GENERALIZED FOURIER EXPANSIONS OF DIFFERENTIABLE FUNCTIONS ON THE SPHERE

FRANCISCO JAVIER GONZÁLEZ VIELI

École Polytechnique Fédérale de Lausanne, SB/IACS/CAHRU, MA B1 513, Station 8, 1015 Lausanne, Switzerland e-mail: francisco.gonzalez@epfl.ch

(Received 22 September, 2004; accepted 26 January, 2005)

Abstract. We show that the Fourier expansion in spherical h-harmonics (from Dunkl's theory) of a function f on the sphere converges uniformly to f if this function is sufficiently differentiable.

2000 Mathematics Subject Classification. Primary 42C10. Secondary 33C50.

1. Introduction. The theory of Dunkl's operators has found in recent years numerous applications in mathematics and mathematical physics (see the references in [4] and [6]). One of its starting points was the study of generalized spherical harmonics associated to a finitely generated reflection group and a multiplicative function $h \ge 0$. Among the many results for classical spherical harmonics carried over to these spherical *h*-harmonics is the following ([7, Theorem 3.1], [6, Theorem 5.5]): the Fourier expansion (in spherical *h*-harmonics) of any continuous function f on \mathbf{S}^{N-1} is uniformly summable in Cesàro means of order δ to f on \mathbf{S}^{N-1} as long as $\delta > \deg h + (N-2)/2$. Similar results about the Fourier expansion of $f \in L^p(\mathbf{S}^{N-1})$ have also been obtained.

Quite surprisingly, it seems that such questions for f differentiable on \mathbf{S}^{N-1} have been neglected until now. The aim of this work is to make a step in this direction. More precisely, we show in Section 4 that the Fourier expansion of $f \in C^{2q}(\mathbf{S}^{N-1})$ converges to f uniformly on \mathbf{S}^{N-1} as long as $q > \deg h/2 + N/4$.

For that we follow the approach of [5] in the classical case, which induces us to define in Section 3 an h-analogue of the Laplace-Beltrami operator on the sphere. In Section 2 we recall the basic facts in the theory of h-harmonics.

2. Preliminaries. For a vector v in $\mathbf{R}^N \setminus \{0\}$ $(N \ge 2)$ we define the reflection $\sigma_v \in O(N)$ by

$$x\sigma_v := x - 2\langle x, v \rangle v / \|v\|^2$$

for all $x \in \mathbf{R}^N$, where $\langle x, v \rangle$ is the Euclidean scalar product of x and v, and $||v|| := \langle v, v \rangle^{1/2}$. Thus $v\sigma_v = -v$ and $x\sigma_v = x$ if and only if x is perpendicular to v.

Suppose now G is a finite subgroup of O(N) generated by reflections. Let $\{\sigma_1, \ldots, \sigma_m\}$ be all reflections in G. We choose vectors v_1, \ldots, v_m in \mathbb{R}^N such that $\sigma_j = \sigma_{v_j}$ for $j = 1, \ldots, m$ and $||v_j|| = ||v_j||$ whenever σ_i is conjugate to σ_j in G. Next we

take $\alpha_1, \ldots, \alpha_m \in \mathbf{R}_{>0}$ with $\alpha_i = \alpha_i$ whenever σ_i is conjugate to σ_i in G and let

$$h(x) = h_{\alpha}(x) := \prod_{j=1}^{m} |\langle x, v_j \rangle|^{\alpha_j};$$

this is a G-invariant function, homogeneous of degree $|\alpha| := \alpha_1 + \cdots + \alpha_m$.

We write \mathbf{S}^{N-1} the unit sphere in \mathbf{R}^N and $d\sigma_{N-1}$ the measure on \mathbf{S}^{N-1} induced by the Lebesgue measure on \mathbf{R}^N , so that $\omega_{N-1} := \int_{\mathbf{S}^{N-1}} d\sigma_{N-1}(\eta) = 2\pi^{N/2} / \Gamma(N/2)$. We define a *G*-invariant measure on \mathbf{S}^{N-1} by

$$d\sigma_h(\eta) := H_{\alpha} h_{\alpha}^2(\eta) \, d\sigma_{N-1}(\eta),$$

with the constant H_{α} so chosen that $d\sigma_h$ is normalized. We write

$$\langle f,g\rangle_2 := \int_{\mathbf{S}^{N-1}} f(\eta) \overline{g(\eta)} \, d\sigma_h(\eta),$$

the usual scalar product in $L^2(\mathbf{S}^{N-1}, d\sigma_h)$ and $||f||_2$ the associated norm.

