input velocities vi of the pipes.
The required boundary values for each individual pipe within the entire network are then

available and the quantities velocity, pressure and temperature can be determined according to
the procedure explained above.

4 Numerical simulation

In the following, the presented model system is simulated for a set of different examples.
A number of MATLAB codes are implemented in order to study the different numerical cases.

At first, a simple case is considered where the presented model is numerically solved for
one single pipe and validated with existing results in literature. In the second case, a solar field
collector row composed of 8 collector pipes is considered.

The solar radiations and ambiant temperature for a typical sunny day in the region of
Ouarzazate (Morocco) are considered [1]. The hourly variation of the considered data are plot-
ted in Figure 4 between the sunrise and the sunset, where the observed peak solar radiation is
around 1000 W/m2 and the peak ambient temperature is around 308 K. Some of the coefficients
involved in the governing equations are determined using the temperature-dependent properties
of the Therminol VP-1 in order to obtain accurate numerical results at each time step. The ther-
mal properties of the HTF for a range of temperatures from 285 to 693 K are depicted in Figure 5
alongside the linear interpolation expressed in Table A.3.
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FIGURE 5. Linear fitting of Therminol VP-1 thermal properties from [36].

4.1 Validation of the single pipe model

First, both models should be examined with regard to their plausibility. In the first simulation,
we want to represent a situation that is as simple as possible. A simple fluid transport through
the pipe from left to right, the results obtained by the one pipe model are compared with existing
results from Allouhi et al. [1]. We will always select the same data in the subsequent simulation
series, i.e. model parameters, calculation parameters, initial and boundary conditions for the two
systems in order to be able to compare them. The associated data is listed in the previous sections.

For the case of a single collector pipe, the obtained results are presented to validate the
derived model by comparing the predicted temperature variations with existing values in the
literature. The inlet temperature is set at 320 K (46, 85◦C). Figure 6, shows the variation of the
obtained results for the fluid properties, namely, the density, velocity, pressure and temperature
as function of space (along the pipe) and time (hours of the day). It is noticed from the different
plotted results, that at the peak value of the solar radiation during the day, the minimum value
of the density and the maximum values of the velocity and temperature are observed. Moreover,
the collector generates a maximum temperature value (375 K) at the outlet of the pipe when
the solar radiation is at the peak value during the day, similar values are obtained in [1]
for the same NOOR I model parameters. Compared to other models in the literature and the
work of Allouhi et al. [1], the presented model gives more and new insight to the spacial and
time variation of other fluid properties besides temperatures, such as velocity and density. This
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FIGURE 6. Evolution of the different variables in the single pipe model.

FIGURE 7. Temperature variation of collectors row using one pipe model (left) and network model (right).

additional information can only be generated by a thermo fluid dynamics model as the one we
use here in this paper.

4.2 Validation of the network model

In this case, a simple network model constituted of 8 collectors connected in series is assumed,
where the same model parameters and properties are considered. In order to check the coupling
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Table 2. Iterations to reach the optimal of the net power output satisfying also the
upper limit for the temperature; iterations 1–11 do not satisfy the upper limit. The

numbers in red shows the outlet temperatures that exceed the critical value of
663.15 K

Iteration �P (Pa) max Tout (K) J̃thermal (MW · h) J̃pump (W · h) J̃net (MW · h)

1 210.6 693.58 2.62 1.72 2.62
2 280.2 716.17 2.76 2.61 2.76
3 167.7 676.59 2.49 1.23 2.49
4 141.1 664.64 2.38 0.96 2.38
5 124.7 669.65 2.30 0.80 2.30
6 141.6 664.87 2.39 0.96 2.39
7 136.2 663.99 2.36 0.91 2.36
8 131.8 666.12 2.34 0.86 2.34
9 137.6 663.32 2.37 0.92 2.37
10 138.3 663.3 2.37 0.93 2.37
11 138 663.18 2.37 0.93 2.37
12 138 663.15 2.37 0.92 2.37

FIGURE 8. Evolution of the different fluid variables for the obtained optimal pressure drop.

conditions of the system (3.4)–(3.5), the numerical results for this model can be compared with
the results of a one pipe model with the length of 8 collectors (8 × 12.27 m). It is observed
from the results, that both systems achieve the same results, see Figure 7. The network model
clearly keeps the continuity of the temperature variation from a pipe to an other. Similar to the
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FIGURE 9. Skitches of the four studied network designs.

single tube model, the maximum temperature value is at the outlet of the last pipe when the solar
radiation reaches the peak value. This can be seen as a basic test for the network approach.

