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A property of finite graphs is called non-deterministically testable if it has a ‘certificate’

such that once the certificate is specified, its correctness can be verified by random local

testing. In this paper we study certificates that consist of one or more unary and/or binary

relations on the nodes, in the case of dense graphs. Using the theory of graph limits, we

prove that non-deterministically testable properties are also deterministically testable.
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1. Introduction

Let P be a property of finite simple graphs (i.e., a class of finite simple graphs closed

under isomorphism). We say that P is testable if, for every ε > 0, there is an rε � 1 and

another property T (called a test property) satisfying the following conditions:

• if G is a graph with property P , then for all rε � r � |V (G)|, a random induced

subgraph on r nodes (chosen uniformly among all such induced subgraphs) has

property T with probability at least 2/3, and

• if G is a graph whose edit distance from P is at least ε|V (G)|2, then for all rε � r �
|V (G)|, a random induced subgraph on r nodes has property T with probability at

most 1/3.

(The edit distance of a graph from P is the minimum number of adjacencies one has to

change to obtain a graph in P .)

This notion of testability is often called oblivious testing, which refers to the fact that

no information about the size of G is assumed. It is easy to see that if P is a testable

property such that arbitrarily large graphs can have the property, then there must exist a

graph with property P with any sufficiently large number of nodes. The definition extends

trivially to graphs whose edges are oriented, and whose nodes and/or edges are coloured

with a fixed finite number k of colours.
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Testability of graph properties was introduced by Rubinfeld and Sudan [19] and

Goldreich, Goldwasser and Ron [13]. There are many graph properties that are known

to be testable [13, 2]; see, e.g., [9] for a survey and [12] for a collection of more recent

surveys. One surprisingly general sufficient condition was found by Alon and Shapira [1]:

every hereditary graph property is testable. (A graph property is called hereditary if it is

inherited by induced subgraphs.)

Various characterizations of testable properties are known [3, 17], but they are not

simple to state. The goal of this paper is to prove a characterization which is useful as a

sufficient condition in a number of cases.

A complete digraph is a directed graph in which any two distinct nodes are connected

by two oppositely directed edges. We call a complete digraph whose edges are coloured

with 1, . . . , k a k-coloured digraph for short. A property of k-coloured digraphs is any

class of k-coloured digraphs closed under isomorphism (where we allow permutation of

vertices but not permutation of colours). A property of simple graphs can be viewed as

the special case k = 2 (where the two colours indicate whether or not the edge is present,

independent of the orientation). The edit distance of two k-coloured digraphs on the same

node set is defined as the number of edges that have different colours in the two graphs.

Testability of a property P of k-coloured digraphs can be defined in the natural way. For

every error-bound ε, we need a test property T of k-coloured digraphs. We take a random

induced subgraph F of the given k-coloured digraph G, in which all the edge-colours

are inherited from G, and make a prediction of the property P of G based on the test

property T of F . The conditions on the error above can be extended to this case almost

verbatim.

Given a k-coloured digraph L and a positive integer m � k, we can get an ordinary graph

from L by keeping only the edges with colours 1, . . . , m, and then forgetting the colouring

and the orientation, and merging duplicate edges. We call this graph L′
m the m-shadow of

L. If Q is a property of coloured directed graphs, then we define Q′
m = {L′

m : L ∈ Q}.
A graph property P is non-deterministically testable if there exist two integers k � m � 1

and a property Q of k-coloured digraphs such that Q is testable and Q′
m = P . In other

words, G has property P if and only if we can orient its edges (in one or both directions),

colour them with m colours, add all the missing oriented edges, and colour them with a

further k − m colours, so that the resulting k-coloured digraph has property Q. We call

such an orientation and colouring a certificate for P .

Clearly every testable property is non-deterministically testable (choosing k = 2, m = 1).

Our main result asserts the converse.

Theorem 1.1. A graph property is non-deterministically testable if and only if it is testable.