For i = 1, ..., N we write \mathcal{D}_i for Dunkl's operator defined by

$$\mathcal{D}_i f(x) := \partial_i f(x) + \sum_{j=1}^m \alpha_j \frac{f(x) - f(x\sigma_j)}{\langle x, v_j \rangle} \langle v_j, e_i \rangle,$$

where $\partial_i := \partial/\partial x_i$ and $(e_i)_l = \delta_{il}$. Dunkl's operators form a family of commuting first order difference-differential operators which play here a role similar to $\partial_1, \ldots, \partial_N$. In particular the *h*-Laplacian is

$$\Delta_h := \sum_{i=1}^N \mathcal{D}_i^2.$$

Let \mathcal{P}_l denote the space of homogeneous polynomials of degree $l \in \mathbf{N}_0$ on \mathbf{R}^N . Then $\mathcal{D}_l\mathcal{P}_l \subset \mathcal{P}_{l-1}$ and $\Delta_h\mathcal{P}_l \subset \mathcal{P}_{l-2}$. Moreover, if $P \in \mathcal{P}_l$, $\langle P, Q \rangle_2 = 0$ for all $Q \in \bigcup_{k=0}^{l-1}\mathcal{P}_k$ if and only if $\Delta_h P = 0$. The elements of $\mathcal{H}_l := \{P \in \mathcal{P}_l : \Delta_h P = 0\}$ are called *h*-harmonic polynomials of degree l. We have

$$d_l = d_l^{(N)} := \dim \mathcal{H}_l = \binom{l+N-1}{l} - \binom{l+N-3}{l-2}.$$

When $|\alpha| = 0$ (that is, $h \equiv 1$), we get classical spaces and operators; in particular $D_i = \partial_i$ and Δ_h is the usual Laplacian Δ .

Concerning all of the above we refer the reader to [4].

3. The *h*-Laplace-Beltrami operator. If *f* is a function on \mathbf{S}^{N-1} , we write $f \uparrow$ for the homogeneous function of degree 0 defined on $\mathbf{R}^N \setminus \{0\}$ by $(f \uparrow)(x) := f(x/||x||)$. Conversely, if *g* is a function defined on $\mathbf{R}^N \setminus \{0\}$ we write $g \downarrow$ for its restriction to \mathbf{S}^{N-1} . We say that a function *f* on \mathbf{S}^{N-1} is in $C^q(\mathbf{S}^{N-1})$ ($q \in \mathbf{N}_0$) if $f \uparrow \in C^q(\mathbf{R}^N \setminus \{0\})$. When $f \in C^q(\mathbf{S}^{N-1})$ with $q \ge 2$ we can define $\mathbf{s} \Delta_h f \in C^{q-2}(\mathbf{S}^{N-1})$ by

$$\mathbf{s}\Delta_h f := (\Delta_h(f\uparrow)) \downarrow .$$

We call ${}_{\mathbf{S}}\Delta_h$ the *h*-Laplace-Beltrami operator on ${}_{\mathbf{S}}^{N-1}$; it commutes with the action of *G*. We write $SH_l({}_{\mathbf{S}}^{N-1}) := \{P \downarrow : P \in \mathcal{H}_l\} \ (l \in {}_{\mathbf{N}_0})$; its elements are called *spherical h*-harmonics of degree *l* and its dimension is $d_l^{(N)}$.

340

LEMMA 1. If $\lambda > 0$ and $f \in C^2(\mathbb{R}^N \setminus \{0\})$ is homogeneous of degree ϕ , then

$$\Delta_h(\|\cdot\|^{-\lambda}f) = -\lambda(2\phi + 2|\alpha| + N - \lambda - 2)\|\cdot\|^{-\lambda - 2}f + \|\cdot\|^{-\lambda}\Delta_h f.$$

Proof. This is proved in [4, Lemma 5.1.9 p. 178] with the unnecessary restriction that f be a polynomial.

