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Abstract. We show that the Fourier expansion in spherical h-harmonics (from
Dunkl’s theory) of a function f on the sphere converges uniformly to f if this function
is sufficiently differentiable.
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1. Introduction. The theory of Dunkl’s operators has found in recent years
numerous applications in mathematics and mathematical physics (see the references
in [4] and [6]). One of its starting points was the study of generalized spherical
harmonics associated to a finitely generated reflection group and a multiplicative
function h ≥ 0. Among the many results for classical spherical harmonics carried over
to these spherical h-harmonics is the following ([7, Theorem 3.1], [6, Theorem 5.5]): the
Fourier expansion (in spherical h-harmonics) of any continuous function f on SN−1 is
uniformly summable in Cesàro means of order δ to f on SN−1 as long as δ > deg h +
(N − 2)/2. Similar results about the Fourier expansion of f ∈ Lp(SN−1) have also been
obtained.

Quite surprisingly, it seems that such questions for f differentiable on SN−1 have
been neglected until now. The aim of this work is to make a step in this direction. More
precisely, we show in Section 4 that the Fourier expansion of f ∈ C2q(SN−1) converges
to f uniformly on SN−1 as long as q > deg h/2 + N/4.

For that we follow the approach of [5] in the classical case, which induces us to
define in Section 3 an h-analogue of the Laplace-Beltrami operator on the sphere. In
Section 2 we recall the basic facts in the theory of h-harmonics.

2. Preliminaries. For a vector v in RN \ {0} (N ≥ 2) we define the reflection
σv ∈ O(N) by

xσv := x − 2〈x, v〉v/‖v‖2

for all x ∈ RN , where 〈x, v〉 is the Euclidean scalar product of x and v, and ‖v‖ :=
〈v, v〉1/2. Thus vσv = −v and xσv = x if and only if x is perpendicular to v.

Suppose now G is a finite subgroup of O(N) generated by reflections. Let
{σ1, . . . , σm} be all reflections in G. We choose vectors v1, . . . , vm in RN such that
σj = σvj for j = 1, . . . , m and ‖vi‖ = ‖vj‖ whenever σi is conjugate to σj in G. Next we
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take α1, . . . , αm ∈ R≥0 with αi = αj whenever σi is conjugate to σj in G and let

h(x) = hα(x) :=
m∏

j=1

|〈x, vj〉|αj ;

this is a G-invariant function, homogeneous of degree |α| := α1 + · · · + αm.
We write SN−1 the unit sphere in RN and dσN−1 the measure on SN−1 induced by

the Lebesgue measure on RN , so that ωN−1 := ∫
SN−1 dσN−1(η) = 2πN/2/�(N/2). We

define a G-invariant measure on SN−1 by

dσh(η) := Hαh2
α(η) dσN−1(η),

with the constant Hα so chosen that dσh is normalized. We write

〈 f, g〉2 :=
∫

SN−1
f (η)g(η) dσh(η),

the usual scalar product in L2(SN−1, dσh) and ‖ f ‖2 the associated norm.
For i = 1, . . . , N we write Di for Dunkl’s operator defined by

Di f (x) := ∂i f (x) +
m∑

j=1

αj
f (x) − f (xσj)

〈x, vj〉 〈vj, ei〉,

where ∂i := ∂/∂xi and (ei)l = δil. Dunkl’s operators form a family of commuting first
order difference-differential operators which play here a role similar to ∂1, . . . , ∂N . In
particular the h-Laplacian is

	h :=
N∑

i=1

D2
i .

LetPl denote the space of homogeneous polynomials of degree l ∈ N0 on RN . Then
DiPl ⊂ Pl−1 and 	hPl ⊂ Pl−2. Moreover, if P ∈ Pl, 〈P, Q〉2 = 0 for all Q ∈ ∪l−1

k=0Pk if
and only if 	hP = 0. The elements of Hl := {P ∈ Pl : 	hP = 0} are called h-harmonic
polynomials of degree l. We have

dl = d(N)
l := dimHl =

(
l + N − 1

l

)
−

(
l + N − 3

l − 2

)
.