One could say that this theorem shows that ‘P = NP’ for property testing in dense graphs.

The proof uses the theory of graph limits as developed in [6, 15], and its connection with

property testing [17].

We could consider more general certificates in the definition of non-deterministic

testability. Most of these would not change this notion. We could consider shadows of

(not necessarily simple) directed graphs whose nodes and edges are coloured. We can

https://doi.org/10.1017/S0963548313000205 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000205


Non-Deterministic Graph Property Testing 751

reduce this to the case when every pair of nodes is connected by two oppositely directed

edges: if some edges are missing, we can add them coloured with an additional colour;

if some edges have larger (but bounded) multiplicity, we can use colours to indicate this.

Furthermore, we may get rid of the node colours by colouring every edge e with the

pair (a, b), where a is the original colour of the edge and b is the colour of its tail.

Edge-colourings obtained in this way have a special property (each edge starting at a

node v should carry the same information about the colour of v). This consistency is a

testable property, and using this it is easy to see that any property that can be certified

by an edge- and node-colouring can also be certified by an edge-colouring.

We could allow loops in the k-coloured digraphs certifying a property. (When taking the

shadow, we delete the loops.) This is trivially equivalent to the node- and edge-coloured

case, where the colours of the loops are considered to be colours of the corresponding

nodes. (It is less obvious to see why we have to get rid of the loops instead of treating

them just like the other edges. The reason for this is technical: we are going to use graph

limit theory, and loops disappear in the limit.)

Alternatively, instead of a k-colouring we could specify k binary relations on V (G) as

a certificate (this would be more in the spirit of mathematical logic). The fact that in a

colouring they are disjoint and partition the set {(i, j) : i, j ∈ V (G), i �= j} can be easily

tested. Conversely, a set of k irreflexive relations defines a 2k-colouring. As long as we

are not concerned with efficiency, these two ways of looking at certificates are equivalent.

(Further, possibly stronger extensions will be discussed in the last section.)

We close this Introduction with an example. One of the first non-trivial results about

property testing concerned the maximum cut [4, 13]. Let us show how one version of this

can be derived using Theorem 1.1. Let 0 < c < 1/4, and let P be the property of a graph

G that its maximum cut contains at least c|V (G)|2 edges. We claim that this property is

testable.

A cut in a graph G can be encoded as a 2-colouring α of the nodes. We can encode this

as a 4-colouring of the edges of a complete digraph, in which we colour an edge
−→
ij with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if ij ∈ E(G) and α(i) = 1,

2 if ij ∈ E(G) and α(i) = 2,

3 if ij /∈ E(G) and α(i) = 1,

4 if ij /∈ E(G) and α(i) = 2.

The 2-shadow of this 4-coloured digraph is G.

Let Q be the following property of 4-coloured digraphs L:

• there are at least c|V (L)|2 edges
−→
ij coloured with 1 such that

−→
ji is coloured with 2,

and

• for any three distinct nodes i, j and k, either both or neither of
−→
ij ,

−→
ik have colour in

{1, 3}, and

• for any two distinct nodes i and j, either both or neither of
−→
ij and

−→
ji have colour in

{1, 2}.
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(The last two conditions guarantee the consistency of the encoding of the node-2-

colouring as an edge-4-colouring.) This property is trivially testable, and its 2-shadow is

P . So our theorem implies that P is testable.

2. Preliminaries

2.1. Convergence and limits

Convergence of a sequence of dense finite graphs was defined by Borgs, Chayes, Lovász,

Sós and Vesztergombi [5, 6]. Graphons were introduced by Lovász and Szegedy in [15]

as limits of convergent sequences of finite graphs. We have to extend these notions to

coloured digraphs; this was essentially done in [18], but we use here a somewhat different

(simpler) terminology.

For a graph G and integer r � |V (G)|, let us select an ordered r-tuple of nodes of G

randomly and uniformly (without repetition). Let G(r, G) denote the subgraph induced

by these nodes. If G is coloured and directed, then G(r, G) is also a coloured digraph in

the obvious way.