PROPOSITION 1. Let $l \in \mathbf{N}_0$. For every $Y \in SH_l(\mathbf{S}^{N-1})$,

$${}_{\mathbf{S}}\Delta_h Y = -l(l+2|\alpha|+N-2)Y.$$

Proof. By hypothesis, there exists $P \in \mathcal{H}_l$ with $Y = P \downarrow$. Since P is homogeneous of degree l, $Y \uparrow (x) = Y(x/||x||) = P(x/||x||) = ||x||^{-l}P(x)$. Therefore

$$\Delta_{h}(Y\uparrow) = \Delta_{h}(\|\cdot\|^{-l}P)$$

= $-l(2l+2|\alpha|+N-l-2)\|\cdot\|^{-l-2}P + \|\cdot\|^{-l}\Delta_{h}P$
= $-l(l+2|\alpha|+N-2)\|\cdot\|^{-l-2}P$,

using Lemma 1 for the second equality and $\Delta_h P = 0$ for the third. Hence

$$s\Delta_h Y = [\Delta_h(Y\uparrow)]\downarrow$$

= $[-l(l+2|\alpha|+N-2)||\cdot||^{-l-2}P]\downarrow$
= $-l(l+2|\alpha|+N-2)\cdot 1\cdot Y.$

PROPOSITION 2. The h-Laplace-Beltrami operator is self-adjoint; in other words, for all $f, g \in C^2(\mathbb{S}^{N-1})$,

$$\langle \mathbf{s} \Delta_h f, g \rangle_2 = \langle f, \mathbf{s} \Delta_h g \rangle_2.$$

Proof. According to [2, p. 35] we have $\Delta_h = L_h - D_h$, where

$$D_h\psi(x) := \sum_{j=1}^m \alpha_j \frac{\psi(x) - \psi(x\sigma_j)}{\langle x, v_j \rangle^2} \|v_j\|^2.$$

and

$$L_h\psi := (\Delta(\psi h) - \psi \Delta h)/h$$

Let us define ${}_{S}L_{h}$ on $C^{2}(\mathbf{S}^{N-1})$ by ${}_{S}L_{h}f := (L_{h}(f\uparrow))\downarrow$. We will show that ${}_{S}L_{h}$ is selfadjoint. We take $f, g \in C^{2}(\mathbf{S}^{N-1})$ and apply Green's formula to $F := f\uparrow$, $G := \overline{g\uparrow}$ and $\Omega := B(0, r) \setminus B(0, 1/2)$ (where r > 1/2):

$$\begin{split} &\int_{\Omega} [(L_h F)G - F(L_h G)](x) H_{\alpha} h^2(x) dx \\ &= \int_{\Omega} [\{(\Delta(Fh) - F\Delta h)/h\}G - F\{(\Delta(Gh) - G\Delta h)/h\}](x) H_{\alpha} h^2(x) dx \\ &= \int_{\Omega} [(\Delta(Fh) \cdot (Gh) - (Fh) \cdot \Delta(Gh)](x) H_{\alpha} dx \\ &= \int_{\partial \Omega} [(\partial_{\nu}(Fh) \cdot (Gh) - (Fh) \cdot \partial_{\nu}(Gh)](y) H_{\alpha} d\sigma_{N-1}(y) =: I \end{split}$$

Here *Fh* and *Gh* are homogeneous (of degree $|\alpha|$). Now, if ψ is homogeneous and ν is the outer normal vector to $\partial B(0, \rho)$, then

$$\partial_{\nu}\psi(y) = \langle \operatorname{grad}\psi(y), \nu(y) \rangle = \langle \operatorname{grad}\psi(y), y/||y|| \rangle = ||y||^{-1} \operatorname{deg}\psi \cdot \psi(y)$$

by Euler's formula. Therefore the integral I is equal to

$$\int_{\partial B(0,r)} [r^{-1}|\alpha|(Fh)(Gh) - (Fh)r^{-1}|\alpha|(Gh)](y) H_{\alpha} d\sigma_{N-1}(y) - \int_{\partial B(0,1/2)} [2|\alpha|(Fh)(Gh) - (Fh)2|\alpha|(Gh)](y) H_{\alpha} d\sigma_{N-1}(y) = 0 - 0 = 0.$$