When |α| = 0 (that is, h ≡ 1), we get classical spaces and operators; in particular
Di = ∂i and 	h is the usual Laplacian 	.

Concerning all of the above we refer the reader to [4].

3. The h-Laplace-Beltrami operator. If f is a function on SN−1, we write f↑ for
the homogeneous function of degree 0 defined on RN \ {0} by ( f↑)(x) := f (x/‖x‖).
Conversely, if g is a function defined on RN \ {0} we write g↓ for its restriction to SN−1.
We say that a function f on SN−1 is in Cq(SN−1) (q ∈ N0) if f↑∈ Cq(RN \ {0}). When
f ∈ Cq(SN−1) with q ≥ 2 we can define S	h f ∈ Cq−2(SN−1) by

S	h f := (	h( f↑))↓ .

We call S	h the h-Laplace-Beltrami operator on SN−1; it commutes with the action
of G. We write SHl(SN−1) := {P↓: P ∈ Hl} (l ∈ N0); its elements are called spherical
h-harmonics of degree l and its dimension is d(N)

l .
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LEMMA 1. If λ > 0 and f ∈ C2(RN \ {0}) is homogeneous of degree φ, then

	h(‖ · ‖−λf ) = −λ(2φ + 2|α| + N − λ − 2)‖ · ‖−λ−2f + ‖ · ‖−λ	h f.

Proof. This is proved in [4, Lemma 5.1.9 p. 178] with the unnecessary restriction
that f be a polynomial.

PROPOSITION 1. Let l ∈ N0. For every Y ∈ SHl(SN−1),

S	hY = −l(l + 2|α| + N − 2)Y.

Proof. By hypothesis, there exists P ∈ Hl with Y = P↓. Since P is homogeneous
of degree l, Y↑(x) = Y (x/‖x‖) = P(x/‖x‖) = ‖x‖−lP(x). Therefore

	h(Y↑) = 	h(‖ · ‖−lP)

= −l(2l + 2|α| + N − l − 2)‖ · ‖−l−2P + ‖ · ‖−l	hP

= −l(l + 2|α| + N − 2)‖ · ‖−l−2P,

using Lemma 1 for the second equality and 	hP = 0 for the third. Hence

S	hY = [	h(Y↑)]↓
= [−l(l + 2|α| + N − 2)‖ · ‖−l−2P]↓
= −l(l + 2|α| + N − 2) · 1 · Y.

PROPOSITION 2. The h-Laplace-Beltrami operator is self-adjoint; in other words, for
all f , g ∈ C2(SN−1),

〈S	h f, g〉2 = 〈 f, S	hg〉2.

Proof. According to [2, p. 35] we have 	h = Lh − Dh, where

Dhψ(x) :=
m∑

j=1

αj
ψ(x) − ψ(xσj)

〈x, vj〉2
‖vj‖2.

and

Lhψ := (	(ψh) − ψ	h)/h

Let us define SLh on C2(SN−1) by SLh f := (Lh( f↑))↓. We will show that SLh is self-
adjoint. We take f , g ∈ C2(SN−1) and apply Green’s formula to F := f↑, G := g↑ and

 := B(0, r) \ B(0, 1/2) (where r > 1/2):

∫



[(LhF)G − F(LhG)](x) Hα h2(x) dx

=
∫




[{(	(Fh) − F	h)/h}G − F{(	(Gh) − G	h)/h}](x) Hα h2(x) dx

=
∫




[(	(Fh) · (Gh) − (Fh) · 	(Gh)](x)Hα dx

=
∫

∂


[(∂ν(Fh) · (Gh) − (Fh) · ∂ν(Gh)](y) Hα dσN−1(y) =: I
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Here Fh and Gh are homogeneous (of degree |α|). Now, if ψ is homogeneous and ν is
the outer normal vector to ∂B(0, ρ), then

∂νψ(y) = 〈grad ψ(y), ν(y)〉 = 〈grad ψ(y), y/‖y‖〉 = ‖y‖−1 deg ψ · ψ(y)

by Euler’s formula. Therefore the integral I is equal to

∫
∂B(0,r)

[r−1|α|(Fh)(Gh) − (Fh)r−1|α|(Gh)](y) Hα dσN−1(y)

−
∫

∂B(0,1/2)
[ 2|α|(Fh)(Gh) − (Fh)2|α|(Gh)](y) Hα dσN−1(y)

= 0 − 0 = 0.

