A NOTE ON COMPACT SETS IN SPACES OF SUBSETS

PHIL DIAMOND AND PETER KLOEDEN

A simple characterisation is given of compact sets of the space $\mathcal{K}(X)$, of nonempty compact subsets of a complete metric space X, with the Hausdorff metric d_H . It is used to give a new proof of the Blaschke selection theorem for compact starshaped sets.

Let (\mathcal{E}^n, D) be the metric space of fuzzy sets on \mathbb{R}^n , with D the supremum over Hausdorff distances between corresponding level sets. Compact sets of this space have recently been characterised [2]: roughly speaking, a closed set \mathcal{U} of (\mathcal{E}^n, D) is compact if and only if

- (1) fuzzy sets in \mathcal{U} have uniformly bounded support, and
- (2) the level set maps $\alpha \mapsto [u]^{\alpha} = \{x \in \mathbf{R}^n : \alpha \leq u(x) \leq 1\}, \ 0 < \alpha \leq 1$, are uniformly equi-left continuous for all $u \in \mathcal{U}$.

The Blaschke selection theorem and its converse follow as a simple corollary: that compact sets of the metric space $(\mathcal{K}_{co}^n, d_H)$ of nonempty compact convex subsets of \mathbb{R}^n , where d_H is the induced Hausdorff metric, are the closed, uniformly bounded subsets of \mathcal{K}_{co}^n . Such subsets are represented as fuzzy sets by their characteristic functions. These are independent of α , so condition (2) is automatically satisfied.

On the other hand, it is well-known that if (X, d) is a compact space, then so too is $(\mathcal{K}(X), d_H)$, the space of nonempty compact subsets of X with metric d_H [3]. Thus B compact in X gives $\mathcal{K}(B)$ compact in $\mathcal{K}(X)$. However, converse theorems (which then characterise compact subsets of $\mathcal{K}(X)$) have apparently not been stated. Such results are not without application, because frequently a subset of $\mathcal{K}(X)$ is studied, rather than the whole space, as in formulating concepts of random sets [4, 5]. We present below a direct proof of such a characterisation, which is more convenient than the usual one involving total boundedness. As a direct application, Corollary 2 is a new proof of the Blaschke theorem and its converse for starshaped sets, without gauge functions [1].

DEFINITION: A nonempty subset \mathcal{U} of $(\mathcal{K}(X), d_H)$ is said to be compactly bounded (in X) if there exists a compact subset W of X such that $U \subseteq W$ for every $U \in \mathcal{U}$.

Received 8 February 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

PROPOSITION. Let (X, d) be a complete metric space. Then a nonempty closed subset C of $(\mathcal{K}(X), d_H)$, the metric space of nonempty compact subsets of X, is compact if and only if C is compactly bounded.

COROLLARY 1. A nonempty closed subset C of $(\mathcal{K}(\mathbf{R}^n), d_H)$ is compact if and only if C is uniformly bounded in \mathbf{R}^n .

COROLLARY 2. Let \mathcal{V} be a nonempty closed subset of the class of nonempty compact starshaped sets in \mathbb{R}^n . Then \mathcal{V} is compact if and only if \mathcal{V} is uniformly bounded in \mathbb{R}^n .

PROOF OF PROPOSITION: Write $W(\mathcal{C}) = \bigcup \{C : C \in \mathcal{C}\}$. If $W(\mathcal{C}) \subseteq V$, where V is compact in X, then $\mathcal{C} \subseteq \mathcal{K}(V) \subseteq \mathcal{K}(X)$, and \mathcal{C} is closed in the subspace topology on $\mathcal{K}(V)$. Thus \mathcal{C} is compact in $\mathcal{K}(V)$, and in $\mathcal{K}(X)$. Conversely, if \mathcal{C} is compact in $(\mathcal{K}(X), d_H)$ then it is also sequentially compact. Let $\{x_i\}$ be a sequence in $W(\mathcal{C})$. Then there is a corresponding sequence of sets $\{C_i\}$ in \mathcal{C} , such that $x_i \in C_i$ for each i. Compactness of \mathcal{C} gives a subsequence $\{C_{i(j)}\}$ converging to $C_0 \in \mathcal{C}$. So $d(x_{i(j)}, C_0) \to 0$ as $i(j) \to \infty$. Since C_0 is itself compact, there is a further subsequence $\{x_{k'}\} \subseteq \{x_{i(j)}\}$ converging to some $x_0 \in C_0$. Thus $W(\mathcal{C})$ is a sequentially compact subset of X, and \mathcal{C} is compactly bounded.