We have thus proved that

$$\int_{1/2}^{r} \int_{\mathbf{S}^{N-1}} [(L_{h}F)G - F(L_{h}G)](\rho y) H_{\alpha} h^{2}(\rho y) d\sigma_{N-1}(y) \rho^{N-1} d\rho = 0$$

for all r > 1/2. Let us differentiate this equality with respect to r and then evaluate at r = 1; we get

$$\int_{\mathbf{S}^{N-1}} [(L_h F)G - F(L_h G)](y) H_\alpha h^2(y) d\sigma_{N-1}(y) = 0,$$

that is,

$$\int_{\mathbf{S}^{N-1}} [\mathbf{s}L_h f \cdot \overline{g} - f \cdot \overline{\mathbf{s}L_h g}](y) \, d\sigma_h(y) = 0.$$

Next, if we define ${}_{\mathbf{S}}D_h$ on $C^2(\mathbf{S}^{N-1})$ by ${}_{\mathbf{S}}D_hf := (D_h(f\uparrow))\downarrow$, then it is self-adjoint by [2, Proposition 1.2]. To conclude, we note that ${}_{\mathbf{S}}\Delta_h = {}_{\mathbf{S}}L_h - {}_{\mathbf{S}}D_h$.

4. Fourier expansions. Given $\eta \in \mathbf{S}^{N-1}$, the mapping $\Lambda : \mathcal{S}H_l(\mathbf{S}^{N-1}) \to \mathbf{C}$ defined by $\Lambda(Y) := Y(\eta)$ is a linear form on the finite dimensional hermitian space $\mathcal{S}H_l(\mathbf{S}^{N-1})$ with the scalar product \langle , \rangle_2 . Hence there exists $P_l(\cdot, \eta) \in \mathcal{S}H_l(\mathbf{S}^{N-1})$ such that $Y(\eta) = \Lambda(Y) = \langle Y, P_l(\cdot, \eta) \rangle_2$ for all $Y \in \mathcal{S}H_l(\mathbf{S}^{N-1})$; P_l is called the *reproducing kernel* of $\mathcal{S}H_l(\mathbf{S}^{N-1})$.

If $f \in L^2(\mathbf{S}^{N-1}, d\sigma_h)$ and $l \in \mathbf{N}_0$, we write $\Pi_l(f)$ for the orthogonal projection of f on $SH_l(\mathbf{S}^{N-1})$; we call the series

$$\sum_{l=0}^{+\infty} \Pi_l(f)$$

the Fourier expansion of f (in spherical *h*-harmonics). For any orthonormal basis (E_1^l, \ldots, E_d^l) of $SH_l(\mathbf{S}^{N-1})$,

$$\Pi_l(f) = \sum_{j=1}^{d_l} \langle f, E_j^l \rangle_2 E_j^l.$$

342

Moreover

$$P_l(\cdot,\eta) = \sum_{j=1}^{d_l} \left\langle P_l(\cdot,\eta), E_j^{\prime} \right\rangle_2 E_j^{\prime} = \sum_{j=1}^{d_l} \overline{\left\langle E_j^{\prime}, P_l(\cdot,\eta) \right\rangle_2} E_j^{\prime} = \sum_{j=1}^{d_l} \overline{E_j^{\prime}(\eta)} E_j^{\prime}$$

and

$$\Pi_l(f)(\eta) = \langle \Pi_l(f), P_l(\cdot, \eta) \rangle_2 = \langle f, P_l(\cdot, \eta) \rangle_2.$$

PROPOSITION 3. The Fourier expansion of any $f \in L^2(\mathbf{S}^{N-1}, d\sigma_h)$ converges to f in $L^2(\mathbf{S}^{N-1}, d\sigma_h)$.

Proof. It suffices to show that $\bigoplus_{l=0}^{+\infty} SH_l(\mathbf{S}^{N-1})$ is dense in $L^2(\mathbf{S}^{N-1}, d\sigma_h)$. But, according to [2, Theorem 1.7], for every $g \in \mathcal{P}_n$ we can write

$$g(x) = \sum_{j=0}^{\lfloor n/2 \rfloor} \|x\|^{2j} g_{n-2j}(x)$$

with $g_{n-2j} \in \mathcal{H}_{n-2j}$; hence $\bigoplus_{j=0}^{n} \mathcal{S}H_j(\mathbf{S}^{N-1}) \supset \{P\downarrow : P \in \mathcal{P}_l, 0 \le l \le n\}$. Since $\{P\downarrow : P \in \mathcal{P}_l, l \in \mathbf{N}_0\}$ is dense in $L^2(\mathbf{S}^{N-1}, d\sigma_h)$, the proof is complete.