We have thus proved that

∫ r

1/2

∫
SN−1

[(LhF)G − F(LhG)](ρy) Hα h2(ρy) dσN−1(y) ρN−1dρ = 0

for all r > 1/2. Let us differentiate this equality with respect to r and then evaluate at
r = 1; we get

∫
SN−1

[(LhF)G − F(LhG)](y) Hα h2(y) dσN−1(y) = 0,

that is,
∫

SN−1
[SLh f · g − f · SLhg ](y) dσh(y) = 0.

Next, if we define SDh on C2(SN−1) by SDh f := (Dh( f↑))↓, then it is self-adjoint by [2,
Proposition 1.2]. To conclude, we note that S	h = SLh − SDh.

4. Fourier expansions. Given η ∈ SN−1, the mapping � : SHl(SN−1) → C defined
by �(Y ) := Y (η) is a linear form on the finite dimensional hermitian space SHl(SN−1)
with the scalar product 〈 , 〉2. Hence there exists Pl(·, η) ∈ SHl(SN−1) such that Y (η) =
�(Y ) = 〈Y, Pl(·, η)〉2 for all Y ∈ SHl(SN−1); Pl is called the reproducing kernel of
SHl(SN−1).

If f ∈ L2(SN−1, dσh) and l ∈ N0, we write �l( f ) for the orthogonal projection of
f on SHl(SN−1); we call the series

+∞∑
l=0

�l( f )

the Fourier expansion of f (in spherical h-harmonics). For any orthonormal basis
(El

1, . . . , El
dl

) of SHl(SN−1),

�l( f ) =
dl∑

j=1

〈
f, El

j

〉
2 El

j .
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Moreover

Pl(·, η) =
dl∑

j=1

〈
Pl(·, η), El

j

〉
2 El

j =
dl∑

j=1

〈
El

j , Pl(·, η)
〉
2 El

j =
dl∑

j=1

El
j (η) El

j

and

�l( f )(η) = 〈�l( f ), Pl(·, η)〉2 = 〈 f, Pl(·, η)〉2.

PROPOSITION 3. The Fourier expansion of any f ∈ L2(SN−1, dσh) converges to f in
L2(SN−1, dσh).

Proof. It suffices to show that ⊕+∞
l=0 SHl(SN−1) is dense in L2(SN−1, dσh). But,

according to [2, Theorem 1.7], for every g ∈ Pn we can write

g(x) =
�n/2�∑
j=0

‖x‖2jgn−2j(x)

with gn−2j ∈ Hn−2j; hence ⊕n
j=0SHj(SN−1) ⊃ {P↓: P ∈ Pl, 0 ≤ l ≤ n}. Since {P↓: P ∈

Pl, l ∈ N0} is dense in L2(SN−1, dσh), the proof is complete.

PROPOSITION 4. For every f ∈ C2(SN−1) and l ∈ N0,

�l(S	h f ) = −l(l + 2|α| + N − 2) �l( f ).

Proof. If η ∈ SN−1 we get, by Propositions 1 and 2,

�l(S	h f )(η) = 〈S	h f, Pl(·, η)〉2

= 〈 f, S	hPl(·, η)〉2

= 〈 f,−l(l + 2|α| + N − 2)Pl(·, η)〉2

= −l(l + 2|α| + N − 2) 〈f, Pl(·, η)〉2

= −l(l + 2|α| + N − 2) �l( f )(η).

LEMMA 2. For all l ∈ N0 and ζ , η ∈ SN−1, |Pl(ζ, η)| ≤ d(2|α|+N)
l .