We say that a sequence of k-coloured digraphs Ln is convergent if |V (Gn)| → ∞, and

for every r � 1, the distribution of G(r, Ln) tends to a limit as n → ∞. Note that this

distribution is over a finite set, so it does not matter in which norm we want it to

converge.

The limit object of a convergent sequence of simple graphs can be described as a

symmetric measurable function W : [0, 1]2 → [0, 1], called a graphon. We will need the

more general notion of a kernel, a bounded symmetric measurable function W : [0, 1]2 →
R. Dropping the condition of symmetry, we get digraphons and dikernels.

For a sequence of k-coloured digraphs, the limit object is a bit more complicated:

it consists of k digraphons (W 1, . . . ,W k) such that
∑

h W
h = 1. We call the k-tuple

W = (W 1, . . . ,W k) a k-digraphon. We define a k-dikernel analogously.

Let L be a k-coloured digraph with V (L) = [n]. Let Sn denote the partition of [0, 1] into n

intervals S1, . . . , Sn of equal length. We associate with L a k-digraphon WL = (W 1
L, . . . ,W

k
L),

where

Wh
L(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x ∈ Si, y ∈ Sj (i �= j), and the colour of
−→
ij is h,

1/k if x, y ∈ Si,

0 otherwise,

where the case i = j is defined in this way only to make sure that
∑

h Wh
L = 1 (this will

play no subsequent role).

More generally, we can consider a fractionally k-coloured digraph H in which we have

k non-negative weights β1(i, j), . . . , βk(i, j) for every ordered pair (i, j) of nodes, with∑
h β

h(i, j) = 1. It will be convenient to allow i = j, i.e., loops with weights, but these will

play a minor role in the proofs only. We consider every k-coloured digraph as a special

case, where βh is the indicator function of edge colour h, and βh(i, i) = 1/k for all h ∈ [k]

and i ∈ V (H). For a fractionally k-coloured digraph H , we define the k-digraphon WH in

the obvious way.
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We can sample a k-coloured digraph G(r,W) on node set [r] from a k-digraphon W

as follows. We choose r independent random points X1, . . . , Xr ∈ [0, 1] uniformly, and we

colour a pair (i, j) (i �= j) with colour h with probability Wh(Xi,Xj) (independently for

different pairs of nodes).

The following fact is proved in [18].

Proposition 2.1. Let Ln be a convergent sequence of k-coloured digraphs. Then there is a

k-digraphon W such that G(r, Ln) → G(r,W) in distribution.

We write Ln → W if this holds.

Let W be a dikernel, and let J = {S1, . . . , Sm} be a partition of [0, 1] into measurable

sets with positive measure. We denote by WJ the dikernel obtained by averaging W in

every rectangle Si × Sj . More precisely, for x ∈ Si and y ∈ Sj we define

WJ (x, y) =
1

λ(Si)λ(Sj)

∫
Si×Sj

W (u, z) du dz

(where λ is the Lebesgue measure).

We quote a well-known fact (see, e.g., [20, (6.3) Theorem, p. 118]).

Proposition 2.2. For every dikernel W , we have WSn → W (n → ∞) almost everywhere.

2.2. Many distances

2.2.1. Cut norm and cut distance.. Convergence to a k-digraphon can be described in

more explicit forms. Let us start by recalling the cut-norm-distance of two graphs G and

G′ on the same node set V (introduced by Frieze and Kannan [11]),

d�(G,G′) = max
S,T⊆V

|eG(S, T ) − eG′ (S, T )|
|V |2 ,

where eG(S, T ) denotes the number of edges with one endpoint in S and the other in T .

A related notion for dikernels is the cut norm

‖W‖� = sup
S,T⊆[0,1]

∣∣∣∣
∫
S×T

W (x, y) dx dy

∣∣∣∣.
The cut norm defines a distance function between two dikernels in the usual way by

d�(U,W ) = ‖U −W‖�.