PROOF OF COROLLARY 2: Let $\{C_k\}$ be a bounded sequence of compact starshaped sets in \mathcal{V} . A subsequence $\{C_{k'}\} \subseteq \{C_k\}$ converges if and only if, for any bounded sequence of points $p_k \in \mathbf{R}^n$, a subsequence of $\{C_k - p_k\}$ converges. Thus it suffices to consider only sequences where each C_k is starshaped with respect to the origin O. From Corollary 1 it only remains to show that the (relabelled) subsequence $\{C_k\}$ has limit $C \in \mathcal{K}(\mathbf{R}^n)$ which is starshaped. If C were not starshaped, there would exist $y \in C, z \notin C$ such that $z \in$ the line segment Oy. Recall that the Hausdorff semidistance $\rho(A, B) = \sup \inf_{a \in A} b \in B} \|a - b\|$ has the properties

$$ho(A,B) = 0 \quad ext{if and only if} \quad A \subseteq B$$
 $ho(A,C) \leq
ho(A,C) +
ho(B,C)$

for sets in $\mathcal{K}(\mathbf{R}^n)$. By compactness, there exists $\eta > 0$ such that $\rho(z, C) = \eta$. For k sufficiently large, $\rho(C_k, C) \leq d_H(C_k, C) < \eta/3$, so select $y_k \in C_k$ such that $||y - y_k|| < \eta/3$. Then there exists $z_k \in Oy_k \subset C_k$ such that $||z - z_k|| < \eta/3$. Thus

$$\eta = \rho(z, C) \leq \rho(z, z_k) + \rho(z_k, C_k) + \rho(C_k, C) < \eta/3 + 0 + \eta/3,$$

a contradiction, and C is starshaped.

[2]

Note. This characterisation of compact sets is not true for $(2^X, d_H)$, where 2^X is the set of nonempty closed subsets of X, when X is not compact. For example, $\mathcal{C} = \{C_{\chi} =$ $[\gamma, \infty): 0 \leqslant \gamma \leqslant 1$ is a compact subset of $(2^{\mathbb{R}}, d_H)$, as $d_H(C_{\gamma}, C_{\beta}) = |\gamma - \beta|$ and thus C is totally bounded in $2^{\mathbb{R}}$. However, $\bigcup_{0 \leq \gamma \leq 1} C_{\gamma} = \mathbb{R}^+$ is not a compact subset in \mathbf{R} and \mathcal{C} is not compactly bounded.

REFERENCES

- [1] G. A. Beer, 'Starshaped sets and the Hausdorff metric', Pacific J. Math. 61 (1975), 21-27.
- [2] P. Diamond and P. Kloeden, 'Characterization of compact subsets of fuzzy sets', Fuzzy Sets and Systems (1989) (to appear).
- [3] F. Hausdorff, Set Theory (Chelsea Press, New York, 1957).
- [4] G. Matheron, Random Sets and Integral Geometry (John Wiley, New York, 1975).
- [5] W. Weil, 'An application of the central limit theorem for Banach-space-valued random variables to the theory of random sets', Z. Wahrsch. Verw. Gebiete 60 (1982), 203-208.

Dr P. Diamond Mathematics Department University of Queensland St. Lucia, Qld 4067 Australia.

Dr P. Kloeden School of Mathematical and Physical Sciences Murdoch University Murdoch, W.A. 6150 Australia.