Proof. According to [7, Theorem 3.2],

Pl(ζ, η) = l + |α| + (N − 2)/2
|α| + (N − 2)/2

V
[
C(|α|+(N−2)/2)

l (〈·, η〉)](ζ ),

where C(λ)
l denotes the Gegenbauer polynomial defined by

1 − r2

(1 − 2tr + r2)λ+1
=

+∞∑
k=0

k + λ

λ
C(λ)

k (t) rk

and V is the intertwining operator defined uniquely as being linear with VPn ⊂ Pn,
V1 = 1 and Di ◦ V = V ◦ ∂i (see [3]). But V is positive [6, Theorem 1.2], which implies
that ∣∣V[

C(|α|+(N−2)/2)
l (〈·, η〉)](ζ )

∣∣ ≤ sup
‖y‖≤1

C(|α|+(N−2)/2)
l (〈y, η〉)

≤ C(|α|+(N−2)/2)
l (1),

since |C(λ)
l (t)| ≤ C(λ)

l (1) for all |t| ≤ 1.
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Now, if |α| = 0 we are in the classical case, where

l + (N − 2)/2
(N − 2)/2

C((N−2)/2)
l (1) = Pl(η, η)

[8, p. 187] and Pl(η, η) = d(N)
l [1, Proposition 5.27]. This completes the proof.

LEMMA 3. Let f ∈ L2(SN−1, dσh) and l ∈ N0. For all η ∈ SN−1 we have

|�l( f )(η)| ≤
√

d(2|α|+N)
l · ‖ f ‖2.

Proof. Let (El
1, . . . , El

dl
) be an orthonormal basis of SHl(SN−1). Then

|�l( f )(η)| =
∣∣∣∣∣

dl∑
j=1

〈
f, El

j

〉
2 El

j (η)

∣∣∣∣∣
≤

dl∑
j=1

∣∣〈 f, El
j

〉
2

∣∣ · ∣∣El
j (η)

∣∣

≤

 dl∑

j=1

∣∣〈 f, El
j

〉
2

∣∣2




1/2

·

 dl∑

j=1

∣∣El
j (η)

∣∣2




1/2

by the Cauchy-Schwarz inequality. Moreover,

dl∑
j=1

∣∣〈 f, El
j

〉
2

∣∣2 ≤ ‖ f ‖2
2

by Bessel’s inequality and

dl∑
j=1

∣∣El
j (η)

∣∣2 =
dl∑

j=1

El
j (η) El

j (η) = Pl(η, η) ≤ d(2|α|+N)
l

by Lemma 2.

LEMMA 4. Let q ∈ N0. There exists a constant Cq > 0 depending only on q, h and N
such that, for all l ∈ N0, f ∈ C2q(SN−1) and η ∈ SN−1,

|�l( f )(η)| ≤ Cq
∥∥S	

q
h f

∥∥
2 · l|α|+N/2−2q−1.

Proof. On the one hand, the preceding lemma implies that

∣∣�l
(

S	
q
h f

)
(η)

∣∣ ≤
√

d(2|α|+N)
l · ∥∥S	

q
h f

∥∥
2.

On the other hand, Proposition 4 implies that

∣∣�l
(

S	
q
h f

)
(η)

∣∣ = lq(l + 2|α| + N − 2)q · |�l( f )(η)|.
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Therefore

|�l( f )(η)| ≤
√

d(2|α|+N)
l

lq(l + 2|α| + N − 2)q

∥∥S	
q
h f

∥∥
2.

To complete the proof we use the bound dn
l ≤ 2ln−2 + O(ln−3) when l → +∞.

PROPOSITION 5. Let q ∈ N with q > |α|/2 + N/4. The Fourier expansion of any
f ∈ C2q(SN−1) converges to f uniformly on SN−1.

Proof. If q > |α|/2 + N/4, then |α| + N/2 − 2q − 1 < −1; hence, by the preceding
lemma, the Fourier expansion

∑+∞
l=0 �l( f ) converges absolutely and uniformly on

SN−1 to a continuous function we denote by g. But the series converges to g also in
L2(SN−1, dσh), since

‖φ − ψ‖2 ≤ ‖φ − ψ‖∞ ·
√

Hα ωN−1 ‖h‖∞

for φ, ψ ∈ C(SN−1). From Proposition 3 it follows that f = g almost everywhere and
then everywhere by continuity.
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