PROPOSITION 4. For every $f \in C^2(\mathbf{S}^{N-1})$ and $l \in \mathbf{N}_0$,

$$\Pi_l(\mathbf{s}\Delta_h f) = -l(l+2|\alpha| + N - 2) \Pi_l(f).$$

Proof. If $\eta \in \mathbf{S}^{N-1}$ we get, by Propositions 1 and 2,

$$\Pi_{l}(\mathbf{s}\Delta_{h}f)(\eta) = \langle \mathbf{s}\Delta_{h}f, P_{l}(\cdot, \eta) \rangle_{2}$$

$$= \langle f, \mathbf{s}\Delta_{h}P_{l}(\cdot, \eta) \rangle_{2}$$

$$= \langle f, -l(l+2|\alpha|+N-2)P_{l}(\cdot, \eta) \rangle_{2}$$

$$= -l(l+2|\alpha|+N-2) \langle f, P_{l}(\cdot, \eta) \rangle_{2}$$

$$= -l(l+2|\alpha|+N-2) \Pi_{l}(f)(\eta).$$

LEMMA 2. For all $l \in \mathbf{N}_0$ and ζ , $\eta \in \mathbf{S}^{N-1}$, $|P_l(\zeta, \eta)| \leq d_l^{(2|\alpha|+N)}$.

Proof. According to [7, Theorem 3.2],

$$P_{l}(\zeta,\eta) = \frac{l+|\alpha|+(N-2)/2}{|\alpha|+(N-2)/2} V \Big[C_{l}^{(|\alpha|+(N-2)/2)}(\langle\cdot,\eta\rangle) \Big](\zeta),$$

where $C_l^{(\lambda)}$ denotes the Gegenbauer polynomial defined by

$$\frac{1 - r^2}{(1 - 2tr + r^2)^{\lambda + 1}} = \sum_{k=0}^{+\infty} \frac{k + \lambda}{\lambda} C_k^{(\lambda)}(t) r^k$$

and V is the intertwining operator defined uniquely as being linear with $V\mathcal{P}_n \subset \mathcal{P}_n$, V1 = 1 and $\mathcal{D}_i \circ V = V \circ \partial_i$ (see [3]). But V is positive [6, Theorem 1.2], which implies that

$$\begin{split} \left| V \Big[C_l^{(|\alpha| + (N-2)/2)}(\langle \cdot, \eta \rangle) \Big](\zeta) \Big| &\leq \sup_{\|y\| \leq 1} C_l^{(|\alpha| + (N-2)/2)}(\langle y, \eta \rangle) \\ &\leq C_l^{(|\alpha| + (N-2)/2)}(1), \end{split}$$

since $|C_l^{(\lambda)}(t)| \le C_l^{(\lambda)}(1)$ for all $|t| \le 1$.

Now, if $|\alpha| = 0$ we are in the classical case, where

$$\frac{l + (N-2)/2}{(N-2)/2} C_l^{((N-2)/2)}(1) = P_l(\eta, \eta)$$

[8, p. 187] and $P_l(\eta, \eta) = d_l^{(N)}$ [1, Proposition 5.27]. This completes the proof. LEMMA 3. Let $f \in L^2(\mathbf{S}^{N-1}, d\sigma_h)$ and $l \in \mathbf{N}_0$. For all $\eta \in \mathbf{S}^{N-1}$ we have

$$|\Pi_l(f)(\eta)| \le \sqrt{d_l^{(2|\alpha|+N)}} \cdot ||f||_2.$$

Proof. Let $(E_1^l, \ldots, E_{d_l}^l)$ be an orthonormal basis of $SH_l(\mathbf{S}^{N-1})$. Then

$$\begin{aligned} |\Pi_{l}(f)(\eta)| &= \left| \sum_{j=1}^{d_{l}} \langle f, E_{j}^{l} \rangle_{2} E_{j}^{l}(\eta) \right| \\ &\leq \sum_{j=1}^{d_{l}} \left| \langle f, E_{j}^{l} \rangle_{2} \right| \cdot \left| E_{j}^{l}(\eta) \right| \\ &\leq \left(\sum_{j=1}^{d_{l}} \left| \langle f, E_{j}^{l} \rangle_{2} \right|^{2} \right)^{1/2} \cdot \left(\sum_{j=1}^{d_{l}} \left| E_{j}^{l}(\eta) \right|^{2} \right)^{1/2} \end{aligned}$$

by the Cauchy-Schwarz inequality. Moreover,

$$\sum_{j=1}^{d_l} \left| \left\langle f, E_j^l \right\rangle_2 \right|^2 \le \|f\|_2^2$$

by Bessel's inequality and

$$\sum_{j=1}^{d_l} \left| E_j^l(\eta) \right|^2 = \sum_{j=1}^{d_l} \overline{E_j^l(\eta)} \, E_j^l(\eta) = P_l(\eta, \eta) \le d_l^{(2|\alpha| + N)}$$

by Lemma 2.