The cut norm has many nice properties (see [6]), for which we need the following result

[17, Lemma 2.2].

Proposition 2.3. Let Wn (n = 1, 2, . . . ) be a sequence of uniformly bounded dikernels such

that ‖Wn‖� → 0. Then, for every integrable function Z : [0, 1]2 → R, we have ‖WnZ‖� →
0.

Proof. If Z is the indicator function of a rectangle, the conclusion follows from the

definition of the ‖.‖� norm. Hence the conclusion follows for step-functions, since they

are linear combinations of a finite number of indicator functions of rectangles. Then it
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follows for all integrable functions, since they are approximable in L1([0, 1]2) by step-

functions.

From the point of view of graph limits, however, a kernel is only relevant up to a

measure-preserving transformation of [0, 1]. Hence it is often more natural to consider

the following distance notion, which we call the cut distance:

δ�(U,W ) = inf
φ,ψ

‖Uφ −Wψ‖�,

where φ,ψ : [0, 1] → [0, 1] are measure-preserving maps, and Uφ(x, y) = U(φ(x), φ(y)).

This defines a pseudometric on the set of kernels (it is only a pseudometric, since different

kernels may have distance 0). An important fact is that endowing the space of all graphons

with this pseudometric makes it compact [16].

For two graphs G and G′ (not necessarily with the same number of nodes) we define

δ�(G,G′) = δ�(WG,WG′ ).

(There is a finite description of this quantity in terms of the value of a nonlinear min-max

program [6, 14], but it is quite complicated, and for us this less explicit definition will be

sufficient.) It is easy to see that if V (G) = V (G′), then

δ�(G,G′) � d�(G,G′).

These distance notions can be extended to coloured graphs and kernels. For two

fractionally k-coloured digraphs H and H ′ on the same node set V , with edgeweights

βhH (i, j) and βhH ′ (i, j) (h = 1, . . . , k), let

d�(H,H ′) =
1

|V |2
k∑
h=1

max
S,T⊆V

∣∣∣∣
∑

i∈S,j∈T
(βhH (i, j) − βhH ′ (i, j))

∣∣∣∣.
(We could interchange the summation and the maximization at the cost of decreasing d�
by an irrelevant bounded factor. The definition above will be more convenient for us.)

We generalize the cut-norm-distance to two k-digraphons U = (U1, . . . , Uk) and W =

(W 1, . . . ,W k):

d�(U,W) =

k∑
h=1

‖Uh −Wh‖�. (2.1)

As above, we need the ‘unlabelled’ cut distance

δ�(U,W) = inf
φ,ψ

d�(Uφ,Wψ), (2.2)

where Uφ is obtained from U by applying φ to each of the 2k variables of the k functions

constituting U.

For two fractionally k-coloured digraphs H and H ′ (not necessarily with the same

number of nodes), we define

δ�(H,H ′) = δ�(WH,WH ′ ).

The following result is proved (in a more general form) in [18].
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Proposition 2.4. Let Ln be a sequence of k-coloured digraphs, and let W be a k-digraphon.

Then Ln → W if and only if δ�(WLn ,W) → 0.

We cannot claim convergence in the d� distance, since WLn depends on the labelling

of the nodes of Ln, while the convergence Ln → W does not. However, at least in the case

of simple graphs, the following stronger version is true [6, Theorem 4.16].

Proposition 2.5. Let Gn be a sequence of graphs, and let U be a graphon such that Gn → U.

Then the graphs Gn can be labelled so that ‖WGn −U‖� → 0.

Edit distance. From the point of view of property testing, the ‘edit distance’ is very

important (in fact, from the point of view of analysis, property testing is about the

interplay between the edit distance and the cut distance). For two graphs G and G′ on the

same set of nodes V = V (G) = V (G′), their edit distance is defined by

d1(G,G
′) =

|E(G)
E(G′)|
|V |2 .