5 Design and optimization: NOOR I power plant

5.1 In series design of the collector

The NOOR I power plant (Ouarzazate, Morocco) is considered as an application for the presented
network model. The network case of eight pipes connected in series is a realistic case of the
NOOR I plant, the model can be then used for further optimization of the power functional
with respect to different model parameters. In this paper, the (optimal) pressure drop is the main
output of the optimisation approach. For the usual design of each collector row, the pressure
drop is optimised to maximise the net power output. Table 2 shows the optimisation iterations
and the associated values of the pressure drop (�p) and power output (J ). It is observed that
the maximum output temperature exceeds the critical value of 663.15/K (390/◦C) in the first
11 iterations, but then finally at iteration 12 it stays below the critical value and subsequently
maximises the generated power under the additional constraint. Using the optimal value of the
pressure drop �P = 8.53, the different fluid variables are plotted again with respect to time and
space, see Figure 8. The results show a decrease in the minimum value of density and an increase
in both maximum values of the velocity and temperature, especially at the output.

https://doi.org/10.1017/S0956792522000274 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000274


610 H. Bakhti et al.

Table 3. Optimal pressure drops, thermal, pumping and net power outputs for the
different designs

Design �P (Pa) max Tout (K) J̃thermal (MW · h) J̃pump (W · h) J̃net (MW · h)

1 138 663.15 2.37 0.92 2.37
2 110.3 663.15 2.37 0.74 2.37
3 78.3 663.15 2.37 0.53 2.37
4 33.4 663.15 2.34 0.22 2.34
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FIGURE 10. Temperature variation through the collectors row for the different designs.

5.2 Complex design of collector rows

Usually collector rows are designed in a series form (Design 1). More complicated designs can be
studied with respect to possible better net power output. Thus, three different additional designs
are considered as shown in Figure 9. The first design (Design 2) consists of two parallel collector
pipes at the beginning of the row and the rest are connected in series, while the second design
(Design 3) consists of two parallel collector pipes at the beginning of the row and another two
parallel collector pipes in the middle of the row, while the other pipes are connected in series.
The third design (Design 4) consists of six pipes in parallel.

For the four designs, the same optimisation approach is used in order to obtain the optimal
pressure drop with a maximum net power output. As shown in Table 3, the value of the pressure
drop varies from one design to another with the minimum value observed for the D4 and the
maximum value observed for the classical one d1.

The concluding observation from the obtained results is that a more complex designs of the
power plant parabolic trough collectors can result in better output values under better conditions
(e.g. lower temperatures). Therefore, further research and studies can be conducted in terms of
network design and optimisation using simplified models similar to the one introduced in this
paper.
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In Figure 10, the fluid temperature variations for the different designs are presented. It is
observed that for the parallel pipes, the temperature increases more than for a single pipe, while
the output temperature is similar to design 1 with lower pressure drop.

6 Conclusions

We consider the presented model as a significant step towards accurate modeling of parabolic
trough power plants. The main physical phenomena are included. Nevertheless, the model is
simple enough to allow for fast and robust simulations and optimisation tasks. The model was
validated with data from existing parabolic trough power plants. The performed simulations show
very good agreement with the available measurements.

However, we know that this is only a starting point. It is well known that modelling and simu-
lation has become a significant tool for the design of complex technical systems. A parabolic
trough power plant is such a complex technical system and its design and operation is all
but trivial. In this context, mathematical models combined with fast and robust numerical and
optimisaton approaches are needed for the design of the network (structure, substructure, pipe
dimensions etc.), to evaluate non planar collector fields, to evaluate the losses and possible isola-
tion measures, for introducing alternative fluids (e.g. nanofluids), to identify optimal settings in
the operational phase etc.