LEMMA 4. Let $q \in \mathbf{N}_0$. There exists a constant $C_q > 0$ depending only on q, h and N such that, for all $l \in \mathbf{N}_0$, $f \in C^{2q}(\mathbf{S}^{N-1})$ and $\eta \in \mathbf{S}^{N-1}$,

$$|\Pi_l(f)(\eta)| \le C_q \|_{\mathbf{S}} \Delta_h^q f\|_2 \cdot l^{|\alpha|+N/2-2q-1}.$$

Proof. On the one hand, the preceding lemma implies that

$$\left|\Pi_l \left(\mathbf{s} \Delta_h^q f\right)(\eta)\right| \leq \sqrt{d_l^{(2|\alpha|+N)}} \cdot \left\|\mathbf{s} \Delta_h^q f\right\|_2$$

On the other hand, Proposition 4 implies that

$$\left|\Pi_l \left(\mathbf{s} \Delta_h^q f\right)(\eta)\right| = l^q (l+2|\alpha| + N - 2)^q \cdot |\Pi_l(f)(\eta)|.$$

344

Therefore

$$|\Pi_l(f)(\eta)| \leq \frac{\sqrt{d_l^{(2|\alpha|+N)}}}{l^q(l+2|\alpha|+N-2)^q} \left\|_{\mathbf{S}} \Delta_h^q f\right\|_2.$$

To complete the proof we use the bound $d_l^n \leq 2l^{n-2} + O(l^{n-3})$ when $l \to +\infty$.

PROPOSITION 5. Let $q \in \mathbf{N}$ with $q > |\alpha|/2 + N/4$. The Fourier expansion of any $f \in C^{2q}(\mathbf{S}^{N-1})$ converges to f uniformly on \mathbf{S}^{N-1} .

Proof. If $q > |\alpha|/2 + N/4$, then $|\alpha| + N/2 - 2q - 1 < -1$; hence, by the preceding lemma, the Fourier expansion $\sum_{l=0}^{+\infty} \prod_l (f)$ converges absolutely and uniformly on \mathbf{S}^{N-1} to a continuous function we denote by g. But the series converges to g also in $L^2(\mathbf{S}^{N-1}, d\sigma_h)$, since

$$\|\phi - \psi\|_2 \le \|\phi - \psi\|_\infty \cdot \sqrt{H_lpha} \, \omega_{N-1} \, \|h\|_\infty$$

for $\phi, \psi \in C(\mathbf{S}^{N-1})$. From Proposition 3 it follows that f = g almost everywhere and then everywhere by continuity.

ACKNOWLEDGEMENT. Work supported by the Swiss National Science Foundation.

REFERENCES

1. S. Axler, P. Bourdon and W. Ramey, Harmonic function theory (Springer-Verlag, 2001).

2. C. F. Dunkl, Reflection groups and orthogonal polynomials on the sphere, *Math. Z.* **197** (1988), 33–60.

3. C. F. Dunkl, Integral kernels with reflection group invariance, *Canadian J. Math.* **43** (1991), 1213–1227.

4. C. F. Dunkl and Y. Xu, *Orthogonal polynomials of several variables* (Cambridge University Press, 2001).

5. H. Groemer, *Geometric applications of Fourier series and spherical harmonics* (Cambridge University Press, 1996).

6. M. Rösler, Positivity of Dunkl's intertwining operator, *Duke Math. J.* 98 (1999), 445-463.

7. Y. Xu, Integration of the intertwining operator for *h*-harmonic polynomials associated to reflection groups, *Proc. Amer. Math. Soc.* **125** (1997), 2963–2973.

8. Y. Xu, Orthogonal polynomials for a family of product weight functions on the spheres, *Canadian J. Math.* **49** (1997), 175–192.