We generalize this for two k-coloured digraphs L and L′ on the same node set:

d1(L,L
′) =

D2

|V |2 ,

where D2 is the number of edges coloured differently, in L and L′.

For two kernels, their edit distance is just their L1-distance as functions. For two

k-digraphons, their edit distance is defined by a formula very similar to (2.1):

d1(U,W) =

k∑
h=1

‖Uh −Wh‖1.

Similarly to (2.2), we could define the unlabelled version of the edit distance, but we do

not need it in this paper.

The following (easy) characterization of testability of graph properties was formulated

in Theorem 3.21 of [17]. For a graph property P , we write d1(G,P) = min{d1(G, F) : F ∈
P , V (F) = V (G)}, and similarly for the d� distance. Analogously, we define δ�(G,P) =

inf{δ�(G, F) : F ∈ P} (since the δ� distance is defined between any two graphs, we may

have an infinite number of graphs F to consider here).

Proposition 2.6. A graph property P is testable if and only if, for any two sequences

(Gn) and (Hn) of graphs with |V (Gn)|, |V (Hn)| → ∞, Hn ∈ P , and δ�(Gn,Hn) → 0, we have

d1(Gn,P) → 0.

We note that the condition says that Gn is close to some graph in P (not necessarily

with the same number of nodes, but with size tending to infinity) in the δ� distance, while

the conclusion is that it must be close to a graph in P on the same node set in the edit

distance.

The following extension of this fact to coloured digraphs can be proved along the same

lines, and we state it without proof.
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Proposition 2.7. A property Q of k-coloured digraphs is testable if and only if for any

two sequences (Ln) and (Jn) of k-coloured digraphs with |V (Ln)|, |V (Jn)| → ∞, Jn ∈ Q, and

δ�(Ln, Jn) → 0, we have d1(Ln,Q) → 0.

3. Main proof

We start with a randomized construction to obtain a k-coloured digraph from a

fractionally k-coloured digraph H: we colour directed edge
−→
ij (i �= j) with colour h

with probability βh(i, j). (The weights of the loops play no role here.) For different pairs

i, j we make an independent decision. We denote this random k-coloured digraph by

L(H).

Lemma 3.1. Let H be a fractionally k-coloured digraph on n nodes. Then

d�(H,L(H)) � 10k√
n

with probability at least 1 − ke−n.

Proof. For two colours, this is just Lemma 4.3 in [6]. For general k, it follows by applying

this fact to each colour separately.

The main step in the proof of Theorem 1.1 is the following lemma.

Lemma 3.2. Let W = (W 1, . . . ,W k) be a k-digraphon, and suppose that U =
∑m

h=1W
h is

symmetric (where 1 � m � k). Let Fn be a sequence of simple graphs such that Fn → U.

Then there exist k-coloured digraphs Jn on V (Fn) such that the m-shadow J ′
n of Jn is Fn,

and Jn → W.

Proof. First, we construct a fractionally k-coloured digraph Hn on V (Fn). To keep the

notation simple, assume that V (Fn) = [n]. By Proposition 2.5, we can choose the labelling

of the nodes of each Fn so that ‖WFn −U‖� → 0.

For every pair i, j ∈ [n], we define

βh(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(An)ij
Wh

Sn (x, y)

USn(x, y)
if 1 � h � m,

(1 − (An)ij)
Wh

Sn (x, y)

1 −USn (x, y)
if m+ 1 � h � k,

where An denotes the adjacency matrix of Gn and x ∈ Si and y ∈ Sj (these numbers

are independent of the choice of x and y). Note that if USn(x, y) = 0, then necessarily

Wh
Sn (x, y) = 0 for all 1 � h � m, and we can define Wh

Sn (x, y)/USn (x, y) to mean 1/m.