Clearly the presented model is far from being overarching. It might be that phenomena which
are not yet identified to be relevant are not yet described. This model cannot capture certain
details due to its 1 dimensional character, i.e. details of the flow in a junction. It might be that at
some point the model is not precise enough in the description, i.e. the heat transfer mechanism
from the radiation into the fluid.

And there are mathematical and numerical challenges to be faced. So far there is no well-
posedness theory for the model. This not surprising since we have a system of nonlinear coupled
PDEs on a network. However, first steps have to be done. The numerical algorithm is kept as
simple as possible, there is room of improvement. Adaptive methods could help to accelerate in
particular in case of the optimisation task. Up to now the optimisation is done using standard
tools. This works here for rather simple examples, it might be that i.e. for a large multiparameter
optimisation examples we run into problems. Thus, more sophisticated approaches have to be
considered, i.e. a Lagrangian based method.

Nevertheless, we hope that our approach can become a valuable and reliable tool in designing
and operating parabolic trough power plants.
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A. Appendix

The reference values are associated with the real-world data of the considered power plant, in
our case the Ouarzazate Noor I [1]. Table A.1 shows the typical reference values that we use for
scaling and Table A.2 contains the Noor I model parameters.

Table A.1. Reference values used for the scaling

Ref. Unit Value Ref. Unit Value

xr m 12.27 q̇r W × m−1 103

ur m × s−1 0.1 ρr kg × m−3 1.05 × 103

pr Pa 3.3 × 106 Tr K 320
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Table A.2. Model parameters of a parabolic trough collector [1] and of
the thermo fluid [27]

Parameter Unit Value

Inner Diameter D̃i m 0.066
Outer Diameter D̃o m 0.07

Cross-Section Area Ã = π
(

D̃i
2

)2
m2 0.0034

Inner Circumference Ũi = πD̃i m 0.2073
Outer Circumference Ũo = πD̃o m 0.2199
Coefficient of Friction ξ – 0.015
Viscosity μ̃ m2 · s−1 1.29 × 10−7

Heat conductivity k̃ W · m−1 · K−1 0.13
Collector Width Wa m 5.76
Intercept Factor γ – 0.867
Absorbance of Glass Cover αg – 0.94
Specular Reflectance rm – 0.94
Incident Angle Modifier kθ – 1
Emittance of the Cover εrad – 0.15
Convective Heat Transfer Coefficient h̃w W · m−2 · K−1 40
Specific Heat Capacity c̃p ≈ c̃v m2 · s−2 · K−1 1.62 × 103

Stefan-Boltzmann Constant σ̃ W · m−2 · K−4 5.67 × 10−8

Interpolation Coefficient G̃ kg · m−3 1.364 × 103

Interpolation Coefficient B̃ s2 · m−2 −3.442 × 10−6

Interpolation Coefficient C̃ kg · m−3 · K−1 −0.9739
Interpolation Coefficient D̃ s2 · m−2 · K−1 1.5282 × 10−8

Table A.3. Linear interpolation of the thermal properties for Therminol VP-1 [27]

Property Relation

Density (kg· m3) ρ̃ = −0.96173 kg · m3 · K−1T̃ + 1359.2 kg · m3

Specific heat capacity (J/(kg· K)) c̃p = 2.7995 J/(kg · K2) T̃ + 724.65 J/(kg · K)
Thermal conductivity (W/(m· K)) k̃ = −0.0001616 W/(m · K2) T̃ + 0.18773 W/(m · K)
Dynamic viscosity (Pa· s) μ̃ = −1.616 × 10−07 Pa · s · K−1 T̃ + 0.00018773 Pa · s
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Table A.4. Dimensionless parameters of the model

Parameter Expression Parameter Expression

ε
ρru2

r

pr
η

xr

Dr

ξ

2

κ
xrq̇r

ρrc̃vurTrAr
δ

pr

c̃vρrTr

ς
T4

r Urεrad σ̃

q̇r
�

TrUrh̃w

q̇r

C −0.96173 Tr
ρr

G 1359.2 1
ρr
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