Similarly, if USn(x, y) = 1, then Wh
Sn (x, y) = 0 for all m+ 1 � h � k, and we can define

Wh
Sn (x, y)/USn (x, y) to mean 1/(k − m).
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It is easy to check that
∑

h β
h(i, j) = 1 for all i and j. We claim that for the fractionally

k-coloured digraph Hn constructed this way, we have

d�(WHn ,W) → 0 (n → ∞). (3.1)

Here we have

d�(WHn ,W) =

k∑
h=1

‖Wh
Hn

−Wh‖�,

and so it suffices to prove that ‖Wh
Hn

−Wh‖� → 0 for every fixed h. We describe the proof

for h � m; the other case is analogous. Since 0 � Wh � U, we can write Wh = UZ , where

0 � Z � 1, and Z = 0 if U = 0. Then we have

‖Wh
Hn

−Wh‖� = sup
S,T⊆[0,1]

∣∣∣∣
∫
S×T

Wh
Hn

−Wh

∣∣∣∣.
Substituting from the definition,

∫
S×T

(Wh
Hn

−Wh) =

∫
S×T

(
WFn (x, y)

Wh
Sn (x, y)

USn (x, y)
−Wh(x, y)

)
dx dy.

We split this integral as follows:∫
S×T
U=0

WFn

(UZ)Sn
USn

+

∫
S×T
U �=0

WFn

(
(UZ)Sn
USn

− Z

)
+

∫
S×T

(WFn −U)Z. (3.2)

The first term, which is non-negative, can be estimated as follows:∫
S×T
U=0

WFn

(UZ)Sn
USn

�
∫
S×T

WFn1U=0 =

∫
S×T

(WFn −U)1U=0 � ‖(WFn −U)1U=0‖�.

Here the right-hand side tends to 0 by Proposition 2.3. The second term can be estimated

as follows. By Proposition 2.2, we have (UZ)Sn → UZ and USn → U almost everywhere.

Hence (UZ)Sn/USn → Z in almost every point where U �= 0. Since the integrand is

bounded, this implies that∣∣∣∣
∫
S×T
U �=0

WFn

(
(UZ)Sn
USn

− Z

)∣∣∣∣ �
∫
U �=0

WFn

∣∣∣∣ (UZ)Sn
USn

− Z

∣∣∣∣ → 0.

Finally, for the third term in (3.2) we have∣∣∣∣
∫
S×T

(WFn −U)Z

∣∣∣∣ � ‖(WFn −U)Z‖�,

and here the right-hand side tends to 0, again by Proposition 2.3. This proves (3.1).

To complete the proof of the lemma, we consider the k-coloured digraphs Jn = L(Hn).

By Lemma 3.1, we have

d�(Jn, Hn) � 10k√
n

(3.3)

with probability at least 1 − ke−n. Since
∑

n e
−n is convergent, the Borel–Cantelli lemma

implies that almost surely (3.3) holds for all but a finite number of indices n. Choosing the
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Jn so that this occurs, we have d�(Jn, Hn) = d�(WJn ,WHn ) → 0, and hence d�(WJn ,W) →
0.

Proof of Theorem 1.1. Let P be a non-deterministically testable property; we show that

it is testable. By Proposition 2.6 it suffices to prove that if (Fn) and (Gn) are two sequences

of graphs such that |Fn|, |Gn| → ∞, Gn ∈ P , and δ�(Fn, Gn) → 0, then d1(Fn,P) → 0.

Since P is non-deterministically testable, there are integers 1 � m � k and a testable

property Q of k-coloured digraphs such that P = Q′
m. (We consider k and m fixed, and will

suppress the subscript m hereafter.) Since Gn ∈ P , there are k-coloured digraphs Ln ∈ Q
such that Gn = L′

n.

We may assume that the union of colours 1, . . . , m contains every edge of Gn in

both directions; otherwise, we refine the colouring so that no edge in G and in its

complement gets the same colour in any direction (this doubles the number of colours at

most). By selecting a subsequence, we may assume that the sequence (Ln) is convergent.

By Lemma 2.1, there exists a k-digraphon W = (W 1, . . . ,W k) representing its limit. Let

U =
∑m

h=1W
h; then Gn → U. From δ�(Gn, Fn) → 0 we see that Fn → U.

Now we invoke Lemma 3.2, and construct k-coloured digraphs Jn such that J ′
n = Fn

and Jn → W. Hence d�(Jn,Q) → 0. Since Q is testable, this implies by Proposition 2.7 that

d1(Jn,Q) → 0, and so we can change the colour of o(n2) edges in Jn so that the resulting

k-coloured digraph Mn belongs to Q. But then M ′
n ∈ P , and M ′

n differs from Fn in o(n2)

edges only, so d1(Fn,P) � d1(Fn,M
′
n) → 0.

4. Applications

There are many graph properties that can be certified by a node-colouring: k-colourable

graphs, split graphs, etc. Many of these properties are hereditary, and so their testability

follows also by the Alon–Shapira theorem mentioned in the Introduction. Here we

formulate some consequences for non-hereditary graph properties.

We have shown in the Introduction how to derive from our theorem that the property

of a graph G that it has a cut with at least c|V (G)|2 edges is testable. Similar arguments

can be applied to the maximum bisection problem. Goldreich, Goldwasser and Ron [13,

Theorem 9.1] prove the testability of more general properties, namely the existence of

multiway cuts with upper and lower bounds on the sizes of partition classes as well

as on edge densities between parts. The existence of such a cut can be certified by a

node-colouring, and so this property is trivially non-deterministically testable. So their

general result (without explicit bounds on the sample size) follows from Theorem 1.1.

Alon, Fischer, Krivelevich and Szegedy [2] prove that a graph property is testable,

provided that it is expressible in the form ∃x1 . . . ∃xa∀y1 . . . ∀ybΦ(x1, . . . , xa, y1, . . . , yb), where

the xi and yj are variables ranging over nodes, and Φ is a (quantifier-free) Boolean

expression involving equality and adjacency of the variables xi and yj . They also give

an example showing that graph properties defined by more general first-order sentences

(with more quantifier alternations) are not necessarily testable.

Combining our result with their method, we get a more general testability condition in

terms of logical formulas.
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Corollary 4.1. Let P be a graph property expressible by a second-order formula of the

form Ψ = ∃S1 . . . ∃Sc∃x1 . . . ∃xa∀y1 . . . ∀ybΦ(S1, . . . , Sc, x1, . . . , xa, y1, . . . , yb), where the Si are

variables ranging over unary or binary relations, xi and yj are variables ranging over

nodes, and Φ is a (quantifier-free) Boolean expression involving equality, adjacency, and

the relations Si of the variables xi and yj . Then P is testable.

Sketch of proof. For every graph G satisfying the given formula Ψ, we construct a

complete digraph L on V (G) with nodes and edges coloured, so that G is a shadow of L.

The relations S1, . . . , Sc can be encoded into edge- and node-colourings of the complete

digraph on V (G), as described at the end of the Introduction. Using the main trick

from the proof of Alon, Fischer, Krivelevich and Szegedy, we encode the (existentially

quantified) nodes x1, . . . , xa into a node-colouring: the colour of a node expresses which

of the nodes xi it is equal to or connected to, along with the full description of adjacency,

equality, and the relations Sj , between the nodes xi. In this way we obtain the node- and

edge-coloured complete digraph L. The validity of Φ (for this choice of S1, . . . , Sc, x1, . . . , xa)

is equivalent to forbidding a finite number of coloured induced subgraphs in L. Let Q be

the property of node- and edge-coloured complete digraphs that they do not have any

of these forbidden subgraphs. This property is testable (this follows, for example, from a

rather straightforward generalization of Theorem 6.1 in [2] to edge-coloured graphs). The

property defined by Ψ is a shadow of Q, and hence it is testable as well.

In [17], the upward closure of a graph property P was defined as the graph property

P↑ consisting of those graphs that have a spanning subgraph in P .

Corollary 4.2. The upward closure of a testable graph property is testable.

Proof. Obtaining a spanning subgraph in P can be formulated as a 3-edge-colouring of

the complete graph, in which colour 1 forms a graph in P , and G is the 2-shadow of this

3-edge-coloured graph. If P is testable, then the property of 3-edge-coloured graphs that

edges with colour 1 form a graph with property P is testable, and so the upward closure

of P is testable.

Fischer and Newman [10] proved that the edit distance to a testable graph property is

a testable parameter. This is equivalent to the following corollary of our theorem.

Corollary 4.3. If P is a testable property, then the property that d1(G,P) � c is also testable

for every c � 0.

Proof. Being closer than c to P can be formulated as follows: the complete graph on

V (G) has a 4-edge-colouring such that edges with colours 1 and 2 form the graph G,

edges with colours 1 and 3 form a graph with property P , and edges with colours 2 and

3 are fewer than c|V (G)|2. If P is testable, then this property of 4-coloured graphs is

testable, and hence the property that d1(G,P) � c is non-deterministically testable, and so

by Theorem 1.1, it is testable.
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5. Parameter estimation

Let f be a bounded graph parameter (i.e., a function defined on simple graphs, invariant

under isomorphism). We say that f is estimable if, for every ε, δ > 0, there is a positive

integer k such that if G is a graph with at least k nodes and we select a random k-set

X ⊆ V (G), then

P(|f(G) − f(G[X])| > ε) < δ. (5.1)

We define an estimable parameter of edge-coloured digraphs similarly. If g is such a

parameter, then we can define

g′(G) = max{g(L) : L′ = G}.

An argument very similar to the proof of Theorem 1.1 above gives the following

theorem.

Theorem 5.1. If g is an estimable parameter of k-coloured digraphs, then g′ is estimable as

well.

We could of course replace the maximum in the definition of g′ by minimum.

As an example, let us consider graphs L whose nodes are 2-coloured red and blue, and

let g(L) denote the number of 2-coloured edges, divided by |V (G)|2. Then g is trivially

estimable. The simple graph parameter g′ is the maximum cut (normalized), so this is

estimable.

6. Concluding remarks

There are several possible analogues and extensions of our results. One could consider

certificates in the form of t-ary relations for any t. One could then allow hypergraphs

instead of the original graphs. A limit theory for hypergraphs is available (Elek and

Szegedy [8]), and we expect our main result to generalize to hypergraphs; however,

several of the auxiliary results we have used have not been extended, and a full proof will

take further research.

A generalization in a different direction would be to consider, instead of colouring,

node and edge decorations from a compact topological space. For example, the property

of being a threshold graph can be certified by a decoration of the nodes by numbers

from [0, 1]. The limit theory for graphs has been extended to compact decorations [18];

perhaps our main result would extend too, but this would take further research.

We should point out that our results are non-effective, in that they do not provide

any explicit bound on how large a sample size must be chosen for a given error bound.

In this sense, what we have given is a pure existence proof of an algorithm. From a

practical point of view, this does not make much difference from related results based on

the Regularity Lemma, but from a theoretical point of view, it would be interesting to

determine whether Theorem 1.1 can be proved with an effective bound.

Finally, let us mention that the situation is quite different in the case of graphs with

bounded degree (for which a limit theory analogous to the dense case is available, and
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property testing has been extensively studied). Here the sampling method is to select r

random nodes (uniformly), and explore their neighbourhoods of depth r. The property of

a graph G that ‘G is the disjoint union of two graphs on at least |V (G)|/3 nodes’ can be

certified by colouring the nodes in these two graphs with different colours, so this property

is non-deterministically testable. On the other hand, sampling will not distinguish between

an expander graph and the disjoint union of two copies of it, so this property is not

testable.
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